Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 957

How is the brain able to use past experiences to guide decision-making? A few years ago, researchers supported by the National Institutes of Health discovered in rats that awake mental replay of past experiences is critical for learning and making informed choices. Now, the team has discovered key secrets of the underlying brain circuitry – including a unique system that encodes location during inactive periods. “Advances such as these in understanding cellular and circuit-level processes underlying such basic functions as executive function, social cognition, and memory fit into NIMH’s mission of discovering the roots of complex behaviors,” said NIMH acting director Bruce Cuthbert, Ph.D. While a rat is moving through a maze — or just mentally replaying the experience — an area in the brain’s memory hub, or hippocampus, specialized for locations, called CA1, communicates with a decision-making area in the executive hub or prefrontal cortex (PFC). A distinct subset of PFC neurons excited during mental replay of the experience are activated during movement, while another distinct subset, less engaged during movement in the maze – and therefore potentially distracting – are inhibited during replay. “Such strongly coordinated activity within this CA1-PFC circuit during awake replay is likely to optimize the brain’s ability to consolidate memories and use them to decide on future action” explained Shantanu Jadhav, Ph.D. (link is external), now an assistant professor at Brandeis University, Waltham, MA., the study’s co-first author. His contributions to this line of research were made possible, in part, by a Pathway to Independence award from the Office of Research Training and Career Development of the NIH’s National Institute of Mental Health (NIMH).

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 21978 - Posted: 03.12.2016

By Gretchen Reynolds Learning in midlife to juggle, swim, ride a bicycle or, in my case, snowboard could change and strengthen the brain in ways that practicing other familiar pursuits such as crossword puzzles or marathon training will not, according to an accumulating body of research about the unique impacts of motor learning on the brain. When most of us consider learning and intelligence, we think of activities such as adding numbers, remembering names, writing poetry, learning a new language. Such complex thinking generally is classified as “higher-order” cognition and results in activity within certain portions of the brain and promotes plasticity, or physical changes, in those areas. There is strong evidence that learning a second language as an adult, for instance, results in increased white matter in the parts of the brain known to be involved in language processing. Regular exercise likewise changes the brain, as I frequently have written, with studies in animals showing that running and other types of physical activities increase the number of new brain cells created in parts of the brain that are integral to memory and thinking. But the impacts of learning on one of the most primal portions of the brain have been surprisingly underappreciated, both scientifically and outside the lab. Most of us pay little attention to our motor cortex, which controls how well we can move. “We have a tendency to admire motor skills,” said Dr. John Krakauer, a professor of neurology and director of the Center for the Study of Motor Learning and Brain Repair at Johns Hopkins University in Baltimore. We like watching athletes in action, he said. But most of us make little effort to hone our motor skills in adulthood, and very few of us try to expand them by, for instance, learning a new sport. We could be short-changing our brains. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21949 - Posted: 03.03.2016

By Jonathan Webb Science reporter, BBC News Three British researchers have won a prize worth one million euros, awarded each year for an "outstanding contribution to European neuroscience". Tim Bliss, Graham Collingridge and Richard Morris revealed how strengthened connections between brain cells can store our memories. Our present understanding of memory is built on their work, which unpicked the mechanisms and molecules involved. This is the first time the Brain Prize has been won by an entirely UK team. It is awarded by a Danish charitable foundation and the 2016 winners were announced in London on Tuesday. Speaking to journalists at a media conference, Prof Morris explained it was the "chemistry of memory" that he and his colleagues had managed to illuminate. Fire together, wire together "Before this team got going, we had some idea about particular areas of the brain that might be involved in memory… but what we didn't have was any real understanding of how it worked," explained the professor, who works at the University of Edinburgh. The "team" of three winners never worked together in the same laboratory, but they have collaborated over the years. "Memories change the brain - the brain is plastic," said Prof Bliss, who worked for many years at the National Institute of Medical Research in London and is now affiliated with the Francis Crick Institute. Those changes occur at the junctions between nerve cells - synapses - and were described in a pioneering study by Bliss and a Norwegian colleague, Terje Lømo, in the 1970s. © 2016 BBC.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21947 - Posted: 03.03.2016

