Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 989

By Virginia Morell Human hunters may be making birds smarter by inadvertently shooting those with smaller brains. That’s the conclusion of a new study, which finds that hunting may be exerting a powerful evolutionary force on bird populations in Denmark, and likely wherever birds are hunted. But the work also raises a red flag for some researchers who question whether the evolution of brain size can ever be tied to a single factor. The new work “broadens an emerging view that smarts really do matter in the natural, and increasingly human-dominated, world,” says John Marzluff, a wildlife biologist and expert on crow cognition at the University of Washington in Seattle who was not involved with the work. Hunting and fishing are known to affect many animal populations. For instance, the pike-perch in the Finnish Archipelago Sea has become smaller over time thanks to fishing, which typically removes the largest individuals from a population. This pressure also causes fish to reach sexual maturity earlier. On land, natural predators like arctic foxes and polar bears can also drive their prey species to become smarter because predators are most likely to catch those with smaller brains. For instance, a recent study showed that common eiders (maritime ducks) that raise the most chicks also have the largest heads and are better at forming protective neighborhood alliances than ducks with smaller heads—and presumably, brains. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22820 - Posted: 11.02.2016

Bruce Bower Many preschoolers take a surprisingly long and bumpy mental path to the realization that people can have mistaken beliefs — say, thinking that a ball is in a basket when it has secretly been moved to a toy box. Traditional learning curves, in which kids gradually move from knowing nothing to complete understanding, don’t apply to this landmark social achievement and probably to many other types of learning, a new study concludes. Kids ranging in age from 3 to 5 often go back and forth between passing and failing false-belief tests for several months to more than one year, say psychologist Sara Baker of the University of Cambridge and her colleagues. A small minority of youngsters jump quickly from always failing to always passing these tests, the scientists report October 20 in Cognitive Psychology. “If these results are replicated, it will surprise a lot of researchers that there is such a low level of sudden insight into false beliefs,” says psychologist Malinda Carpenter, currently at the Max Planck Institute for Evolutionary Anthropology in Leipzig. Early childhood researchers generally assume that preschoolers either pass or fail false-belief tests, with a brief transition between the two, explains Carpenter, who did not participate in the new study. Grasping that others sometimes have mistaken beliefs is a key step in social thinking. False-belief understanding may start out as something that can be indicated nonverbally but not described. Human 2-year-olds and even chimpanzees tend to look toward spots where a person would expect to find a hidden item that only the children or apes have seen moved elsewhere (SN Online: 10/6/16). © Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22816 - Posted: 11.01.2016

By Catherine Caruso Babies and children undergo massive brain restructuring as they mature, and for good reason—they have a whole world of information to absorb during their sprint toward adulthood. This mental renovation doesn’t stop there, however. Adult brains continue to produce new cells and restructure themselves throughout life, and a new study in mice reveals more about the details of this process and the important role environmental experience plays. Through a series of experiments, researchers at the Leloir Institute in Buenos Aires showed that when adult mice are exposed to stimulating environments, their brains are able to more quickly integrate new brain cells into existing neural networks through a process that involves new and old cells connecting to one another via special helper cells called interneurons. The adult mammalian brain, long believed to lack the capacity to make new cells, has two main areas that continuously produce new neurons throughout life. One of these areas, the hippocampus (which is involved in memory, navigation, mood regulation and stress response) produces new neurons in a specialized region called the dentate gyrus. Many previous studies have focused on how the dentate gyrus produces new neurons and what happens to these neurons as they mature, but Alejandro Schinder and his colleagues at Leloir wanted to go one step further and understand how new neurons produced by the dentate gyrus are incorporated into the existing neural networks of the brain, and whether environment affects this process. © 2016 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22802 - Posted: 10.28.2016

