Links for Keyword: Genes & Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 279

By Sarah Kaplan You probably wouldn't be surprised if a scientist told you that your genes influence when you hit puberty, how tall you are, what your BMI will be and whether you're likely to develop male pattern baldness. But what if he said that the same gene could hold sway over all four things? That finding comes from a study published Monday in the journal Nature Genetics. Using data from dozens of genome-wide association studies (big scans of complete sets of DNA from many thousands of people), researchers at the New York Genome Center and the genetic analysis company 23andMe found examples of single "multitasking" genes that influence diverse and sometimes seemingly disparate traits. The scientists say that the links they uncovered could help researchers understand how certain genes work, and figure out better ways of treating some of the health problems they might control. "Most studies tend to go one disease at a time," said Joseph Pickrell, a professor at Columbia University and the New York Genome Center's lead investigator on the project. "But if we can try to make these sorts of connections between what you might think of as unrelated traits ... that gives us another angle of attack to understand the connections between these different diseases." To start, Pickrell and his team sought out genome-wide association studies (GWAS) identifying particular genetic variants associated with 42 different traits. Many had to do with diseases (for example, studies that linked certain genes to the risk of developing Alzheimer's or type 2 diabetes) and other personal health traits (body mass index, blood type, cholesterol levels).

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22225 - Posted: 05.18.2016

Erika Check Hayden The largest-ever genetics study in the social sciences has turned up dozens of DNA markers that are linked to the number of years of formal education an individual completes. The work, reported this week in Nature, analysed genetic material from around 300,000 people. “This is good news,” says Stephen Hsu, a theoretical physicist at Michigan State University in East Lansing, who studies the genetics of intelligence. “It shows that if you have enough statistical power you can find genetic variants that are associated with cognitive ability.” Yet the study’s authors estimate that the 74 genetic markers they uncovered comprise just 0.43% of the total genetic contribution to educational achievement (A. Okbay et al. Nature http://dx.doi.org/10.1038/nature17671; 2016). By themselves, the markers cannot predict a person’s performance at school. And because the work examined only people of European ancestry, it is unclear whether the results apply to those with roots in other regions, such as Africa or Asia. The findings have proved divisive. Some researchers hope that the work will aid studies of biology, medicine and social policy, but others say that the emphasis on genetics obscures factors that have a much larger impact on individual attainment, such as health, parenting and quality of schooling. © 2016 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22209 - Posted: 05.12.2016

By David Z. Hambrick Nearly a century after James Truslow Adams coined the phrase, the “American dream” has become a staple of presidential campaign speeches. Kicking off her 2016 campaign, Hillary Clinton told supporters that “we need to do a better job of getting our economy growing again and producing results and renewing the American dream.” Marco Rubio lamented that “too many Americans are starting to doubt” that it is still possible to achieve the American dream, and Ted Cruz asked his supporters to “imagine a legal immigration system that welcomes and celebrates those who come to achieve the American dream.” Donald Trump claimed that “the American dream is dead” and Bernie Sanders quipped that for many “the American dream has become a nightmare.” But the American dream is not just a pie-in-the-sky notion—it’s a scientifically testable proposition. The American dream, Adams wrote, “is not a dream of motor cars and high wages merely, but a dream of social order in which each man and each woman shall be able to attain to the fullest stature of which they are innately capable…regardless of the fortuitous circumstances of birth or position.” In the parlance of behavioral genetics—the scientific study of genetic influences on individual differences in behavior—Adams’ idea was that all Americans should have an equal opportunity to realize their genetic potential. A study just published in Psychological Science by psychologists Elliot Tucker-Drob and Timothy Bates reveals that this version of the American dream is in serious trouble. Tucker-Drob and Bates set out to evaluate evidence for the influence of genetic factors on IQ-type measures (aptitude and achievement) that predict success in school, work, and everyday life. Their specific question was how the contribution of genes to these measures would compare at low versus high levels of socioeconomic status (or SES), and whether the results would differ across countries. The results reveal, ironically, that the American dream is more of a reality for other countries than it is for America: genetic influences on IQ were uniform across levels of SES in Western Europe and Australia, but, in the United States, were much higher for the rich than for the poor. © 2016 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22051 - Posted: 03.30.2016

