Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 817

By Bruce Bower NEW YORK CITY — Psychiatrists regularly get criticized for turning typical life problems into medical disorders. But in an odd reversal, many mental health clinicians are trying to transform one certified mental illness, borderline personality disorder, into a label for needy, manipulative people who don’t need treatment, a sociologist reported at the American Sociological Association’s annual meeting on August 11. Patients with borderline personality disorder, unlike people with schizophrenia or other serious mental conditions, are often viewed by mental health providers as having cynically planned out rash acts and even suicide attempts, sociologist Sandra Sulzer of the University of North Carolina at Chapel Hill found in extensive interviews with 22 psychiatrists and psychologists in the United States. The condition includes difficulty controlling emotions, intense but unstable relationships, recklessness, cutting and other acts of self-harm, along with attempted and completed suicides. Before Sulzer’s study, little was known about how mental health professionals discuss and deal with this troubling set of symptoms. “Clinicians frequently view borderline personality disorder symptoms as signs of badness, not sickness, and as a code to route patients out of mental health care,” Sulzer said. That finding goes a long way toward explaining why many borderline personality disorder patients receive no treatment despite the availability of effective forms of psychotherapy (SN: 6/16/07, p. 374), she suggested. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18511 - Posted: 08.15.2013

A stroke patient has developed a rare neurological condition nine months into his recovery that leaves him disgusted by words printed in a certain shade of blue and lifted to ecstasy by the sound of music by brass instruments, a Toronto neuroscientist says. The case, described in today's issue of the medical journal Neurology, involves an anonymous 45-year-old patient in Toronto who was initially frightened by the conflicting senses he began to experience. It is only the second known case of a patient developing the neurological condition after a brain injury. High-pitched brass instruments like those played in the theme from James Bond movies elicited feelings of ecstasy and created light blue flashes in his peripheral vision. They also caused large parts of his brain to light up in tests, the report says. "I heard it one day some time after the stroke and I went for a ride that was, it was cosmic in its voyage and it was wonderful," the patient said in a hospital YouTube interview. In contrast, when the euphonium was played in the study, the man said the response was cut off. Synesthesia is a neurological condition in which one sense, such as hearing, is simultaneously perceived by one or more additional senses, such as sight. The word synesthesia comes from two Greek words, syn (together) and aisthesis (perception); literally, "joined perception." People who report such experiences are known as synesthetes. © CBC 2013

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 5: The Sensorimotor System
Link ID: 18434 - Posted: 07.31.2013

By ABIGAIL ZUGER, M.D. A journey into the human brain starts with the usual travel decisions: will you opt for a no-frills sightseeing jaunt, a five-star luxury cruise, or trek a little off the beaten track, skipping the usual tourist attractions? Now that science’s newfound land is suddenly navigable, hordes of eager guides are offering up books that range from the basic to the lavishly appointed to the minutely subspecialized. But those who prefer wandering off trail may opt for two new ones, neither by a neuroscientist. When the philosopher Patricia S. Churchland explains that her book represents “the story of getting accustomed to my brain,” she is speaking as both a brain-owning human being and a career humanist. An emerita professor at the University of California, San Diego, she has spent a career probing the physical brain for the self and its moral center. And unlike many humanists who hate the science for the irritating violence it does to centuries of painstaking intellectual labor, she is entranced by the power of the data, and her delight is utterly contagious. She loses little time in dispatching the archaic notion of the soul, and suggests that near-death visions of heaven simply represent “neural funny business” in a malfunctioning brain. Can humans still live a moral and spiritual life even without the ideas of soul and heaven? You bet they can. “We may still say that the sun is setting even when we know full well that earth is turning,” Professor Churchland points out, and she is off and running. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 18423 - Posted: 07.30.2013

