Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 823

By James Gallagher Health and science reporter, BBC News Brain scans show a complex string of numbers and letters in mathematical formulae can evoke the same sense of beauty as artistic masterpieces and music from the greatest composers. Mathematicians were shown "ugly" and "beautiful" equations while in a brain scanner at University College London. The same emotional brain centres used to appreciate art were being activated by "beautiful" maths. The researchers suggest there may be a neurobiological basis to beauty. The likes of Euler's identity or the Pythagorean identity are rarely mentioned in the same breath as the best of Mozart, Shakespeare and Van Gogh. The study in the journal Frontiers in Human Neuroscience gave 15 mathematicians 60 formula to rate. One of the researchers, Prof Semir Zeki, told the BBC: "A large number of areas of the brain are involved when viewing equations, but when one looks at a formula rated as beautiful it activates the emotional brain - the medial orbito-frontal cortex - like looking at a great painting or listening to a piece of music." The more beautiful they rated the formula, the greater the surge in activity detected during the fMRI (functional magnetic resonance imaging) scans. "Neuroscience can't tell you what beauty is, but if you find it beautiful the medial orbito-frontal cortex is likely to be involved, you can find beauty in anything," he said. To the the untrained eye there may not be much beauty in Euler's identify, but in the study it was the formula of choice for mathematicians. BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19246 - Posted: 02.13.2014

It seems simple: People are more likely to cooperate if everyone plays fair. But a new study suggests that fairness itself arises from an unlikely source: spite. Researchers made a mathematical model based on the so-called ultimatum game. In it, two players are offered a reward, and the first player makes an offer for how it should be split up. If the second player agrees, then they divide it accordingly. But if the second player refuses, then neither gets the reward. As shown in the image above, depending on the interaction of the players, the outcome can be classified as altruism, cooperation, selfishness, or spite. Previous experiments have shown that, over multiple rounds of the game, a culture of cooperation evolves where everyone makes fair offers. But the new study, published online today in the Proceedings of the Royal Society B, finds that when players start out using multiple different strategies, by making fair or unfair offers, and rejecting or accepting unfair offers, some will act out of spite. These spiteful players deny the first player the reward at a cost to himself. The calculations further show that the antisocial behavior will eventually cause fairness to become the most successful option, because there is no reason to reject a fair offer. In essence, fairness evolves in spite of spite, when players start out using different strategies. Though they warn against generalizing to humans, the researchers point out that if fairness is the basis for a moral society, then paradoxically, spite may have played a role in the evolution of morality. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19239 - Posted: 02.12.2014

Alice Roberts Just how special do you think you are? How different do you think you are from other animals? Do you think of yourself as an animal or do you see yourself, and your fellow humans, as somehow set apart from the rest of the animal kingdom? Most of us – and I would unashamedly label us as the sensible majority of the population – accept that evolution is the best explanation for the pattern of life that we observe on the planet, both living and fossilised. However much creationists bang on about evolution being "just a theory", it beautifully explains all the evidence we have to hand (and there's masses of that: anatomical, genetic, palaeontological, embryological), without a single piece of evidence having turned up that threatens to bring the whole edifice tumbling down around our ears. So, I'm hoping you're a sensible sort of person and that you consider evolution to be as true as the spherical nature of the Earth, or the fact that the Earth orbits the sun and not vice versa. But just how comfortable are you with the idea of being a product of evolution? I think it's still, even among the most enlightened of us, really hard to come to terms with the idea that we are just another animal. A naked ape. The third chimpanzee, even. You have to admit, science has done a very good job at bringing us down a peg or two, at knocking us off the pedestal of our own construction. We can no longer view ourselves as a special creation, something created in the image of a deity and close to angels (whatever they are or look like). We can no longer see ourselves as the ultimate destination, as the pinnacle of evolution, either. Our species is just a tiny twig on the massive, dense tree of life. But that's so difficult to stomach! © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19198 - Posted: 02.04.2014