Laura Sanders You can thank your parents for your funny-looking hippocampus. Genes influence the three-dimensional shape of certain brain structures, scientists report in a paper posted online December 1 at bioRxiv.org. Showing a new way that genes help sculpt the brain opens up more ways to explore how the brain develops and operates. Earlier work linked genes to simple measurements of brain structures, such as overall volume or length. The new work goes beyond that by mathematically analyzing complex 3-D shapes and tying those shapes to a particular genetic makeup. A team led by researchers at Massachusetts General Hospital and Harvard Medical School analyzed MRI brain scans and genome data from 1,317 healthy young adults. Particular genetic profiles influenced the 3-D shape of structures including the hippocampus, caudate and cerebellum, the scientists found. In some brains, for instance, genes played a role in making the seahorse-shaped right hippocampus skinnier on the top and wider on the bottom. Genes also influenced whether the tail of the caudate was short or long. Quirks of brain structure shapes might play a role in disorders such as schizophrenia, autism spectrum disorder and bipolar disorder, which are known to be influenced by genes, the authors write. Citations T. Ge et al. Heritability of neuroanatomical shape. bioRxiv.org. Posted December 1, 2015. doi: 10.1101/033407. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21692 - Posted: 12.12.2015

Tina Hesman Saey Genies are said to have the power to grant three wishes. But genies recently released from laboratory flasks promise to fulfill nearly any wish a biologist can dream up. End the scourge of insect-borne diseases? Check. Inoculate endangered amphibians against killer fungi? Yes. Pluck invasive species from environments where they don’t belong? As you wish. These genies aren’t magical; they are research tools known as gene drives — clever bits of engineered DNA designed to propel themselves into the DNA of a pesky or troubled organism. A gene drive is a targeted contagion intended to spread within species, forever altering the offspring. Gene drive enthusiasts say these genies could wipe out malaria, saving more than half a million lives each year. Invasive species, herbicide-resistant weeds and pesticide-resistant bugs could be driven out of existence. Animals that carry harmful viruses could be immunized with ease. Scientists have sought the power of gene drives for decades. But only with the emergence of a genetic tool called CRISPR/Cas9 — the bottle opener that unleashed the genie — has gene drive technology offered the prospect of providing a speedy means to end some of the world’s greatest health and ecological scourges. “Everything is possible with CRISPR,” says geneticist Hugo Bellen. “I’m not kidding.” © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21671 - Posted: 12.03.2015

Ewen Callaway A mysterious group of humans crossed the Bering land bridge from Siberia into the Americas thousands of years ago, genetic analyses reveal. Modern-day signatures of this ‘ghost population’ survive in people who live deep in the Brazilian Amazon, but the two research teams who have made the discovery have different ideas about when and how these migrants reached the Americas1, 2. "This is an unexpected finding," says Jennifer Raff, an anthropological geneticist at the University of Texas at Austin who was not involved in either study. "It’s honestly one of the most exciting results we’ve seen in a while." North and South America were the last continents that humans settled. Previous studies of DNA from modern and ancient Native Americans suggest that the trek was made at least 15,000 years ago (although the timing is not clear-cut) by a single group dubbed the ‘First Americans’, who crossed the Bering land bridge linking Asia and North America. “The simplest hypothesis would be that a single population penetrated the ice sheets and gave rise to most of the Americans,” says David Reich, a population geneticist at Harvard Medical School in Boston, Massachusetts. In 2012, his team found evidence for a single founding migration in the genomes from members of 52 Native American groups3. So Reich was flabbergasted when a colleague called Pontus Skoglund mentioned during a conference last year that he had found signs of a second ancient migration to the Americas lurking in the DNA of contemporary Native Amazonians. Reich wasted no time in verifying the discovery. “During the session afterward, he passed his laptop over the crowd, and he had corroborated the results,” says Skoglund, who is now a researcher in Reich’s lab. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 21201 - Posted: 07.22.2015