By Agata Blaszczak-Boxe Some rodents have a sweet tooth. And sometimes, you need to get crafty to reach your sugar fix. Rats have been filmed for the first time using hooked tools to get chocolate cereal – a manifestation of their critter intelligence. Akane Nagano and Kenjiro Aoyama, of Doshisha University in Kyotanabe, Japan, placed eight brown rats in a transparent box and trained them to pull small hooked tools to obtain the cereal that was otherwise beyond their reach. In one experiment they gave them two similar hooked tools, one of which worked well for the food retrieval task, and the other did not. The rats quickly learned to choose the correct tool for the job, selecting it 95 per cent of the time. The experiments showed that the rats understood the spatial arrangement between the food and the tool. The team’s study is the first to demonstrate that rats are able to use tools, says Nagano. The rats did get a little confused in the final experiment. When the team gave them a rake that looked the part but with a bottom was too soft and flimsy to move the cereal, they still tried to use it as much as the working tool that was also available. But, says Nagano, it is possible their eyesight was simply not good enough for them to tell that the flimsy tool wasn’t up to the task. The rodents’ crafty feat places them in the ever-growing club of known tool-using animals such as chimps, bearded capuchin monkeys, New Caledonian crows, alligators and even some fish. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22774 - Posted: 10.22.2016

Dean Burnett Throughout history, people have always worried about new technologies. The fear that the human brain cannot cope with the onslaught of information made possible by the latest development was first voiced in response to the printing press, back in the sixteenth century. Swap “printing press” for “internet” and you have the exact same concerns today, regularly voiced in the mainstream media, and usually focused on children. But is there any legitimacy to these claims? Or are they just needless scaremongering? There are several things to bear in mind when considering how our brains deal with the internet. The human brain is always dealing with a constant stream of rich information - that’s what the real world is First, don’t forget that “the internet” is a very vague term, given that it contains so many things across so many formats. You could, for instance, develop a gambling addiction via online casinos or poker sites. This is an example of someone’s brain being negatively affected via the internet, but it would be difficult to argue that the internet is the main culprit, any more than a gambling addiction obtained via a real world casino can be blamed on “buildings”; it’s just the context in which the problem occurred. However, the internet does give us a far more direct, constant and wide ranging access to information than pretty much anything else in human history. So how could, or does, this affect us and our brains? © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22736 - Posted: 10.10.2016

/ By Seth Mnookin When Henry Molaison died at a Connecticut nursing home in 2008, at the age of 82, a front-page obituary in The New York Times called him “the most important patient in the history of brain science.” It was no exaggeration: Much of what we know about how memory works is derived from experiments on Molaison, a patient with severe epilepsy who in 1953 had undergone an operation that left him without medial temporal lobes and the ability to form new memories. The operation didn’t completely stop Molaison’s seizures — the surgeon, William Beecher Scoville, had done little more than guess at the locus of his affliction — but by chance, it rendered him a near-perfect research subject. Not only could postoperative changes in his behavior be attributed to the precise area of his brain that had been removed, but the fact that he couldn’t remember what had happened 30 seconds earlier made him endlessly patient and eternally willing to endure all manner of experiments. It didn’t take long for those experiments to upend our understanding of the human brain. By the mid-1950s, studies on Molaison (known until his death only as Patient H.M.) had shown that, contrary to popular belief, memories were created not in the brain as a whole, but in specific regions — and that different types of memories were formed in different ways. Molaison remained a research subject until his death, and for the last 41 years of his life, the person who controlled access to him, and was involved in virtually all the research on him, was an MIT neuroscientist named Suzanne Corkin. Copyright 2016 Undark

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22729 - Posted: 10.05.2016

Jon Hamilton Want to be smarter? More focused? Free of memory problems as you age? If so, don't count on brain games to help you. That's the conclusion of an exhaustive evaluation of the scientific literature on brain training games and programs. It was published Monday in the journal Psychological Science in the Public Interest. "It's disappointing that the evidence isn't stronger," says Daniel Simons, an author of the article and a psychology professor at the University of Illinois at Urbana-Champaign. "It would be really nice if you could play some games and have it radically change your cognitive abilities," Simons says. "But the studies don't show that on objectively measured real-world outcomes." The evaluation, done by a team of seven scientists, is a response to a very public disagreement about the effectiveness of brain games, Simons says. In October 2014, more than 70 scientists published an open letter objecting to marketing claims made by brain training companies. Pretty soon, another group, with more than 100 scientists, published a rebuttal saying brain training has a solid scientific base. "So you had two consensus statements, each signed by many, many people, that came to essentially opposite conclusions," Simons says. © 2016 npr