By Robert Sanders, For nearly 55 years, until her retirement in 2014, Marian Diamond would often be seen walking through campus to her anatomy class carrying a flowered hat box, within which nestled a real, pickled human brain. Gently lifting it from its wrapping, she would display it to classes and express her awe that such a small, three-pound mass of protoplasm was the most complex structure known to humankind. Trailer for "My Love Affair with the Brain: The Life and Science of Dr. Marian Diamond," a new documentary by Luna Productions. Credit: Luna Productions Over the course of her career, Diamond, a professor emeritus of integrative biology at UC Berkeley, demonstrated that an enriched environment builds better brains and helped establish the now accepted idea that the brain changes throughout our lifetimes and that we need to continually “use it or lose it.” She also conducted the first scientific analysis of Albert Einstein’s brain. Now 89, Diamond is the subject of a new one-hour documentary, My Love Affair with the Brain: the Life and Science of Dr. Marian Diamond, that will get its local premiere Saturday, Feb. 27, at 1 p.m. in the new Berkeley Art Museum and Pacific Film Archive. Catherine Ryan and Gary Weimberg, co-directors and producers of the documentary, will host the free preview, along with BAMPFA, the California Alumni Association and UC Berkeley’s Helen Wills Neuroscience Institute, Lawrence Hall of Science, Department of Psychology, Division of Biological Sciences, Department of Integrative Biology, Department of Molecular and Cell Biology and Center for Research and Education on Aging. © The Regents of the University of California|Terms of Use

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21933 - Posted: 02.27.2016

Mo Costandi Tell me where dwell the thoughts, forgotten till thou call them forth? Tell me where dwell the joys of old, and where the ancient loves, And when will they renew again, and the night of oblivion past, That I might traverse times and spaces far remote, and bring Comforts into a present sorrow and a night of pain? Where goest thou, O thought? To what remote land is thy flight? If thou returnest to the present moment of affliction, Wilt thou bring comforts on thy wings, and dews and honey and balm, Or poison from the desert wilds, from the eyes of the envier? In his epic poem, Visions of the Daughters of Albion, William Blake wonders about the nature of memory, its ability to mentally transport us to distant times and places, and the powerful emotions, both positive and negative, that our recollections can evoke. The poem contains questions that remain highly pertinent today, such as what happens to our long-lost memories, and how do we retrieve them? More than two centuries later, the mechanisms of memory storage and retrieval are the most intensively studied phenomena in the brain sciences. It’s widely believed that memory formation involves the strengthening of connections between sparsely distributed networks of neurons in a brain structure called the hippocampus, and that subsequent retrieval involves reactivation of the same neuronal ensembles. And yet, neuroscientists still struggle to answer Blake’s questions definitely. Now, a team of researchers at the University of Geneva have made another important advance in our understanding of the neural mechanisms underlying memory formation. Using a state-of-the-art method called optogenetics, they show how the neuronal ensembles that encode memories emerge, revealing that ensembles containing too many neurons – or too few – impair memory retrieval. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21893 - Posted: 02.13.2016

By Uri Bram Early-life exposure to pathogenic bacteria can induce a lifelong imprinted olfactory memory in C. elegans through two distinct neural circuits, according to a study published today (February 11) in Cell. Researchers from Rockefeller University in New York City have shown that early-life pathogen exposure leads the nematode to have a lifelong aversion to the specific associated bacterial odors, whereas later-in-life exposure spurs only transient aversion. “This study is very exciting,” said Yun Zhang of Harvard who studies learning in C. elegans but was not involved in the present work. “Imprinting is a form of learning widely observed in many animals [but] finding this in C. elegans is very meaningful because this nematode is genetically tractable, and its small nervous system is well described.” A classic example of imprinting is how geese form attachments to the first moving object they see after birth; Nobel laureate Konrad Lorenz famously showed that the “moving object” could be himself instead of a mother goose. During the critical period at the start of life, animals often have unusual abilities to create and maintain long-term memories. For the present study, Rockefeller’s Xin Jin and colleagues described a form of aversive imprinting in their C. elegans: newly hatched nematodes exposed to Pseudomonas aeruginosa PA14 or toxin-emitting Escherichia coli BL21 established a long-term olfactory aversion to it. Animals that experienced the pathogen immediately after hatching were able to synthesize and maintain the aversive memory for the whole of their four-day lifespans, while animals trained in adulthood only retained the aversive memory for up to 24 hours. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 21891 - Posted: 02.13.2016