Jaak Panksepp, the inventor of the term "affective neuroscience", is regarded as a radical in his field, with ground-breaking insights into emotional issues ranging from depression to playfulness. What makes him radical? First, his study of animal emotions, and his data-supported assertion that animals experience feelings as humans do. Using electrical stimulation of the brain, Panksepp has shown that all mammals have the same basic emotional system: i.e. underlying neural networks that are linked to feelings of raw emotion, and respond positively or negatively when aroused. For example, Panksepp has tickled rats to hear them 'laugh' ; in other species, he has conducted extensive experiments on what he calls "separation distress." Today's neuroscientists generally do not bother to consider the emotional life of animals, or put it on par with that of humans. But as Panksepp eloquently argues: "Animals do have emotional systems that generate feelings, even though hardly a neuroscientist yet acknowledges this fact." Second: Panksepp looks at what causes our feelings: the primary, instinctual networks in the brain that make them happen. Most neuroscientists, he confided in our phone conversation between Paris (where I teach) and Washington (where he teaches), look only at symptoms. "They are behaviorists. They follow the tradition of early psychologist William James, who looked at emotion as a mental after-effect, a cognitive read-out of autonomic bodily arousals, rather than as the brain system which drives us." He has been at odds with these behaviorists for most of his career, this despite the fact that Panksepp's major contributions to the field of emotion are now widely accepted, especially by psychotherapists treating patients for emotional concerns such as depression. © 2013 TheHuffingtonPost.com, Inc.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18392 - Posted: 07.20.2013

The lifetime rate of diagnosis of anxiety disorders is higher in women, with 33 percent experiencing an anxiety disorder in their lifetime, as compared with 22 percent of men. Experts believe this difference arises from a combination of hormonal fluctuations, brain chemistry and upbringing: women more often feel responsible for the happiness of others, such as their children or their spouse. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 18374 - Posted: 07.15.2013

By Kate Wong In the July issue of Scientific American, anthropologist Barbara King of The College of William & Mary makes the case that animals ranging from ducks to dolphins may grieve when a relative or close companion dies. In so doing she departs from a long-standing tradition among animal behaviorists of assiduously avoiding projecting human emotions onto other animals. Not all animal responses to death qualify as mourning, however. King is careful to establish criteria for grief, noting that “researchers may strongly suspect grief only when certain conditions are met: First, two (or more) animals choose to spend time together beyond survival-oriented behaviors such as foraging or mating. Second, when one animal dies, the survivor alters his or her normal behavioral routine—perhaps reducing the amount of time devoted to eating or sleeping, adopting a body posture or facial expression indicative of depression or agitation, or generally failing to thrive.” Here King describes two recent, well-publicized examples of animal reactions to death that illustrate the challenges of interpreting such behaviors: “Occasionally the pull of anthropomorphism may overwhelm scientists’ normal caution in reporting animal responses to death. When Teresa Iglesias of the University of California at Davis and her colleagues published a paper in Animal Behaviour last year entitled ‘Western scrub jay funerals: cacophonous aggregations in response to dead conspecifics,’ the news media responded enthusiastically to the notion of a bird funeral. Yet nothing like a caretaking ritual around jay bodies actually had been observed. From a series of experiments, the scientists had discovered that scrub jays respond by vocalizing upon sighting the bodies of dead companions; they seem to be communicating information to their flock mates about potential risks in the environment. Iglesias told me last year, for my post about her paper at NPR.org’s 13.7 blog, that ‘funeral’ is an apt term ‘only to the extent that it is an animal paying attention to another dead animal’ (and excluding behaviors such as scavenging). Any of the animal examples discussed in this article would, on this definition, quality as a ‘funeral,’ a too-generous application of the term.” © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18364 - Posted: 07.09.2013

Traci Watson When it comes to friendship it may be quantity, not quality, that matters — at least for Barbary macaques in a crisis. Scientists have long known that sociable humans live longer than their solitary peers, but is the same true for animals? A harsh natural experiment may offer some answers. It also raises intriguing questions about the type of social ties that matter. Endangered Barbary macaques (Macaca sylvanus) in the mountains of Morocco are accustomed to cold, but the 2008–09 winter was devastatingly hard for them. Snow covered the ground for almost four months instead of the usual one, and the monkeys, which eat seeds and grasses on the ground, began to starve. Richard McFarland, a behavioural ecologist at the University of the Witwatersrand in Johannesburg, South Africa, and his colleagues were studying the animals as part of a wider project on the monkeys' social lives launched in January 2008. When they went looking for the macaques in January 2009, they found corpses, says McFarland. Of the 47 adults in two troops that the team studied, only 17 survived, making for a 64% mortality rate, McFarland and his colleague Bonaventura Majolo of the University of Lincoln, UK, report today in Biology Letters1. Analysis showed that the more friends a monkey had, the more likely it was to have survived. Individuals with whom a monkey had exchanged grooming or had had bodily contact with at least once during observation sessions were deemed as social contacts. Perhaps the animals with more buddies had more partners with whom to huddle against the cold, the researchers suggest. Monkeys with large social networks may also have been able to look for food with fewer interruptions from hostile group members. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18313 - Posted: 06.26.2013