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22727 - Posted: 10.05.2016

By GRETCHEN REYNOLDS Before you skip another workout, you might think about your brain. A provocative new study finds that some of the benefits of exercise for brain health may evaporate if we take to the couch and stop being active, even just for a week or so. I have frequently written about how physical activity, especially endurance exercise like running, aids our brains and minds. Studies with animals and people show that working out can lead to the creation of new neurons, blood vessels and synapses and greater overall volume in areas of the brain related to memory and higher-level thinking. Presumably as a result, people and animals that exercise tend to have sturdier memories and cognitive skills than their sedentary counterparts. Exercise prompts these changes in large part by increasing blood flow to the brain, many exercise scientists believe. Blood carries fuel and oxygen to brain cells, along with other substances that help to jump-start desirable biochemical processes there, so more blood circulating in the brain is generally a good thing. Exercise is particularly important for brain health because it appears to ramp up blood flow through the skull not only during the actual activity, but throughout the rest of the day. In past neurological studies, when sedentary people began an exercise program, they soon developed augmented blood flow to their brains, even when they were resting and not running or otherwise moving. But whether those improvements in blood flow are permanent or how long they might last was not clear. So for the new study, which was published in August in Frontiers in Aging Neuroscience, researchers from the department of kinesiology at the University of Maryland in College Park decided to ask a group of exceedingly fit older men and women to stop exercising for awhile. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22704 - Posted: 09.28.2016

Ramin Skibba. Physiologist Ivan Pavlov conditioned dogs to associate food with the sound of a buzzer, which left them salivating. Decades later, researchers discovered such training appears to block efforts to teach the animals to link other stimuli to the same reward. Dogs trained to expect food when a buzzer sounds can then be conditioned to salivate when they are exposed to the noise and a flash of light simultaneously. But light alone will not cue them to drool. This ‘blocking effect’ is well-known in psychology, but new research suggests that the concept might not be so simple. Psychologists in Belgium failed to replicate the effect in 15 independent experiments, they report this month in the Journal of Experimental Psychology1. “For a long time, you tend to think, ‘It’s me’ — I’m doing something wrong, or messing up the experiment,’” says lead author Tom Beckers, a psychologist at the Catholic University of Leuven (KU Leuven) in Belgium. But after his student, co-author Elisa Maes, also could not replicate the blocking effect, and the team failed again in experiments in other labs, Beckers realized that “it can’t just be us”. The scientists do not claim that the blocking effect is not real, or that previous observations of it are wrong. Instead, Beckers thinks that psychologists do not yet know enough about the precise conditions under which it applies. © 2016 Macmillan Publishers Limited,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22701 - Posted: 09.27.2016

By Julia Shaw The brain, with its 100 billion neurons, allows us to do amazing things like learn multiple languages, or build things that send people into outer space. Yet despite this astonishing capacity, we routinely can’t remember where we put our keys, we forget why we went to the grocery store, and we fail when trying to recall personal life events. This apparent contradiction in functionality opens up the question of why we forget some things but remember others. Or, more fundamentally, what causes forgetting? This week my book ‘The Memory Illusion’ drops in Canada, and as a Canadian girl I want to celebrate this by showcasing some Canadian researchers who have given us insight into precisely this question. An article published recently in Psychological Science by Talya Sadeh and colleagues at the Rotman Research institute in Toronto addresses a long-running debate in the world of memory science; do we forget things because of decay or interference? Decay. Advocates of the decay account posit that our memories slowly disappear, fading because of a passage of time during which they have not been accessed. You can picture this much like a message written in sand, with every ocean wave that flows over the shore making the writing less legible until it eventually disappears entirely. The sand represents the web of brain cells that form a memory in the brain, and the ocean waves represent time passing. © 2016 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22651 - Posted: 09.13.2016

By Karen Zusi At least one type of social learning, or the ability to learn from observing others’ actions, is processed by individual neurons within a region of the human brain called the rostral anterior cingulate cortex (rACC), according to a study published today (September 6) in Nature Communications. The work is the first direct analysis in humans of the neuronal activity that encodes information about others’ behavior. “The idea [is] that there could be an area that’s specialized for processing things about other people,” says Matthew Apps, a neuroscientist at the University of Oxford who was not involved with the study. “How we think about other people might use distinct processes from how we might think about ourselves.” During the social learning experiments, the University of California, Los Angeles (UCLA) and CalTech–based research team recorded the activity of individual neurons in the brains of epilepsy patients. The patients were undergoing a weeks-long procedure at the Ronald Reagan UCLA Medical Center in which their brains were implanted with electrodes to locate the origin of their epileptic seizures. Access to this patient population was key to the study. “It’s a very rare dataset,” says Apps. “It really does add a lot to the story.” With data streaming out of the patients’ brains, the researchers taught the subjects to play a card game on a laptop. Each turn, the patients could select from one of two decks of face-down cards: the cards either gave $10 or $100 in virtual winnings, or subtracted $10 or $100. In one deck, 70 percent of the cards were winning cards, while in the other only 30 percent were. The goal was to rack up the most money. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 22640 - Posted: 09.10.2016