By Jeneen Interlandi The human brain’s memory-storage capacity is an order of magnitude greater than previously thought, researchers at the Salk Institute for Biological Studies reported last week. The findings, recently detailed in eLife, are significant not only for what they say about storage space but more importantly because they nudge us toward a better understanding of how, exactly, information is encoded in our brains. The question of just how much information our brains can hold is a longstanding one. We know that the human brain is made up of about 100 billion neurons, and that each one makes 1,000 or more connections to other neurons, adding up to some 100 trillion in total. We also know that the strengths of these connections, or synapses, are regulated by experience. When two neurons on either side of a synapse are active simultaneously, that synapse becomes more robust; the dendritic spine (the antenna on the receiving neuron) also becomes larger to support the increased signal strength. These changes in strength and size are believed to be the molecular correlates of memory. The different antenna sizes are often compared with bits of computer code, only instead of 1s and 0s they can assume a range of values. Until last week scientists had no idea how many values, exactly. Based on crude measurements, they had identified just three: small, medium and large. But a curious observation led the Salk team to refine those measurements. In the course of reconstructing a rat hippocampus, an area of the mammalian brain involved in memory storage, they noticed some neurons would form two connections with each other: the axon (or sending cable) of one neuron would connect with two dendritic spines (or receiving antennas) on the same neighboring neuron, suggesting that duplicate messages were being passed from sender to receiver. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21866 - Posted: 02.06.2016

Nell Greenfieldboyce The state of New Jersey has been trying to help jurors better assess the reliability of eyewitness testimony, but a recent study suggests that the effort may be having unintended consequences. That's because a new set of instructions read to jurors by a judge seems to make them skeptical of all eyewitness testimony — even testimony that should be considered reasonably reliable. Back in 2012, New Jersey's Supreme Court did something groundbreaking. It said that in cases that involve eyewitness testimony, judges must give jurors a special set of instructions. The instructions are basically a tutorial on what scientific research has learned about eyewitness testimony and the factors that can make it more dependable or less so. "The hope with this was that jurors would then be able to tell what eyewitness testimony was trustworthy, what sort wasn't, and at the end of the day it would lead to better decisions, better court outcomes, better justice," says psychologist David Yokum. Yokum was a graduate student at the University of Arizona, doing research on decision-making, when he and two colleagues, Athan Papailiou and Christopher Robertson, decided to test the effect of these new jury instructions, using videos of a mock trial that they showed to volunteers. © 2016 npr

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21828 - Posted: 01.27.2016

James Gorman Spotted hyenas are the animals that got Sarah Benson-Amram thinking about how smart carnivores are and in what ways. Dr. Benson-Amram, a researcher at the University of Wyoming in Laramie, did research for her dissertation on hyenas in the wild under Kay E. Holekamp of Michigan State University. Hyenas have very complicated social structures and they require intelligence to function in their clans, or groups. But the researchers also tested the animals on a kind of intelligence very different from figuring out who ranks the highest: They put out metal boxes that the animals had to open by sliding a bolt in order to get at meat inside. Only 15 percent of the hyenas solved the problem in the wild, but in captivity, the animals showed a success rate of 80 percent. Dr. Benson-Amram and Dr. Holekamp decided to test other carnivores, comparing species and families. They and other researchers presented animals in several different zoos with a metal puzzle box with a treat inside and recorded the animals’ efforts. They tested 140 animals in 39 species that were part of nine families. They reported their findings on Monday in the Proceedings of the National Academy of Sciences. They compared the success rates of different families with absolute brain size, relative brain size, and the size of the social groups that the species form in the wild. Just having a bigger brain did not make difference, but the relative size of the brain, compared with the size of the body, was the best indication of which animals were able to solve the problem of opening the box. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21825 - Posted: 01.26.2016

By Emily Underwood Lumos Labs, the company that produces the popular “brain-training” program Lumosity, yesterday agreed to pay a $2 million settlement to the Federal Trade Commission (FTC) for running deceptive advertisements. Lumos had claimed that its online games can help users perform better at work and in school and stave off cognitive deficits associated with serious diseases such as Alzheimer’s, traumatic brain injury, and post-traumatic stress. The $2 million settlement will be used to compensate Lumosity consumers who were misled by false advertising, says Michelle Rusk, a spokesperson with FTC in Washington, D.C. The company will also be required to provide an easy way to cancel autorenewal billing for the service, which includes online and mobile app subscriptions, with payments ranging from $14.95 monthly to lifetime memberships for $299.95. Before consumers can access the games, a pop-up screen will alert them to FTC’s order and allow them to avoid future billing, Rusk says. The action is part of a larger crackdown on companies selling products that purportedly enhance memory or provide some other cognitive benefit, Rusk says. For some time now, FTC has been “concerned about some of the claims we’re seeing out there,” particularly those from companies like Lumos that suggest their games can reduce the effects of conditions such as dementia, she says. After evaluating the literature on Lumos's products, and the broader research on the benefits of brain-training games, “our assessment was they didn’t have adequate science for the claims that they’re making,” she says. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 21759 - Posted: 01.07.2016