Maggie Fox, NBC News Researchers have figured out how to read your mind and tell whether you are feeling sad, angry or disgusted – all by looking at a brain scan. The experiment, using 10 acting students, showed people have remarkably similar brain activity when experiencing the same emotions. And a computer could predict how someone was feeling just by looking at the scan. The findings could be used to help treat patients with various mental health conditions, and even provide a hard, medical diagnosis for emotional disorders. It might also be used to get a window into the minds of people with developmental disorders such as autism, the researchers at Carnegie Mellon University in Pittsburgh say. And one big, immediate application – testing advertisements. “What emotion do you want to evoke with your ad for the latest BMW?” said psychology professor Marcel Just, who helped oversee the study. "This research introduces a new method with potential to identify emotions without relying on people's ability to self-report," added Karim Kassam, assistant professor of social and decision sciences at CMU, who led the study. "It could be used to assess an individual's emotional response to almost any kind of stimulus, for example, a flag, a brand name or a political candidate."

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18286 - Posted: 06.20.2013

By Arielle Duhaime-Ross Rats don't usually come out into daylight, especially not on a busy morning in New York City. But there it was, head awkwardly jutting out in front of its body, swinging from side to side. What injured the creature, I have no idea, but its hind legs could no longer support its weight. The rat dragged them like a kid drags a garbage bag that parents have asked be taken out–reluctantly. The muscles in the front legs rippled as they propelled the body forward along the sidewalk. The rodent was surprisingly quick considering the injury. But its aimlessness suggested distress. Two girls, no more than 15 years old, spotted the wounded rat from about 10 feet away. They held each other close, squealing and giggling, inching toward the animal theatrically. Staring them down, I scowled. How could they not appreciate this creature’s suffering or be touched by its desperation? I looked on, saying nothing. In The Last Child in the Woods, journalist Richard Louv talks about "nature deficit disorder," something we urbanites have picked up over the last hundred years or so. He says that city-dwellers have become so disconnected from nature that they cannot process the harsh realities of the natural world, like the sight of an injured animal. But if those young women were suffering from urban disconnection, then why didn’t I—a city slicker through and through—react that way as well? What made me respond with empathy instead of disgust? Evolutionary theorists believe that many of our behaviors are adaptive in some way. "Empathy probably started out as a mechanism to improve maternal care," says Frans de Waal, a primatologist at Emory University and author of The Age of Empathy. "Mammalian mothers who were attentive to their young’s needs were more likely to rear successful offspring." © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18281 - Posted: 06.17.2013

By JENNA WORTHAM ON a recent family outing, my mother and sister got into a shouting match. But they weren’t mad at each other — they were yelling at the iPhone’s turn-by-turn navigation system. I interrupted to say that the phone didn’t understand — or care — that they were upset. “Honey, we know,” my mom replied. “But it should!” She had a point. After all, computers and technology are becoming only smarter, faster and more intuitive. Artificial intelligence is creeping into our lives at a steady pace. Devices and apps can anticipate what we need, sometimes even before we realize it ourselves. So why shouldn’t they understand our feelings? If emotional reactions were measured, they could be valuable data points for better design and development. Emotional artificial intelligence, also called affective computing, may be on its way. But should it be? After all, we’re already struggling to cope with the always-on nature of the devices in our lives. Yes, those gadgets would be more efficient if they could respond when we are frustrated, bored or too busy to be interrupted, yet they would also be intrusive in ways we can’t even fathom today. It sounds like a science-fiction movie, and in some ways it is. Much of this technology is still in its early stages, but it’s inching closer to reality. Companies like Affectiva, a start-up spun out of the M.I.T. Media Lab, are working on software that trains computers to recognize human emotions based on their facial expressions and physiological responses. A company called Beyond Verbal, which has just raised close to $3 million in venture financing, is working on a software tool that can analyze speech and, based on the tone of a person’s voice, determine whether it indicates qualities like arrogance or annoyance, or both. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18219 - Posted: 06.03.2013