By Tina Hesman Saey Combatants in the age-old battle of nature versus nurture may finally be able to lay down their arms. On average, both nature and nurture contribute roughly equally to determining human traits. Researchers compiled data from half a century’s worth of studies on more than 14 million pairs of twins. The researchers measured heritability — the amount of variation in a characteristic that can be attributed to genes — for a wide variety of human traits including blood pressure, the structure of the eyeball and mental or behavioral disorders. All traits are heritable to some degree, the researchers report May 18 in Nature Genetics. Traits overall had an average heritability of 49 percent, meaning it’s a draw between genes and environment. Individual traits can be more strongly influenced by one or the other. 100% Fraction of human traits with a genetic component 49% Fraction of variability in human traits determined by genes T.J.C. Polderman et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics. Published online May 18, 2015. doi:10.1038/ng.3285. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20985 - Posted: 05.27.2015

By John Horgan The New York Times "Sunday Review" section has anointed Richard Friedman its go-to guy for touting behavioral genetics--or "gene-whiz science," as I prefer to call it. In March, Friedman, professor of clinical psychiatry at Weill Cornell Medical College, proclaimed that researchers had discovered a "feel-good gene," which "makes some people inherently less anxious, and more able to forget fearful and unpleasant experiences." As I pointed out on this blog, Friedman's claim—like virtually all reported linkages of complex human traits and disorders to specific genes (see Further Reading)--is based on flimsy, contradictory evidence. I'm so naïve, or arrogant, that I actually thought my critique might dissuade the Times from further hype of gene-whiz science. Times editors must care more about traffic than accuracy, because they devoted almost the entire front page of yesterday’s "Sunday Review" to Friedman's latest travesty, "Infidelity Lurks in Your Genes." The core of Friedman's essay is his assertion that some women are "biologically inclined to wander." More specifically, women who carry variants of the gene AVPR1A—which encodes the receptor for the hormone arginine vasopressin--are "much more likely to engage in 'extra-pair bonding,' the scientific euphemism for sexual infidelity." In support of this claim, Friedman cites a study of Finnish twins and non-twin siblings by a team led by Australian psychologist Brendan Zietsch. The team surveyed the Finnish subjects and found that 9.8 percent of the men and 6.4 percent of the women reported engaging in at least one "extra-pair mating." The researchers found an association between five AVPR1A markers and extra-pair mating in women but not in men.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 20980 - Posted: 05.26.2015

Monica Tan The age-old question of whether human traits are determined by nature or nurture has been answered, a team of researchers say. Their conclusion? It’s a draw. By collating almost every twin study across the world from the past 50 years, researchers determined that the average variation for human traits and disease is 49% due to genetic factors and 51% due to environmental factors. University of Queensland researcher Beben Benyamin from the Queensland Brain Institute collaborated with researchers at VU University of Amsterdam to collate 2,748 studies involving more than 14.5 million pairs of twins. “Twin studies have been conducted for more than 50 years but there is still some debate in terms of how much the variation is due to genetic or environmental factors,” Benyamin said. He said the study showed the conversation should move away from nature versus nature, instead looking at how the two work together. “Both are important sources of variation between individuals,” he said. While the studies averaged an almost even split between nature and nurture, there was wide variation within the 17,800 separate traits and diseases examined by the studies. For example, the risk for bipolar disorder was found to be 68% due to genetics and only 32% due to environmental factors. Weight maintenance was 63% due to genetics and 37% due to environmental factors. In contrast, risk for eating disorders was found to be 40% genetic and 60% environmental, whereas the risk for mental and behavioural disorders due to use of alcohol was 41% genetic and 59% environmental. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20948 - Posted: 05.19.2015