Patricia Neighmond Losing your ability to think and remember is pretty scary. We know the risk of dementia increases with age. But if you have memory lapses, you probably needn't worry. There are pretty clear differences between signs of dementia and age-related memory loss. After age 50, it's quite common to have trouble remembering the names of people, places and things quickly, says Dr. Kirk Daffner, chief of the division of cognitive and behavioral neurology at Brigham and Women's Hospital in Boston. The brain ages just like the rest of the body. Certain parts shrink, especially areas in the brain that are important to learning, memory and planning. Changes in brain cells can affect communication between different regions of the brain. And blood flow can be reduced as arteries narrow. Simply put, this exquisitely complex organ just isn't functioning like it used to. Forgetting the name of an actor in a favorite movie, for example, is nothing to worry about. But if you forget the plot of the movie or don't remember even seeing it, that's far more concerning, Daffner says. When you forget entire experiences, he says, that's "a red flag that something more serious may be involved." Forgetting how to operate a familiar object like a microwave oven or forgetting how to drive to the house of a friend you've visited many times before can also be signs something is wrong. © 2016 npr

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 21751 - Posted: 01.05.2016

By John Bohannon In July 1984, a man broke into the apartment of Jennifer Thompson, a 22-year-old in North Carolina, and threatened her with a knife. She negotiated, convincing him to not kill her. Instead, he raped her and fled. Just hours later, a sketch artist worked with Thompson to create an image of the assailant's face. Then the police showed her a series of mug shots of similar-looking men. Thompson picked out 22-year-old Ronald Cotton, whose photograph was on file because of a robbery committed in his youth. When word reached Cotton that the police were looking for him, he walked into a precinct voluntarily. He was eventually sentenced to life in prison based on Thompson's testimony. Eleven years later, after DNA sequencing technology caught up, samples taken from Thomson's body matched a different man who finally confessed. Cotton was set free. When Thompson first identified Cotton by photo, she was not convinced of her choice. "I think this is the guy," she told the police after several minutes of hesitation. As time went on, she grew surer. By the time Thompson faced Cotton in court a year later, her doubts were gone. She confidently pointed to him as the man who raped her. Because of examples like these, the U.S. justice system has been changing how eyewitnesses are used in criminal cases. Juries are told to discount the value of eyewitness testimony and ignore how confident the witnesses may be about whom they think they saw. Now, a new study of robbery investigations suggests that these changes may be doing more harm than good. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21715 - Posted: 12.22.2015

Megan Scudellari In 1997, physicians in southwest Korea began to offer ultrasound screening for early detection of thyroid cancer. News of the programme spread, and soon physicians around the region began to offer the service. Eventually it went nationwide, piggybacking on a government initiative to screen for other cancers. Hundreds of thousands took the test for just US$30–50. LISTEN James Harkin, a researcher for the British TV trivia show QI, talks to Adam Levy about how he finds facts and myths for the show — and then runs a mini-quiz to see whether the Podcast team can discern science fact from science fiction 00:00 Across the country, detection of thyroid cancer soared, from 5 cases per 100,000 people in 1999 to 70 per 100,000 in 2011. Two-thirds of those diagnosed had their thyroid glands removed and were placed on lifelong drug regimens, both of which carry risks. Such a costly and extensive public-health programme might be expected to save lives. But this one did not. Thyroid cancer is now the most common type of cancer diagnosed in South Korea, but the number of people who die from it has remained exactly the same — about 1 per 100,000. Even when some physicians in Korea realized this, and suggested that thyroid screening be stopped in 2014, the Korean Thyroid Association, a professional society of endocrinologists and thyroid surgeons, argued that screening and treatment were basic human rights. © 2015 Nature Publishing Group,