By Amy Ellis Nutt Before iPhones and thumb drives, before Google docs and gigabytes of RAM, memory was more art than artifact. It wasn’t a tool or a byproduct of being human. It was essential to our character and therefore a powerful theme in both myth and literature. At the end of Book 2 of the “Divine Comedy,” with Paradise nearly in reach, Dante is dipped into the River Lethe, where the sins of the self are washed away in the waters of forgetfulness. To be truly cleansed of his memories, however, Dante must also drink from the river of oblivion. Only then will he be truly purified and the memories of his good deeds restored to him. Before we can truly remember, according to Dante, we must forget. In “Patient H.M.: A Story of Memory, Madness, and Family Secrets,” author Luke Dittrich seems to be saying that before we can forgive, we must remember. The terrible irony is that H.M., the real-life character around whom Dittrich’s book revolves, had no memory at all. In prose both elegant and intimate, and often thrilling, “Patient H.M.” is an important book about the wages not of sin but of science. It is deeply reported and surprisingly emotional, at times poignant, at others shocking. H.M., arguably the single most important research subject in the history of neuroscience, was once Henry Molaison, an ordinary New England boy. When Henry was 9 years old, he was hit by a bicyclist as he walked across the street in his home town, Hartford, Conn. © 1996-2016 The Washington Post

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22604 - Posted: 08.27.2016

By Anna Azvolinsky Sets of neurons in the brain that behave together—firing synchronously in response to sensory or motor stimuli—are thought to be functionally and physiologically connected. These naturally occurring ensembles of neurons are one of the ways memories may be programmed in the brain. Now, in a paper published today (August 11) in Science, researchers at Columbia University and their colleagues show that it is possible to stimulate visual cortex neurons in living, awake mice and induce a new ensemble of neurons that behave as a group and maintain their concerted firing for several days. “This work takes the concept of correlated [neuronal] firing patterns in a new and important causal direction,” David Kleinfeld, a neurophysicist at the University of California, San Diego, who was not involved in the work told The Scientist. “In a sense, [the researchers] created a memory for a visual feature that does not exist in the physical world as a proof of principal of how real visual memories are formed.” “Researchers have previously related optogenetic stimulation to behavior [in animals], but this study breaks new ground by investigating the dynamics of neural activity in relation to the ensemble to which these neurons belong,” said Sebastian Seung, a computational neuroscientist at the Princeton Neuroscience Institute in New Jersey who also was not involved in the study. Columbia’s Rafael Yuste and colleagues stimulated randomly selected sets of individual neurons in the visual cortices of living mice using two-photon stimulation while the animals ran on a treadmill. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 13: Memory, Learning, and Development
Link ID: 22558 - Posted: 08.13.2016

Ed Yong At the age of seven, Henry Gustav Molaison was involved in an accident that left him with severe epilepsy. Twenty years later, a surgeon named William Scoville tried to cure him by removing parts of his brain. It worked, but the procedure left Molaison unable to make new long-term memories. Everyone he met, every conversation he had, everything that happened to him would just evaporate from his mind. These problems revolutionized our understanding of how memory works, and transformed Molaison into “Patient H.M.”—arguably the most famous and studied patient in the history of neuroscience. That’s the familiar version of the story, but the one presented in Luke Dittrich’s new book Patient H.M.: A Story of Memory, Madness, and Family Secrets is deeper and darker. As revealed through Dittrich’s extensive reporting and poetic prose, Molaison’s tale is one of ethical dilemmas that not only influenced his famous surgery but persisted well beyond his death in 2008. It’s a story about more than just the life of one man or the root of memory; it’s also about how far people are willing to go for scientific advancement, and the human cost of that progress. And Dittrich is uniquely placed to consider these issues. Scoville was his grandfather. Suzanne Corkin, the scientist who worked with Molaison most extensively after his surgery, was an old friend of his mother’s. I spoke to him about the book and the challenges of reporting a story that he was so deeply entwined in. Most of this interview was conducted on July 19th. Following a New York Times excerpt published on August 7th, and the book’s release two weeks later, many neuroscientists have expressed “outrage” at Dittrich’s portrayal of Corkin. The controversy culminated in a statement from MIT, where Corkin was based, rebutting three allegations in the book. Dittrich has himself responded to the rebuttals, and at the end of this interview, I talk to him about the debate. © 2016 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22552 - Posted: 08.13.2016