By ANAHAD O'CONNOR The nation’s largest cardiovascular health organization has a new message for Americans: Owning a dog may protect you from heart disease. The unusual message was contained in a scientific statement published on Thursday by the American Heart Association, which convened a panel of experts to review years of data on the cardiovascular benefits of owning a pet. The group concluded that owning a dog, in particular, was “probably associated” with a reduced risk of heart disease. People who own dogs certainly have more reason to get outside and take walks, and studies show that most owners form such close bonds with their pets that being in their presence blunts the owners’ reactions to stress and lowers their heart rate, said Dr. Glenn N. Levine, the head of the committee that wrote the statement. But most of the evidence is observational, which makes it impossible to rule out the prospect that people who are healthier and more active in the first place are simply more likely to bring a dog or cat into their home. “We didn’t want to make this too strong of a statement,” said Dr. Levine, a professor at the Baylor College of Medicine. “But there are plausible psychological, sociological and physiological reasons to believe that pet ownership might actually have a causal role in decreasing cardiovascular risk.” Nationwide, Americans keep roughly 70 million dogs and 74 million cats as pets. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18146 - Posted: 05.11.2013

By Ben Thomas Horror isn’t the only film genre that specializes in dread. War movies like Apocalypse Now, sci-fi mysteries like Brazil and Blade Runner, and dramas like Melancholia and Requiem for a Dream all masterfully evoke a less violent, more subtle and pervasive sense that something is unwell with the world – that somewhere along the line, something went deeply wrong and now normality itself is unraveling before our eyes. The director David Lynch has arguably built his entire career on directing these kinds of films. In Lynch’s universe, even the most banal moments are still somehow suffused with unnerving suspense. In films like Blue Velvet and Mulholland Drive, disturbing surprises erupt into scene after scene of buried tension, until every ordinary conversation feels like a trap waiting to spring. And then there’s the infamous Eraserhead, where family life itself is transformed into an onslaught of surreal and nauseating images. It’s hard to come away from these movies without feeling that a little of Lynch’s unease has rubbed off on you. So when a team of researchers at the University of British Columbia set out to describe and treat an ancient biological alarm system buried deep within the human brain, they turned to Lynch’s films as an analogy for – and a set of examples of – the feeling of omnipresent yet maddeningly vague “wrongness” that seems to underlie many anxiety disorders. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18134 - Posted: 05.09.2013

By Breanna Draxler The ruse is common in spy movies—an attractive female saunters in at a critical moment and seduces the otherwise infallible protagonist, duping him into giving up the goods. It works in Hollywood and it works in real life, too. Men tend to say yes to attractive women without really scrutinizing whether or not they are trustworthy. But scientists have shown, for the first time, that a drug may be able to overcome this “honey trap,” and help men make more rational decisions. Nearly 100 men participated in the study; half were given minocycline, an antibiotic normally used to treat acne, and half were given a placebo. After four days of this drug regimen, participants played a computerized one-on-one trust game with eight different women, based only on pictures of the female players. In each round, the male player was given $13 and shown a picture of one of the female players. The male player would choose how much money he wanted to keep and how much he wanted to give to the female player. The amount given away was then tripled, and the female player would decide whether to split the money with the man or keep it all for herself. Unbeknownst to the men, however, the women kept the money every time. The researchers also asked the men to evaluate the photos of the females to determine how trustworthy and attractive they appeared, on a scale of 0 to 10.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 18103 - Posted: 05.01.2013