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21708 - Posted: 12.16.2015

Human memory is about to get supercharged. A memory prosthesis being trialled next year could not only restore long-term recall but may eventually be used to upload new skills directly to the brain – just like in the film The Matrix. The first trials will involve people with epilepsy. Seizures can sometimes damage the hippocampus, causing the brain to lose its ability to form long-term memories. To repair this ability, Theodore Berger at the University of Southern California and his colleagues used electrodes already implanted in people’s brains as part of epilepsy treatment to record electrical activity associated with memory. The team then developed an algorithm that could predict the neural activity thought to occur when a short-term memory becomes a long-term memory, as it passes through the hippocampus. Early next year, Berger’s team will use this algorithm to instruct the electrodes to predict and then mimic the activity that should occur when long-term memories are formed. “Hopefully, it will repair their long-term memory,” says Berger. Previous studies using animals suggest that the prosthesis might even give people a better memory than they could expect naturally. A similar approach could eventually be used to implant new memories into the brain. Berger’s team recorded brain activity in a rat that had been trained to perform a specific task. The memory prosthesis then replicated that activity in a rat that hadn’t been trained. The second rat was able to learn the task much faster than the first rat – as if it already had some memory of the task. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21705 - Posted: 12.16.2015

By Elizabeth Pennisi Imagine trying to train wild sea lions—without them ever seeing you. That was Peter Cook's challenge 8 years ago when he was trying to figure out whether poisonous algae were irrevocably damaging the animals’ brains. With a lot of patience and some luck, the comparative neuroscientist from Emory University in Atlanta has succeeded, and the news isn't good. Toxins from the algae mangle a key memory center, likely making it difficult for sick animals to hunt or navigate effectively, Cook and his colleagues report today. "Sea lions can be seen as sentinels of human health," says Kathi Lefebvre, a research biologist at the Northwest Fisheries Science Center in Seattle, Washington, who was not involved with the work. As oceans warm, toxic algae proliferate and cause so-called red tides because the water looks reddish. So "understanding these toxins in wild animals is going to become more important," she says. Red tides are produced by algae called diatoms. They make a toxin called domoic acid, which is consumed by other plankton that in turn become food for fish and other organisms. Predators such as anchovies, sardines, and other schooling fish accumulate this toxin in their bodies. So when algal populations explode, say, because of warming water, domoic acid concentrations increase in these animals to a point that they affect the sea lions that feast on them. Scientists first recognized this problem in 1998, after hundreds of sea lions were found stranded or disoriented along California's coast. Since then, researchers have studied sick and dead sea lions and documented that the toxin causes seizures and damages the brain, sometimes killing the animal. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 21700 - Posted: 12.15.2015

By Michael M. Torrice, We learn from experience: It sounds like a trite sentiment posted by a friend on Facebook, but neuroscientists would agree. Our interactions with the world around us strengthen and weaken the connections between our neurons, a process that neuroscientists consider to be the cellular mechanism of learning. Now researchers report that boosting signaling of a certain receptor in the brain with a small molecule can enhance these cellular changes and improve learning in people. The findings could lead to new treatments for patients with disorders associated with deficits in learning, such as Alzheimer’s disease and schizophrenia. Through decades of research on how synapses change in animal brains, scientists have found that the N-methyl-d-aspartate receptor (NMDAR) plays a critical role in strengthening synapses during learning. Compounds that increase NMDAR signaling can drive such changes and, as a result, help animals learn new tasks. Robert F. Asarnow at UCLA and colleagues wanted to test whether one such compound, d-cycloserine, would act similarly in people. But neuroscientists measure synapse changes in animals by sticking electrodes into slices of brain tissue to record electrical signals. “Obviously, we don’t do that to our friends,” Asarnow says. So his team used electroencephalography (EEG) to record electrical activity through electrodes stuck to the scalps of its subjects. The team monitored this activity as the subjects watched a certain pattern flash on a screen at high frequency for a couple minutes. Afterward, the subjects showed a spike in EEG activity in their visual cortex when they viewed the pattern at a later time. This suggested a population of neurons had wired themselves together by strengthening their synapses. © 2015 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21684 - Posted: 12.09.2015