Like many students of neuroscience, I first learned of patient HM in a college lecture. His case was so strange yet so illuminating, and I was immediately transfixed. HM was unable to form new memories, my professor explained, because a surgeon had removed a specific part of his brain. The surgery froze him in time. HM—or Henry Molaison, as his name was revealed to be after his death in 2008—might be the most famous patient in the history of brain research. He is now the subject of the new book, Patient HM: A Story of Memory, Madness, and Family Secrets. An excerpt from the book in the New York Times Magazine, which details MIT neuroscientist Sue Corkin’s custody fight over HM’s brain after his death, has since sparked a backlash. Should you wish to go down that particular rabbit hole, you can read MIT’s response, the book author’s response to the response, and summaries of the back and forth. Why HM’s brain was worth fighting over should be obvious; he was probably the most studied individual in neuroscience while alive. But in the seven years since scientists sectioned HM’s brain into 2,401 slices, it has yielded surprisingly little research. Only two papers examining his brain have come out, and so far, physical examinations have led to no major insights. HM’s scientific potential remains unfulfilled—thanks to delays from the custody fight and the limitations of current neuroscience itself. Corkin, who made her career studying HM, confronted her complicated emotions about his death in her own 2013 book. She describes being “ecstatic to see his brain removed expertly from his skull.” Corkin passed away earlier this year.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22551 - Posted: 08.13.2016

By Sharon Begley, The Massachusetts Institute of Technology brain sciences department and, separately, a group of some 200 neuroscientists from around the world have written letters to The New York Times claiming that a book excerpt in the newspaper’s Sunday magazine this week contains important errors, misinterpretations of scientific disputes, and unfair characterizations of an MIT neuroscientist who did groundbreaking research on human memory. In particular, the excerpt contains a 36-volley verbatim exchange between author Luke Dittrich and MIT’s Suzanne Corkin in which she says that key documents from historic experiments were “shredded.” “Most of it has gone, is in the trash, was shredded,” Corkin is quoted as telling Dittrich before she died in May, explaining, “there’s no place to preserve it.” Destroying files related to historic scientific research would raise eyebrows, but Corkin’s colleagues say it never happened. “We believe that no records were destroyed and, to the contrary, that professor Corkin worked in her final days to organize and preserve all records,” said the letter that Dr. James DiCarlo, head of the MIT Department of Brain and Cognitive Sciences, sent to the Times late Tuesday. Even as Corkin fought advanced liver cancer, he wrote, “she instructed her assistant to continue to organize, label, and maintain all records” related to the research, and “the records currently remain within our department.” © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22546 - Posted: 08.11.2016

BENEDICT CAREY As a boy growing up in Massachusetts, Luke Dittrich revered his grandfather, a brain surgeon whose home was full of exotic instruments. Later, he learned that he was not only a prominent doctor but had played a significant role in modern medical history. In 1953, at Hartford Hospital, Dr. William Scoville had removed two slivers of tissue from the brain of a 27-year-old man with severe epilepsy. The operation relieved his seizures but left the patient — Henry Molaison, a motor repairman — unable to form new memories. Known as H. M. to protect his privacy, Mr. Molaison went on to become the most famous patient in the history of neuroscience, participating in hundreds of experiments that have helped researchers understand how the brain registers and stores new experiences. By the time Mr. Dittrich was out of college — and after a year and a half in Egypt, teaching English — he had become fascinated with H. M., brain science and his grandfather’s work. He set out to write a book about the famous case but discovered something unexpected along the way. His grandfather was one of a cadre of top surgeons who had performed lobotomies and other “psycho-surgeries” on thousands of people with mental problems. This was not a story about a single operation that went wrong; it was far larger. The resulting book — “Patient H. M.: A Story of Memory, Madness, and Family Secrets,” to be published Tuesday — describes a dark era of American medicine through a historical, and deeply personal, lens. Why should scientists and the public know this particular story in more detail? The textbook story of Patient H. M. — the story I grew up with — presents the operation my grandfather performed on Henry as a sort of one-off mistake. It was not. Instead, it was the culmination of a long period of human experimentation that my grandfather and other leading doctors and researchers had been conducting in hospitals and asylums around the country. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22531 - Posted: 08.09.2016