Carl Zimmer Scientists in Iceland have produced an unprecedented snapshot of a nation’s genetic makeup, discovering a host of previously unknown gene mutations that may play roles in ailments as diverse as Alzheimer’s disease, heart disease and gallstones. “This is amazing work, there’s no question about it,” said Daniel G. MacArthur, a geneticist at Massachusetts General Hospital who was not involved in the research. “They’ve now managed to get more genetic data on a much larger chunk of the population than in any other country in the world.” In a series of papers published on Wednesday in the journal Nature Genetics, researchers at Decode, an Icelandic genetics firm owned by Amgen, described sequencing the genomes — the complete DNA — of 2,636 Icelanders, the largest collection ever analyzed in a single human population. With this trove of genetic information, the scientists were able to accurately infer the genomes of more than 100,000 other Icelanders, or almost a third of the entire country. “From the technical point of view, these papers are a tour-de-force,” said David Reich, a geneticist at Harvard Medical School who was not involved in the research. While some diseases, like cystic fibrosis, are caused by a single genetic mutation, the most common ones are not. Instead, mutations to a number of different genes can each raise the risk of getting, say, heart disease or breast cancer. Discovering these mutations can shed light on these diseases and point to potential treatments. But many of them are rare, making it necessary to search large groups of people to find them. The wealth of data created in Iceland may enable scientists to begin doing that. In their new study, the researchers at Decode present several such revealing mutations. For example, they found eight people in Iceland who shared a mutation on a gene called MYL4. Medical records showed that they also have early onset atrial fibrillation, a type of irregular heartbeat. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 20724 - Posted: 03.26.2015

by Helen Thomson Could a futuristic society of humans with the power to control their own biological functions ever become reality? It's not as out there as it sounds, now the technical foundations have been laid. Researchers have created a link between thoughts and cells, allowing people to switch on genes in mice using just their thoughts. "We wanted to be able to use brainwaves to control genes. It's the first time anyone has linked synthetic biology and the mind," says Martin Fussenegger, a bioengineer at ETH Zurich in Basel, Switzerland, who led the team behind the work. They hope to use the technology to help people who are "locked-in" – that is, fully conscious but unable to move or speak – to do things like self-administer pain medication. It might also be able to help people with epilepsy control their seizures. In theory, the technology could be used for non-medical purposes, too. For example, we could give ourselves a hormone burst on demand, much like in the Culture – Iain M. Banks's utopian society, where people are able to secrete hormones and other chemicals to change their mood. Fussenegger's team started by inserting a light-responsive gene into human kidney cells in a dish. The gene is activated, or expressed, when exposed to infrared light. The cells were engineered so that when the gene activated, it caused a cascade of chemical reactions leading to the expression of another gene – the one the team wanted to switch on. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20309 - Posted: 11.13.2014

Email David By David Grimm Place a housecat next to its direct ancestor, the Near Eastern wildcat, and it may take you a minute to spot the difference. They’re about the same size and shape, and, well, they both look like cats. But the wildcat is fierce and feral, whereas the housecat, thanks to nearly 10,000 years of domestication, is tame and adaptable enough to have become the world’s most popular pet. Now scientists have begun to pinpoint the genetic changes that drove this remarkable transformation. The findings, based on the first high-quality sequence of the cat genome, could shed light on how other creatures, even humans, become tame. “This is the closest thing to a smoking gun we’ve ever had,” says Greger Larson, an evolutionary biologist at the University of Oxford in the United Kingdom who has studied the domestication of pigs, dogs, and other animals. “We’re much closer to understanding the nitty-gritty of domestication than we were a decade ago.” Cats first entered human society about 9500 years ago, not long after people first took up farming in the Middle East. Drawn to rodents that had invaded grain stores, wildcats slunk out of the deserts and into villages. There, many scientists suspect, they mostly domesticated themselves, with the friendliest ones able to take advantage of human table scraps and protection. Over thousands of years, cats shrank slightly in size, acquired a panoply of coat colors and patterns, and (largely) shed the antisocial tendencies of their past. Domestic animals from cows to dogs have undergone similar transformations, yet scientists know relatively little about the genes involved. Researchers led by Michael Montague, a postdoc at the Washington University School of Medicine in St. Louis, have now pinpointed some of them. The scientists started with the genome of a domestic cat—a female Abyssinian—that had been published in draft form in 2007, then filled in missing sequences and identified genes. They compared the resulting genome with those of cows, tigers, dogs, and humans. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20298 - Posted: 11.11.2014