|By Ajai Raj As the climate heats up, tempers may follow suit, according to a study published in August 2013 in Nature. Analyzing 60 quantitative studies across fields as disparate as archaeology, criminology, economics, geography, history, political science and psychology, University of California researchers found that throughout history and across the world, higher temperatures, less rainfall and more drought were consistently linked to increased violence. The correlation held true for aggression between individuals, such as domestic abuse and assault, but was even more pronounced for conflict between groups [see timeline]. “We didn't expect for there to be nearly so many convergent findings among so many different researchers,” says economist Solomon Hsiang, now at U.C. Berkeley, who led the study. “We were actually really stunned by the level of consistency in the findings that were out there and by the size of the effects we were observing.” The researchers used statistical modeling to show that aggression scales with a combination of temperature, place and time—for example, if one U.S. county is three degrees Celsius warmer for three months or one African country is 0.6 degree C warmer for a year, statistics reveal an uptick in crime, violence and revolutionary fervor. The reasons behind the climate-violence link are complex and not fully understood, although anyone who has lived through a heat wave can attest to one simple fact: “When people are hot, it makes them cranky,” says Brian Lickel, a social psychologist who is on the faculty of the Psychology of Peace and Violence program at the University of Massachusetts Amherst and who was not involved in the study. “It makes people more prone to anger, it makes people more frustrated, and it makes decision making more impulsive. And that can lead to altercations that escalate to more extreme levels of aggression.” © 2014 Scientific American,

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19161 - Posted: 01.25.2014

By Meeri Kim, Rats, like humans, will show kindness to strangers, but only if the rats in distress are of a familiar type, a new study has found. Neurobiologists from the University of Chicago have discovered that rats display empathy-like behavior toward other rats, but the basis of that empathy is environmental, rather than genetic. The creatures aren’t born with an innate motivation to help rats of their own kind, but instead those with whom they are socially familiar. “Rats choose to help according to which rats they’ve had a positive social experience with in the past,” said study author and postdoctoral researcher Inbal Ben-Ami Bartal. As part of what Bartal calls the “Mowgli experiment” — a reference to the boy raised by wolves in Rudyard Kipling’s “The Jungle Book” — researchers plucked albino pups from their mothers on the day they were born and transferred them to a group of black-patched rats. As adults, the albinos refused to help other albinos but readily freed black-patched rats. “There’s no mirror in nature,” said study author and neurobiologist Peggy Mason. “They are not born with an idea of who they are, and therefore, who they should help.” The study was published online Tuesday in the journal eLife. © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19141 - Posted: 01.16.2014

By Arthur Allen, Cognitive psychologist Mary Czerwinski and her boyfriend were having a vigorous argument as they drove to Vancouver, B.C., from Seattle, where she works at Microsoft Research. She can’t remember the subject, but she does recall that suddenly, his phone went off, and he read out the text message: “Your friend Mary isn’t feeling well. You might want to give her a call.” At the time, Czerwinski was wearing on her wrist a wireless device intended to monitor her emotional ups and downs. Similar to the technology used in lie detector tests, it interprets signals such as heart rate and electrical changes in the skin. The argument may have been trivial, but Czerwinski’s internal response was not. That prompted the device to send a distress message to her cellphone, which broadcast it to a network of her friends. Including the one with whom she was arguing, right beside her. Czerwinski is working in affective computing, which emerged in 2000 from the laboratory of Rosalind Picard at the Massachusetts Institute of Technology. Picard and her colleagues dreamed of creating caring robots. As a first step, they decided to make machines that could detect and help us cope with our sometimes hidden emotions. One of Picard’s early projects involved helping autistic children. Because her devices were often better than the children themselves at communicating their feelings, she designed ways of feeding information from a wrist sensor to the cellphones of parents and other caretakers so they could know about the stress their children were under and respond accordingly. © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19134 - Posted: 01.15.2014

By JAN HOFFMAN Just in time to protect patients from the dangers of holiday cheer, a new scholarly review from a British medical journal describes many harmful effects wrought by laughter. Among the alarms it sounds: The force of laughing can dislocate jaws, prompt asthma attacks, cause headaches, make hernias protrude. It can provoke cardiac arrhythmia, syncope or even emphysema (this last, according to a clinical lecturer in 1892). Laughter can trigger the rare but possibly grievous Pilgaard-Dahl and Boerhaave’s syndromes (see explanation below). And ponder, briefly, the mortifying impact of sustained laughter on the urinary tract (detailed in a 1982 The Lancet paper entitled “Giggle Incontinence”). At the very least, the new review could be considered an affirmation for the perpetually dour. If 2013 was the year of the worried well, the authors imply that 2014 is poised to be the year of the humorless healthy. The analysis, “Laughter and MIRTH (Methodical Investigation of Risibility, Therapeutic and Harmful),” was drawn from about 5,000 studies. It appears in BMJ, formerly known as The British Medical Journal, which for more than 30 years has traditionally featured rigorously researched but lighthearted articles in its Christmas issue. A deputy editor, Dr. Tony Delamothe, said that the MIRTH study was indeed peer-reviewed — presumably by a doctor with a carefully managed sense or humor (or humour). This year, companion studies in the issue include “Were James Bond’s drinks shaken because of alcohol induced tremor?” , “The survival time of chocolates on hospital wards: covert observational study,” and “Operating room safety: the 10 point plan to safe flinging” (among the cautions: “Before flinging, identify your target and the area beyond it” and “Never fling an instrument straight up into the air”). Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19059 - Posted: 12.21.2013