By Scicurious Generally, I don’t think of being tickled as a particularly pleasurable or calming activity. Most people who are ticklish go immediately on the defensive and tense up, and I always got the impression that most people prefer NOT to be tickled rather than otherwise. However, that’s just us. And we’re not rats. And it turns out, you can calm a rat with tickling. Life is stressful. Whether it’s running from predators, meeting tight deadlines, or trying to keep fed, there’s a lot that seems to bring us down. What saves us from tearing our hair out? Well, the happy things in life. Tasty food, friends, hugs, puppies. You know, the good stuff. These things elicit positive feeling, and positive feeling have been linked to protecting us from stress. Of course, in humans, it’s easy to say that a positive outlook on life makes someone resistant to stress…but is it really true? They may co-occur, but do positive feelings really decrease stress? If you want to get at causes, one of the best ways is to use an animal model. But how do you come up with an animal model for…happiness? Well, you can tickle rats. As you can see in the video above, rats like to be tickled. They even respond with “laughter”! Of course, it’s not laughter as we know it, or even something we can hear. Instead, these are ultrasonic vocalizations at a specific frequency (50 kilohertz). Scientists figured they must be pleasure-sounds because rats make them when they play with other rats. And it turns out that rats make the same noise at the same frequency when they get tickled! © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18065 - Posted: 04.23.2013

By ELIZABETH WEIL According to Sonja Lyubomirsky, you have a happiness set point. It’s partly encoded in your genes. If something good happens, your sense of happiness rises; if something bad happens, it falls. But either way, before too long, your mood will creep back to its set point because of a really powerful and perverse phenomenon referred to in science as “hedonic adaptation.” You know, people get used to things. With her 2007 book, “The How of Happiness,” and this year’s follow-up, “The Myths of Happiness,” Dr. Lyubomirsky, a psychology professor at the University of California, Riverside, caused ripples in her field but also drew a wider audience, cementing her place in a long chain of happiness-industry stalwarts, from M. Scott Peck with “The Road Less Traveled” to Martin E. P. Seligman and “Learned Optimism” to Daniel Gilbert and his best-selling “Stumbling on Happiness.” Dr. Lyubomirsky’s findings can be provocative and, at times, counterintuitive. Renters are happier than homeowners, she says. Interrupting positive experiences makes them more enjoyable. Acts of kindness make people feel happier, but not if you are compelled to perform the same act too frequently. (Bring your lover breakfast in bed one day, and it feels great. Bring it every day, and it feels like a chore.) Dr. Lyubomirsky — 46, Russian and expecting to give birth to her fourth child this weekend — is an unlikely mood guru. “I really hate all the smiley faces and rainbows and kittens,” she said in her office. She doesn’t often count her blessings or write gratitude letters, both of which she thinks sound hokey even though her research suggests they make people happier. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 18055 - Posted: 04.22.2013

By GRETCHEN REYNOLDS If you give a rat a running wheel and it decides not to use it, are genes to blame? And if so, what does that tell us about why many people skip exercise? To examine those questions, scientists at the University of Missouri in Columbia recently interbred rats to create two very distinct groups of animals, one of which loves to run. Those in the other group turn up their collective little noses at exercise, slouching idly in their cages instead. Then the scientists closely scrutinized and compared the animals’ bodies, brains and DNA. For some time, exercise scientists have suspected that the motivation to exercise — or not — must have a genetic component. When researchers have compared physical activity patterns among family members, and particularly among twins, they have found that close relations tend to work out similarly, exercising about as much or as little as their parents or siblings do, even if they grew up in different environments. These findings suggest that the desire to be active or indolent is, to some extent, inherited. But to what extent someone’s motivation to exercise is affected by genes — and what specific genes may be involved — has been hard to determine. There are only so many human twins around for study purposes, after all. And even more daunting, it’s difficult to separate the role of upbringing from that of genetics in determining whether and why some people want to exercise and others don’t. So the University of Missouri researchers decided to create their own innately avid runners or couch potatoes, provide them with similar upbringings, and see what happened next. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 5: The Sensorimotor System
Link ID: 18044 - Posted: 04.18.2013

By Bill Andrews In a paper sure to please lazy stand-up comics and beleaguered husbands everywhere, scientists say that men do indeed have a hard time understanding women. Recent results show that men have a significantly harder time recognizing women’s emotions than they do men’s, and that men seem to use different parts of their brain when ascribing intentions and feelings to women versus men. Previous experiments had suggested that men are naturally wired to be more intuitive toward other men’s mental states and emotions. Eager to figure out why and how this could be, the researchers studied the brains of 22 male participants as they received a version of a well-known empathy test called the “Reading the Mind in the Eyes Test.” (You can take a version of the test online here.) As the name suggests, the test consists of snapshots of pairs of eyes. Pairs of eyes were shown in succession to each participant, who had to determine either the gender or the emotional state of the person pictured. This all took place within an MRI machine, allowing the researchers to see which parts of the brain were active while participants made their determinations. Participants were about equally good at guessing the gender of male and female eyes, but the men did significantly worse at recognizing the emotions of the female eyes. They correctly interpreted about 87 percent of men’s eyes but only about 76 percent of women’s eyes. Participants also took longer to judge women’s emotions—about 40 milliseconds longer on average. Thus, in effect, men can “read” other men’s eyes faster and better, the researchers report in PLOS ONE.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 18028 - Posted: 04.13.2013