By JOSHUA A. KRISCH An old stucco house stands atop a grassy hill overlooking the Long Island Sound. Less than a mile down the road, the renowned Cold Spring Harbor Laboratory bustles with more than 600 researchers and technicians, regularly producing breakthroughs in genetics, cancer and neuroscience. But that old house, now a private residence on the outskirts of town, once held a facility whose very name evokes dark memories: the Eugenics Record Office. In its heyday, the office was the premier scientific enterprise at Cold Spring Harbor. There, bigoted scientists applied rudimentary genetics to singling out supposedly superior races and degrading minorities. By the mid-1920s, the office had become the center of the eugenics movement in America. Today, all that remains of it are files and photographs — reams of discredited research that once shaped anti-immigration laws, spurred forced-sterilization campaigns and barred refugees from entering Ellis Island. Now, historians and artists at New York University are bringing the eugenics office back into the public eye. “Haunted Files: The Eugenics Record Office,” a new exhibit at the university’s Asian/Pacific/American Institute, transports visitors to 1924, the height of the eugenics movement in the United States. Inside a dimly lit room, the sounds of an old typewriter click and clack, a teakettle whistles and papers shuffle. The office’s original file cabinets loom over reproduced desks and period knickknacks. Creaky cabinets slide open, and visitors are encouraged to thumb through copies of pseudoscientific papers. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20204 - Posted: 10.14.2014

By Sarah C. P. Williams If you sailed through school with high grades and perfect test scores, you probably did it with traits beyond sheer smarts. A new study of more than 6000 pairs of twins finds that academic achievement is influenced by genes affecting motivation, personality, confidence, and dozens of other traits, in addition to those that shape intelligence. The results may lead to new ways to improve childhood education. “I think this is going to end up being a really classic paper in the literature,” says psychologist Lee Thompson of Case Western Reserve University in Cleveland, Ohio, who has studied the genetics of cognitive skills and who was not involved in the work. “It’s a really firm foundation from which we can build on.” Researchers have previously shown that a person’s IQ is highly influenced by genetic factors, and have even identified certain genes that play a role. They’ve also shown that performance in school has genetic factors. But it’s been unclear whether the same genes that influence IQ also influence grades and test scores. In the new study, researchers at King’s College London turned to a cohort of more than 11,000 pairs of both identical and nonidentical twins born in the United Kingdom between 1994 and 1996. Rather than focus solely on IQ, as many previous studies had, the scientists analyzed 83 different traits, which had been reported on questionnaires that the twins, at age 16, and their parents filled out. The traits ranged from measures of health and overall happiness to ratings of how much each teen liked school and how hard they worked. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 20170 - Posted: 10.07.2014

By JAMIE EDGIN and FABIAN FERNANDEZ LAST week the biologist Richard Dawkins sparked controversy when, in response to a woman’s hypothetical question about whether to carry to term a child with Down syndrome, he wrote on Twitter: “Abort it and try again. It would be immoral to bring it into the world if you have the choice.” In further statements, Mr. Dawkins suggested that his view was rooted in the moral principle of reducing overall suffering whenever possible — in this case, that of individuals born with Down syndrome and their families. But Mr. Dawkins’s argument is flawed. Not because his moral reasoning is wrong, necessarily (that is a question for another day), but because his understanding of the facts is mistaken. Recent research indicates that individuals with Down syndrome can experience more happiness and potential for success than Mr. Dawkins seems to appreciate. There are, of course, many challenges facing families caring for children with Down syndrome, including a high likelihood that their children will face surgery in infancy and Alzheimer’s disease in adulthood. But at the same time, studies have suggested that families of these children show levels of well-being that are often greater than those of families with children with other developmental disabilities, and sometimes equivalent to those of families with nondisabled children. These effects are prevalent enough to have been coined the “Down syndrome advantage.” In 2010, researchers reported that parents of preschoolers with Down syndrome experienced lower levels of stress than parents of preschoolers with autism. In 2007, researchers found that the divorce rate in families with a child with Down syndrome was lower on average than that in families with a child with other congenital abnormalities and in those with a nondisabled child. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20016 - Posted: 08.30.2014