Jo Marchant When Steve Cole was a postdoc, he had an unusual hobby: matching art buyers with artists that they might like. The task made looking at art, something he had always loved, even more enjoyable. “There was an extra layer of purpose. I loved the ability to help artists I thought were great to find an appreciative audience,” he says. At the time, it was nothing more than a quirky sideline. But his latest findings have caused Cole — now a professor at the Cousins Center for Psychoneuroimmunology at the University of California, Los Angeles — to wonder whether the exhilaration and sense of purpose that he felt during that period might have done more than help him to find homes for unloved pieces of art. It might have benefited his immune system too. At one time, most self-respecting molecular biologists would have scoffed at the idea. Today, evidence from many studies suggests that mental states such as stress can influence health. Still, it has proved difficult to explain how this happens at the molecular level — how subjective moods connect with the vastly complex physiology of the nervous and immune systems. The field that searches for these explanations, known as psychoneuroimmunology (PNI), is often criticized as lacking rigour. Cole's stated aim is to fix that, and his tool of choice is genome-wide transcriptional analysis: looking at broad patterns of gene expression in cells. “My job is to be a hard-core tracker,” he says. “How do these mental states get out into the rest of the body?” With his colleagues, Cole has published a string of studies suggesting that negative mental states such as stress and loneliness guide immune responses by driving broad programs of gene expression, shaping our ability to fight disease. If he is right, the way people see the world could affect everything from their risk of chronic illnesses such as diabetes and heart disease to the progression of conditions such as HIV and cancer. Now Cole has switched tack, moving from negative moods into the even more murky territory of happiness. It is a risky strategy; his work has already been criticized as wishful thinking and moralizing. But the pay-off is nothing less than finding a healthier way to live. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18988 - Posted: 11.30.2013

Regina Nuzzo The gut may know better than the head whether a marriage will be smooth sailing or will hit the rocks after the honeymoon fades, according to research published today in Science1. Researchers have long known that new love can be blind, and that those in the midst of it can harbour positive illusions about their sweetheart and their future. Studies show that new couples rate their partner particularly generously, forgetting his or her bad qualities, and generally view their relationship as more likely to succeed than average2. But newlyweds are also under a lot of conscious pressure to be happy — or, at least, to think they are. Now a four-year study of 135 young couples has found that split-second, 'visceral' reactions about their partner are important, too. The results show that these automatic attitudes, which aren’t nearly as rosy as the more deliberate ones, can predict eventual changes in people’s marital happiness, perhaps even more so than the details that people consciously admit. The researchers, led by psychologist James McNulty of Florida State University in Tallahassee, tapped into these implicit attitudes by seeing how fast newlyweds could correctly classify positively and negatively themed words after being primed by a photo of their spouse for a fraction of a second. If seeing a blink-of-the-eye flash of a partner’s face conjures up immediate, positive gut-level associations, for example, the participant will be quicker to report that 'awesome' is a positive word and slower to report that 'awful' is a negative one. Researchers used the difference between these two reaction times as a measurement of a participant’s automatic reaction. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 18985 - Posted: 11.30.2013

By Victoria Stern A trolley is hurtling down a track, and if nobody intervenes it will hit and kill five people. Psychologists use variations on this hypothetical situation to gauge people's gut reactions about morality. Here are three scenarios: The driver could switch the train to another track, on which one man stands. Should the driver reroute the trolley? Now suppose the trolley is driverless and you are a bystander. Should you hit a switch to divert the trolley so it hits the lone man? You are standing above the tracks on a bridge. You could stop the trolley and save the five people by pushing a large man to his death in front of the trolley. Would you push him? Most people say that the driver should reroute the train and that they would reroute the train with the switch but that they would not push the man to his death. This typical decision is associated with increased activity in the medial prefrontal cortex (green), which indicates a strong negative emotional reaction, as well as activity in the amygdala (red), which is involved in processing emotions and stressful events. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 18882 - Posted: 11.07.2013