Steve Connor Fear may be felt in the heart as well as the head, according to a study that has found a link between the cycles of a beating heart and the likelihood of someone taking fright. Tests on healthy volunteers found that they were more likely to feel a sense of fear at the moment when their hearts are contracting and pumping blood around their bodies, compared with the point when the heartbeat is relaxed. Scientists say the results suggest that the heart is able to influence how the brain responds to a fearful event, depending on which point it is at in its regular cycle of contraction and relaxation. Sarah Garfinkel, a researcher at the Brighton and Sussex Medical School, said: “We demonstrate for the first time that the way in which we process fear is different dependent on when we see fearful images in relation to our heart.” The study, to be presented today at the British Neuroscience Association Festival in London, tested the fear response of 20 healthy volunteers as they were shown images of fearful faces while connected to heart monitors. “Our results show that if we see a fearful face during systole – when the heart is pumping – then we judge this fearful face as more intense than if we see the very same fearful face during diastole – when the heart is relaxed,” Dr Garfinkel said. “From previous research, we know that if we present images very fast then we have trouble detecting them, but if an image is particularly emotional then it can ‘pop’ out and be seen. © independent.co.uk

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 17999 - Posted: 04.08.2013

By Scicurious Much as we all like to think we’re modest, most of us really aren’t. We might try to be humble and say “we’re just some guy, you know?“, but most often, we actually think we’re better than average. Maybe we think we’re smarter, or better looking, or nicer, or maybe even all of the above. And it turns out that thinking we’re above average (even though, statistically, only half of us CAN be above average) is actually good for us. People who suffer from depression usually show a symptom called “depressive realism”. They actually see themselves MORE REALISTICALLY than other people do. And seeing yourself in the harsh light of reality…well it’s pretty depressing (you don’t really want to know how average you are in a sea of over 6 billion people. You don’t). Thinking that you are better than you actually are is sometimes called the Dunning-Kruger effect (though that usually refers specifically to how competent you think you are…when really you’re not), but in psychology it’s called the Superiority Illusion: the belief that you are better than average in any particular metric. But where does the superiority illusion come from? How do our brains give us this optimism bias? The authors of this study wanted to look at how our brain might give us the idea that we are better than the other guy. They were particularly interested in the connection between two areas of the brain, the frontal cortex, and the striatum. The frontal cortex does a lot of higher processing (things like sense of self), while the striatum is involved in things like feelings of reward. The connection between these two areas is called the fronto-striatal circuit. And the strength of that connection may mean something for how you think of yourself. While people who think well of themselves have relatively low connectivity in this circuit, people with depression have higher levels of connectivity. The two areas are MORE connected. © 2013 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 17976 - Posted: 04.02.2013

by Lizzie Wade Believe it or not, the gelada monkeys (Theropithecus gelada) on the right may be sharing a good laugh—and possibly the emotions that go along with it. Previously, only humans and orangutans had been shown to quickly and involuntarily mimic the facial expressions of their companions, an ability that seems to be linked to empathy. After spending months observing every playful interaction among the gelada population at Germany's NaturZoo, scientists are ready to add another, more distantly related species to that list. Geladas of all ages were more likely to mimic the play faces of their companions within 1 second of seeing them than they were to respond with a different kind of expression, according to a paper published by the team this week in Scientific Reports. What's more, the fastest and most frequent mimicry responses occurred between mothers and their infant offspring, like the pair pictured on the left. More research is required to determine if geladas are sharing emotional states in addition to facial expressions, but the team suggests that studying the quantity and quality of these mother-child interactions could provide a way forward. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 17968 - Posted: 03.30.2013