By DAVID LEVINE MONTREAL — When twins have similar personalities, is it mainly because they share so much genetic material or because their physical resemblance makes other people treat them alike? Most researchers believe the former, but the proposition has been hard to prove. So Nancy L. Segal, a psychologist who directs the Twin Studies Center at California State University, Fullerton, decided to test it — and enlisted an unlikely ally. He is François Brunelle, a photographer in Montreal who takes pictures of pairs of people who look alike but are not twins. Dr. Segal was sent to Mr. Brunelle’s website by a graduate student who knew of her research with twins. When she saw the photographs, she realized that the unrelated look-alikes would be ideal study subjects: She could compare their similarities and differences to those of actual twins. “I reasoned that if personality resides in the face,” she said, “then unrelated look-alikes should be as similar in behavior as identical twins reared apart. Alternatively, if personality traits are influenced by genetic factors, then unrelated look-alikes should show negligible personality similarity.” For 14 years, Mr. Brunelle, 64, has been working on a project he calls “I’m Not a Look-Alike!”: more than 200 black-and-white portraits of pairs who do, in fact, look startlingly alike. “I originally named the project ‘Look-Alikes,’ but I felt it was boring and some of the subjects did not feel they looked alike,” he said. “The new name gives ownership to the people I photographed and allows viewers of my website to decide for themselves if the people look alike or not.” Most come to him through social media links to his website. “It has taken on a life of its own,” he said. “I have heard from people in China — and even a man who has an uncle in Uzbekistan who is a dead ringer for former President George W. Bush.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19997 - Posted: 08.26.2014

Posted by Ewen Callaway More than 130 leading population geneticists have condemned a book arguing that genetic variation between human populations could underlie global economic, political and social differences. “A Troublesome Inheritance“, by science journalist Nicholas Wade, was published in June by Penguin Press in New York. The 278-page work garnered widespread criticism, much of it from scientists, for suggesting that genetic differences (rather than culture) explain, for instance, why Western governments are more stable than those in African countries. Wade is former staff reporter and editor at the New York Times, Science and Nature. But the letter — signed by a who’s who of population genetics and human evolution researchers, and to be published in the 10 August New York Times — represents a rare unified statement from scientists in the field and includes many whose work was cited by Wade. “It’s just a measure of how unified people are in their disdain for what was done with the field,” says Michael Eisen, a geneticist at the University of California, Berkeley, who co-drafted the letter. “Wade juxtaposes an incomplete and inaccurate explanation of our research on human genetic differences with speculation that recent natural selection has led to worldwide differences in I.Q. test results, political institutions and economic development. We reject Wade’s implication that our findings substantiate his guesswork. They do not,” states the letter, which is a response to a critical review of the book published in the New York Times. “This letter is driven by politics, not science,” Wade said in a statement. “I am confident that most of the signatories have not read my book and are responding to a slanted summary devised by the organizers.” © 2014 Macmillan Publishers Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19931 - Posted: 08.09.2014