By Jesse Bering Disgust, in its most familiar form, is our response to something vile in the world—spoiled food, a dirty floor or rats cavorting in the subway. It is a contamination-avoidance mechanism that evolved to help us make biologically adaptive decisions in the heat of the moment. Yet disgust has also come to have powerful symbolic elements. When left unchecked, these symbolic qualities can have devastating impacts on our mental states. Consider, for example, the often dramatized, heartbreaking image of a woman crouched in the corner of a shower and frantically trying to scrub her body clean after being raped. Empirical evidence supports the characterization. Seventy percent of female victims of sexual assault report a strong impulse to wash afterward, and a quarter of these continue to wash excessively up to three months later. For women, simply imagining an unwanted advance can turn on this moral-cleansing effect. Psychiatrist Nichole Fairbrother of the University of British Columbia Hospital and her colleagues looked more closely at the phenomenon of mental pollution in a study published in 2005. Two groups of female participants were told to close their eyes and picture being kissed. The members of one group were instructed to imagine being aggressively cornered and kissed against their will. The members of the other group were asked to envision themselves in a consensual embrace. Only those women in the coercive condition chose to wash up after the study. In many cases, it seems as though a person's sense of self has become contaminated. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18811 - Posted: 10.19.2013

by Bruce Bower Thomas Jefferson defended the right to pursue happiness in the Declaration of Independence. But that’s so 237 years ago. Many modern societies champion everyone’s right to be happy pretty much all the time. Good luck with that, says psychologist Joseph Forgas of the University of New South Wales in Sydney. A lack of close friends, unfulfilled financial dreams and other harsh realities leave many people feeling lonely and forlorn a lot of the time. But there’s a mental and social upside to occasional downers that often goes unappreciated. “Bad moods are seen in our happiness-focused culture as representing a problem, but we need to be aware that temporary, mild negative feelings have important benefits,” Forgas says. Growing evidence suggests that gloomy moods improve key types of thinking and behavior, Forgas asserts in a new review paper aptly titled “Don’t worry, be sad!” For good evolutionary reasons, positive and negative moods subtly recruit thinking styles suited to either benign or troubling situations, he says. Each way of dealing with current circumstances generally works well, if imperfectly. New and recent studies described by Forgas in the June Current Directions in Psychological Science illustrate some of the ways in which periods of sadness spontaneously recruit a detail-oriented, analytical thinking style. Morose moods have evolved as early-warning signs of problematic or dangerous situations that demand close attention, these reports suggest. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18810 - Posted: 10.19.2013

By Jason G. Goldman Scientists love yawning. No, that’s not quite right. Scientists love doing research on yawning. It seems to be of interest to folks in fields ranging from primatology to developmental psychology to psychopathology to animal behavior. If the notion of scientifically investigation the purpose of yawning makes you, well, yawn, then you’re missing one of the more interesting debates in the social cognition literature. To understand why yawning is about more than feeling tired or bored, we have to go back a few years. Once upon a time, scientists thought that yawning might be process through which the brain keeps itself cool (PDF). Yawning is associated with increases in blood pressure, and the consequential increase in blood flow might mean that the vascular system acts as a radiator, replacing the warm blood in the brain with cooler blood. It could also be that the deep inhalation of cold air during a yawn can, through convection, alter blood temperature which in turn could cool the brain. Even if it turns out that some yawns can be explained through purely physiological means, yawning is also contagious for humans and other species. If someone watches someone else yawning, they’ll be likely to yawn as well. That means that there is social component to yawning, and it might be related to empathy. It turns out that there’s a correlation between a person’s self-reported empathy and their susceptibility to reacting to a yawn contagion, and those who are more skilled at theory of mind tasks are also more likely (PDF) to yawn contagiously. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18801 - Posted: 10.17.2013