By Emilie Reas What makes for a long-lasting memory? Research has shown that emotional or important events take root deeply, whereas neutral or mundane happenings create weak impressions that easily fade. But what about an experience that initially seemed forgettable but was later shown to be important? Animal research suggested that these types of older memories could be strengthened, but scientists had not been able to replicate this finding in humans—until now. New evidence suggests that our initially weak memories are maintained by the brain for a period, during which they can be enhanced. In the recent study published in Nature, psychologists at New York University showed 119 participants a series of images of tools and animals. A few minutes later the subjects saw a new set of images, with an electric shock paired with either the tools or the animals, to increase the salience of just one of those categories. The participants' memories for both sets of images were then tested either immediately, six hours later or the next day. Participants remembered images from the first neutral series better if they belonged to the same category (tool or animal) that was later paired with the shock. The findings suggest that even if an event does not seem meaningful when it occurs, a later cue that the experience was important can enhance the old memory. Although research has not yet demonstrated this effect outside the laboratory, the scientists speculate it happens often in daily life. For example, imagine you meet several new people at a networking event. During a job interview days later, you discover that one of those acquaintances is on the hiring committee, and suddenly the details of your conversation at the networking event become vivid and memorable—whereas the conversations you had with others at the event fade with time. © 2015 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21629 - Posted: 11.12.2015

By Erika Beras From the backseat of a cab, the moves a driver makes may at times seem, let’s say, daring. In fact, cabbies may actually be better, more agile drivers than the rest of us. Because they know their streets so well. Previous research found that the hippocampus in the brain of a typical cab driver is enlarged. That’s the part of the brain used in navigation. But now a study confirms that learning detailed navigation information does indeed cause that part of the brain to grow. The findings are in the journal NeuroImage. Researchers had young adults who were not regular gamers play a driving simulation game. Some practiced maneuvering the same route 20 times, while other players were confronted with 20 different routes. The participants’ brains were scanned before they performed the simulated driving and again after. Researchers found that subjects who kept repeating the same route increased their speed more than those driving multiple routes. The single-route drivers were also much better able to put in order a sequence of random pictures taken along the way and to draw a map of the route. The investigators also found increases in the single-route drivers in the functional connectivity between the hippocampus and other parts of the brain involved with navigation. And the amount of change was directly related to the amount of improvement each participant displayed. © 2015 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21612 - Posted: 11.07.2015

Laura Sanders Specialized cells that make up the brain’s GPS system have an expanding job description. In addition to mapping locations, these cells can keep track of distance and time, too, scientists report in the Nov. 4 Neuron. Those specialized cells, called grid cells, were thought to have a very specific job, says neuroscientist Loren Frank of the University of California, San Francisco. But, he says, the new study says, “not so fast, everybody.” These cells’ ability to detect time and distance is unexpected. “And I think it’s important,” Frank says. The growing to-do list of grid cells shows that the brain’s navigational system is surprisingly flexible. The discovery of grid cells, found in a part of the brain called the entorhinal cortex, was recognized with the Nobel Prize last year (SN Online: 10/6/14). These brain cells fire off regular signals as animals move around in space, partially forming an internal map of the environment. Neuroscientist Howard Eichenbaum of Boston University and colleagues wondered what those cells do when an animal stays put. By training rats to run on a treadmill, the researchers had a way to study grid cells as time and distance marched forward, but location remained the same. Unlike recently discovered “speed cells” (SN: 8/8/15, p. 8), these grid cells don’t change their firing rates to correspond to changes in the rats’ swiftness, the researchers found. Instead, these cells stay tuned to distance or time, or both. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21606 - Posted: 11.05.2015

Sara Reardon Military-service members can suffer brain injury and memory loss when exposed to explosions in enclosed spaces, even if they do not sustain overt physical injury. A strategy designed to improve memory by delivering brain stimulation through implanted electrodes is undergoing trials in humans. The US military, which is funding the research, hopes that the approach might help many of the thousands of soldiers who have developed deficits to their long-term memory as a result of head trauma. At the Society for Neuroscience meeting in Chicago, Illinois, on 17–21 October, two teams funded by the Defense Advanced Research Projects Agency presented evidence that such implanted devices can improve a person’s ability to retain memories. By mimicking the electrical patterns that create and store memories, the researchers found that gaps caused by brain injury can be bridged. The findings raise hopes that a ‘neuro­prosthetic’ that automatically enhances flagging memory could aid not only brain-injured soldiers, but also people who have had strokes — or even those who have lost some power of recall through normal ageing. Because of the risks associated with surgically placing devices in the brain, both groups are studying people with epilepsy who already have implanted electrodes. The researchers can use these electrodes both to record brain activity and to stimulate specific groups of neurons. Although the ultimate goal is to treat traumatic brain injury, these people might benefit as well, says biological engineer Theodore Berger at the University of Southern California (USC) in Los Angeles. That is because repeated seizures can destroy the brain tissue needed for long-term-memory formation. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21600 - Posted: 11.04.2015