By Joel Achenbach Friends often look alike. The tendency of people to forge friendships with people of a similar appearance has been noted since the time of Plato. But now there is research suggesting that, to a striking degree, we tend to pick friends who are genetically similar to us in ways that go beyond superficial features. For example, you and your friends are likely to share certain genes associated with the sense of smell. Our friends are as similar to us genetically as you’d expect fourth cousins to be, according to the study published Monday in the Proceedings of the National Academy of Sciences. This means that the number of genetic markers shared by two friends is akin to what would be expected if they had the same great-great-great-grandparents. “Your friends don’t just resemble you superficially, they resemble you genetically,” said Nicholas A. Christakis, a physician and social scientist at Yale University and a co-author of the study. The resemblance is slight, just about 1 percent of the genetic markers, but that has huge implications for evolutionary theory, said James Fowler, a professor of medical genetics and political science at the University of California at San Diego. “We can do better than chance at predicting if two people are going to be friends if all we have is their genetic data,” Fowler said. This is a data-driven study that covers hundreds of friendship pairs and stranger pairs, plus hundreds of thousands of genetic markers. There’s no single “friendship” gene driving people together. There’s no way to say that a person befriended someone else because of any one genetic trait.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 19833 - Posted: 07.15.2014

Thomas B. Edsall It’s been a key question of American politics since at least 1968: Why do so many poor, working-class and lower-middle-class whites — many of them dependent for survival on government programs — vote for Republicans? The debate over the motives of conservative low-income white voters remains unresolved, but two recent research papers suggest that the hurdles facing Democrats in carrying this segment of the electorate may prove difficult to overcome. In “Obedience to Traditional Authority: A heritable factor underlying authoritarianism, conservatism and religiousness,” published by the journal Personality and Individual Differences in 2013, three psychologists write that “authoritarianism, religiousness and conservatism,” which they call the “traditional moral values triad,” are “substantially influenced by genetic factors.” According to the authors — Steven Ludeke of Colgate, Thomas J. Bouchard of the University of Minnesota, and Wendy Johnson of the University of Edinburgh — all three traits are reflections of “a single, underlying tendency,” previously described in one word by Bouchard in a 2006 paper as “traditionalism.” Traditionalists in this sense are defined as “having strict moral standards and child-rearing practices, valuing conventional propriety and reputation, opposing rebelliousness and selfish disregard of others, and valuing religious institutions and practices.” Working along a parallel path, Amanda Friesen, a political scientist at Indiana University, and Aleksander Ksiazkiewicz, a graduate student in political science at Rice University, concluded from their study comparing identical and fraternal twins that “the correlation between religious importance and conservatism” is “driven primarily, but usually not exclusively, by genetic factors.” The substantial “genetic component in these relationships suggests that there may be a common underlying predisposition that leads individuals to adopt conservative bedrock social principles and political ideologies while simultaneously feeling the need for religious experiences.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 19813 - Posted: 07.10.2014

Epigenetics is one of the hottest fields in the life sciences. It’s a phenomenon with wide-ranging, powerful effects on many aspects of biology, and enormous potential in human medicine. As such, its ability to fill in some of the gaps in our scientific knowledge is mentioned everywhere from academic journals to the mainstream media to some of the less scientifically rigorous corners of the Internet. Epigenetics is essentially additional information layered on top of the sequence of letters (strings of molecules called A, C, G, and T) that makes up DNA. If you consider a DNA sequence as the text of an instruction manual that explains how to make a human body, epigenetics is as if someone's taken a pack of highlighters and used different colours to mark up different parts of the text in different ways. For example, someone might use a pink highlighter to mark parts of the text that need to be read the most carefully, and a blue highlighter to mark parts that aren't as important. There are different types of epigenetic marks, and each one tells the proteins in the cell to process those parts of the DNA in certain ways. For example, DNA can be tagged with tiny molecules called methyl groups that stick to some of its C letters. Other tags can be added to proteins called histones that are closely associated with DNA. There are proteins that specifically seek out and bind to these methylated areas, and shut it down so that the genes in that region are inactivated in that cell. So methylation is like a blue highlighter telling the cell "you don't need to know about this section right now." Methyl groups and other small molecular tags can attach to different locations on the histone proteins, each one having a different effect. Some tags in some locations loosen the attachment between the DNA and the histone, making the DNA more accessible to the proteins that are responsible for activating the genes in that region; this is like a pink highlighter telling the cell "hey, this part's important". © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19541 - Posted: 04.28.2014