by Stephanie Pappas, LiveScience Apes orphaned by the African bushmeat trade lack the social savvy of apes raised by their mothers, a new study finds. The study links the emotional development of bonobos (Pan paniscus), one of humans' closest living relatives, with the ability to interact nicely with others, echoing how human emotions develop. Bonobos who are good at soothing themselves out of a bad mood are more likely to comfort other bonobos in distress, researchers report today (Oct. 14) in the journal Proceedings of the National Academy of Sciences. "By measuring the expression of distress and arousal in great apes, and how they cope, we were able to confirm that efficient emotion regulation is an essential part of empathy," study researcher Frans de Waal, of Emory University's National Primate Research Center, said in a statement. PHOTOS: How Santino, the Chimp, Attacks Visitors Though animal emotions "have long been scientifically taboo," de Waal said, he and his colleagues suspected that emotions might have evolved similarly before the bonobo and human lines split about 6 million years ago. The researchers observed juvenile bonobos at a sanctuary near Kinshasa in the Democratic Republic of the Congo. They watched as the young primates fought, threw tantrums and comforted one another by hugging or stroking. (See Video of a Bonobo Hug) In 373 post-distress interactions (318 caused by fights and 55 caused by tantrums), the researchers found that the better a bonobo was at soothing his or her own emotions, the more likely he or she was to rush to aid a friend in need. A similar pattern is seen in human interactions, the researchers reported. © 2013 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18785 - Posted: 10.15.2013

By Matthew D. Lieberman The popular conception of human nature emerging from psychology over the last century suggests that we are something of a hybrid, combining reptilian, instinct-driven motivational tendencies with superior higher-level analytic powers. Our motivational tendencies evolved from our reptilian brains eons ago and focus on the four Fs: fighting, fleeing, feeding, and fooling around. In contrast, our intellectual capacities are relatively recent advances. They are what makes us special. One of the things that distinguishes primates from other animals, and humans from other primates, is the size of our brains—in particular, the size of our prefrontal cortex, that is, the front part of the brain sitting right behind the eyes. Our big brains allow us to engage in all sorts of intelligent activities. But that doesn’t mean our brains evolved to do those particular things. Humans are the only animals that can learn to play chess, but no one would argue that the prefrontal cortex evolved specifically so that we could play the game of kings. Rather, the prefrontal cortex is often thought of as an all-purpose computer; we can load it up with almost any software (that is, teach it things). Thus, the prefrontal cortex seems to have evolved for solving novel hard problems, with chess being just one of an endless string of problems it can solve. From this perspective there might not be anything special at all about our ability and tendency to think about the social world. Other people can be thought of as a series of hard problems to be solved because they stand between us and our reptilian desires. Just as our prefrontal cortex can allow us to master the game of chess, the same reasoning suggests that our all-purpose prefrontal cortex can learn to master the social game of chess—that is, the moves that are permissible and advantageous in social life. From this perspective, intelligence is intelligence whether it’s being applied to social life, chess, or studying for a final exam. The creator of one of the most widely used intelligence tests espoused this view, arguing that social intelligence is just “general intelligence applied to social situations.” This view implies social intelligence isn’t special and our interest in the social world is just an accident—a consequence of the particular problems we are confronted with. © 2013 Salon Media Group, Inc

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18752 - Posted: 10.07.2013

By R. Douglas Fields Human beings are utterly dependent on a complex social structure for their survival. Since all behavior is controlled by the brain, human beings may have evolved specialized neural circuits that are responsible for compliance with society’s rules. A new study has identified such a region in the human brain, and researchers can increase or decrease a person’s good behavior by electrodes on the scalp that stimulate or inhibit this brain circuit. Individuals must adhere to rules of society, which are ultimately enforced by punishments ranging from peer criticism to severe legal sanctions. “Our findings suggest a neural mechanism that is specialized for social norm compliance,” says Christian Ruff, one of the researchers in this new study published in the October 4, 2013 edition of the journal Science. In addition to illuminating the neurobiological basis for the evolution of social structure in humans, this new finding suggests new therapeutic treatments for people who have problems complying with normal social behavior. “That this mechanism can be upregulated by brain stimulation indeed suggests that targeted influences on these neural processes (by brain stimulation or pharmacology) may help to ameliorate problems with social norm compliance in medical and forensic contexts,” he says. It was already known from fMRI studies that neural activity increased in a specific part of the human cerebral cortex when participants comply with social norms. This region is located in the prefrontal region of the right cerebral hemisphere, called the right lateral prefrontal cortex (rLPFC). However, a correlation between brain activity and behavior does not prove that this neural circuit causes people to comply with social norms. Such proof would require manipulating electrical activity in this brain region to see if people altered their behavior in terms of complying with social expectations. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18743 - Posted: 10.05.2013