By Julia Shaw Every memory you have ever had is chock-full of errors. I would even go as far as saying that memory is largely an illusion. This is because our perception of the world is deeply imperfect, our brains only bother to remember a tiny piece of what we actually experience, and every time we remember something we have the potential to change the memory we are accessing. I often write about the ways in which our memory leads us astray, with a particular focus on ‘false memories.’ False memories are recollections that feel real but are not based on actual experience. For this particular article I invited a few top memory researchers to comment on what they wish everyone knew about their field. First up, we have Elizabeth Loftus from the University of California, Irvine, who is one of the founders of the area of false memory research, and is considered one of the most ‘eminent psychologists of the 20th century.’ Elizabeth Loftus says you need independent evidence to corroborate your memories. According to Loftus: “The one take home message that I have tried to convey in my writings, and classes, and in my TED talk is this: Just because someone tells you something with a lot of confidence and detail and emotion, it doesn't mean it actually happened. You need independent corroboration to know whether you're dealing with an authentic memory, or something that is a product of some other process.” Next up, we have memory scientist Annelies Vredeveldt from the Vrije Universiteit Amsterdam, who has done fascinating work on how well we remember when we recall things with other people. © 2016 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22530 - Posted: 08.09.2016

Pete Etchells Mind gamers: How good do you reckon your memory is? We might forget things from time to time, but the stuff we do remember is pretty accurate, right? The trouble is, our memory isn’t as infallible as we might want to believe, and you can test this for yourself using the simple experiment below. All done? Great. Now we’re going to do a simple recognition test – below is another list of words for you to look at. Without looking back, note down which of them appeared in the three lists you just scanned. No cheating! If you said that top, seat and yawn were in the lists, you’re spot on. Likewise, if you think that slow, sweet and strong didn’t appear anywhere, you’re also right. What about chair, mountain and sleep though? They sound like they should have been in the lists, but they never made an appearance. Some of you may have spotted this, but a lot of people tend to say, with a fair amount of certainty, that the words were present. This experiment comes from a classic 1995 study by Henry L. Roediger and Kathleen McDermott at Rice University in Texas. Based on earlier work by James Deese (hence the name Deese-Roediger-McDermott, or DRM, paradigm), participants heard a series of word lists, which they then had to recall from memory. After a brief conversation with the researcher, the participants were then given a new list of words. Critically, this new list contained some words that were associated with every single item on each of the initial lists – for example, while sleep doesn’t appear on list 3 above, it’s related to each word that does appear (bed, rest, tired, and so on). © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22526 - Posted: 08.08.2016

By LUKE DITTRICH ‘Can you tell me who the president of the United States is at the moment?” A man and a woman sat in an office in the Clinical Research Center at the Massachusetts Institute of Technology. It was 1986, and the man, Henry Molaison, was about to turn 60. He was wearing sweatpants and a checkered shirt and had thick glasses and thick hair. He pondered the question for a moment. “No,” he said. “I can’t.” The woman, Jenni Ogden, was a visiting postdoctoral research fellow from the University of Auckland, in New Zealand. One of the greatest thrills of her time at M.I.T. was the chance to have sit-down sessions with Henry. In her field — neuropsychology — he was a legendary figure, something between a rock star and a saint. “Who’s the last president you remember?” “I don’t. ... ” He paused for a second, mulling over the question. He had a soft, tentative voice, a warm New England accent. “Ike,” he said finally. Dwight D. Eisenhower’s inauguration took place in 1953. Our world had spun around the sun more than 30 times since, though Henry’s world had stayed still, frozen in orbit. This is because 1953 was the year he received an experimental operation, one that destroyed most of several deep-­seated structures in his brain, including his hippocampus, his amygdala and his entorhinal cortex. The operation, performed on both sides of his brain and intended to treat Henry’s epilepsy, rendered him profoundly amnesiac, unable to hold on to the present moment for more than 30 seconds or so. That outcome, devastating to Henry, was a boon to science: By 1986, Patient H.M. — as he was called in countless journal articles and textbooks — had become arguably the most important human research subject of all time, revolutionizing our understanding of how memory works. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22519 - Posted: 08.04.2016