By PAM BELLUCK Say you are getting ready for a blind date or a job interview. What should you do? Besides shower and shave, of course, it turns out you should read — but not just anything. Something by Chekhov or Alice Munro will help you navigate new social territory better than a potboiler by Danielle Steel. That is the conclusion of a study published Thursday in the journal Science. It found that after reading literary fiction, as opposed to popular fiction or serious nonfiction, people performed better on tests measuring empathy, social perception and emotional intelligence — skills that come in especially handy when you are trying to read someone’s body language or gauge what they might be thinking. The researchers say the reason is that literary fiction often leaves more to the imagination, encouraging readers to make inferences about characters and be sensitive to emotional nuance and complexity. “This is why I love science,” Louise Erdrich, whose novel “The Round House” was used in one of the experiments, wrote in an e-mail. The researchers, she said, “found a way to prove true the intangible benefits of literary fiction.” “Thank God the research didn’t find that novels increased tooth decay or blocked up your arteries,” she added. The researchers, social psychologists at the New School for Social Research in New York City, recruited their subjects through that über-purveyor of reading material, Amazon.com. To find a broader pool of participants than the usual college students, they used Amazon’s Mechanical Turk service, where people sign up to earn money for completing small jobs. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18742 - Posted: 10.05.2013

If you look at the facts and figures on the mental health charity Mind's website, you'll find that around 1 in 4 people will experience some sort of mental health problem each year. About 10% of these people will see their doctor and be diagnosed as having a mental health problem, and of this group, a small proportion will in turn be referred to specialist psychiatric care. Of these people, precisely none resemble the breathtakingly ignorant costumes that have recently been withdrawn from Tesco and Asda. If you want to know what someone with a mental health issue looks like, just look around you. One of the most common types of mental health issue is anxiety – about 9% of people in Britain meet the criteria for mixed anxiety and depression, for example. We all feel anxious from time to time, and that's not necessarily a bad thing. Isaac Marks and Randy Nesse argued in 1994 that anxiety is an important emotion that has been shaped during the course of human evolution. If we are in a potentially dangerous environment, being anxious increases our awareness of our surroundings and puts us in a state of physiological readiness to deal with any threats. However, when an anxiety response kicks in too often, and in situations where it is not needed, it becomes a debilitating problem. In serious cases, anxiety can make it incredibly hard for the person to function. There's now a wealth of research that is trying to tap into the mechanisms involved in both sub-clinical and clinical forms of anxiety. By understanding what happens when we become anxious, we might be able to get a clearer idea of how and why things go wrong in anxiety disorders. For example, a new study published this week in the Journal of Neuroscience has suggested one potential contributing factor – how smells are processed. © 2013 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18715 - Posted: 09.28.2013

Eliot Barford A parasite that infects up to one-third of people around the world may have the ability to permanently alter a specific brain function in mice, according to a study published in PLoS ONE today1. Toxoplasma gondii is known to remove rodents’ innate fear of cats. The new research shows that even months after infection, when parasites are no longer detectable, the effect remains. This raises the possibility that the microbe causes a permanent structural change in the brain. The microbe is a single-celled pathogen that infects most types of mammal and bird, causing a disease called toxoplasmosis. But its effects on rodents are unique; most flee cat odour, but infected ones are mildly attracted to it. This is thought to be an evolutionary adaptation to help the parasite complete its life cycle: Toxoplasma can sexually reproduce only in the cat gut, and for it to get there, the pathogen's rodent host must be eaten. In humans, studies have linked Toxoplasma infection with behavioural changes and schizophrenia. One work found an increased risk of traffic accidents in people infected with the parasite2; another found changes in responses to cat odour3. People with schizophrenia are more likely than the general population to have been infected with Toxoplasma, and medications used to treat schizophrenia may work in part by inhibiting the pathogen's replication. © 2013 Nature Publishing Group,

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18675 - Posted: 09.19.2013

// by Jennifer Viegas Certain animals may weep out of sorrow, similar to human baby cries, say animal behavior experts. Many may have wondered if this was true after news reports last week described a newborn elephant calf at Shendiaoshan Wild Animal Nature Reserve in eastern China. The calf reportedly cried inconsolably for five hours after being stomped on by his mother that then rejected the little elephant. The calf, named Zhuang-zhuang, has since been "adopted" by a keeper and is doing well, according to the news site Metro. "Some mammals may cry due to loss of contact comfort," animal behaviorist Marc Bekoff explained to Discovery News. An ape's laugh is similar to a human one, according to new research exploring the evolution of laughter. "It could be a hard-wired response to not feeling touch," added Bekoff, former professor of ecology and evolutionary biology at the University of Colorado, Boulder. © 2013 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18661 - Posted: 09.18.2013