Links for Keyword: Learning & Memory

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 121 - 140 of 1283

By Nayef Al-Rodhan Facebook recently announced it had acquired CTRL-Labs, a U.S. start-up working on wearable tech that allows people to control digital devices with their brain. The social media company is only the latest in a long string of firms investing in what has come to be termed “neurotechnology.” Earlier this year Neuralink, a company backed by Elon Musk, announced that it hopes to begin human trials for computerized brain implants. These projects may seem like science fiction, but this drive to get more out of our brains is nothing new—from tea, caffeine and nicotine, to amphetamines and the narcolepsy drug Modafinil, drugs have long been used as rudimentary attempts at cognitive enhancement. And in our tech-driven world, the drive to cognitively enhance is stronger than ever—and is leading us to explore new and untested methods. In today’s hypercompetitive world, everyone is looking for an edge. Improving memory, focus or just the ability to work longer hours are all key to getting ahead, and a drug exists to improve each of them. In 2017, 30 percent of Americans said they had used “smart drug” supplements, known as nootropics, at least once that year, even if studies repeatedly demonstrate that they have a negligible effect on intellect. Advertisement For some, however, nootropics are not enough, and so they turn to medical-grade stimulants. The most famous of these is Adderall, which boosts focus and productivity far more than commercial nootropics. A well-established black market thrives on university campuses and in financial centers, supplying these drugs to people desperate to gain a competitive edge. © 2019 Scientific American

Related chapters from BN: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory and Learning
Link ID: 26886 - Posted: 12.10.2019

By Anisha Kalidindi The room is pitch black. Every light, from the power button on the computer to the box controlling the microscope, is covered with electrical tape. I feel a gush of air as the high-powered AC kicks on, offsetting the heat emitted from the microscope’s lasers. I take my mouse out of its cage and get ready to image its brain. I’m wearing a red headlamp so I can see, but it is still quite dim. I peer closely at my lab notebook and note the two positions: –1, +2. I recite them repeatedly in a hushed tone, so I don’t forget; it is 1 A.M., after all. I hook the mouse up to the stage of the microscope and then use my handy toothpick to make sure its head position is correct. While there are many unsung heroes of science—veterinarians, lab technicians, graduate students (I might be a bit biased with this one!)—these aren’t the ones I’m talking about. I’m talking about a toothpick that played a significant role in my research project. Advertisement I am lucky enough to have access to a cutting-edge microscope and several other pieces of expensive equipment in my lab. But can also find things you might never guess were used in science: red-light headlamps, black electrical tape, and toothpicks. Using the microscope, I can take a picture of a mouse’s living, working brain through a literal window: a piece of glass that replaces a small piece of the animal’s skull. To image the mouse, we affix a plastic bar on the front of its head and then secure the bar to a head-mounting device on the stage under the microscope lens. Using this mount, we can precisely position the head up and down and right to left. This is where our problem starts. © 2019 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26877 - Posted: 12.06.2019

By Aimee Cunningham Socially isolated and faced with a persistently white polar landscape, a long-term crew of an Antarctic research station saw a portion of their brains shrink during their stay, a small study finds. “It’s very exciting to see the white desert at the beginning,” says physiologist Alexander Stahn, who began the research while at Charité-Universitätsmedizin Berlin. “But then it’s always the same.” The crew of eight scientists and researchers and a cook lived and worked at the German research station Neumayer III for 14 months. Although joined by other scientists during the summer, the crew alone endured the long darkness of the polar winter, when temperatures can plummet as low as –50° Celsius and evacuation is impossible. That social isolation and monotonous environment is the closest thing on Earth to what a space explorer on a long mission may experience, says Stahn, who is interested in researching what effect such travel would have on the brain. Animal studies have revealed that similar conditions can harm the hippocampus, a brain area crucial for memory and navigation (SN: 11/6/18). For example, rats are better at learning when the animals are housed with companions or in an enriched environment than when alone or in a bare cage, Stahn says. But whether this is true for a person’s brain is unknown. Stahn, now at the Perelman School of Medicine at the University of Pennsylvania, and his colleagues used magnetic resonance imaging to capture views of the team members’ brains before their polar stay and after their return. On average, an area of the hippocampus in the crew’s brains shrank by 7 percent over the course of the expedition, compared with healthy people matched for age and gender who didn’t stay at the station, the researchers report online December 4 in the New England Journal of Medicine. © Society for Science & the Public 2000–2019

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 10: Biological Rhythms and Sleep
Link ID: 26874 - Posted: 12.05.2019

By Gaby Maimon What is the biological basis of thought? How do brains store memories? Questions like these have intrigued humanity for millennia, but the answers still remain largely elusive. You might think that the humble fruit fly, Drosophila melanogaster, has little to add here, but since the 1970s, scientists have actually been studying the neural basis of higher brain functions, like memory, in these insects. Classic work––performed by several labs, including those of Martin Heisenberg and Seymour Benzer––focused on studying the behavior of wild-type and genetically mutated Drosophila in simple learning and memory tasks, ultimately leading to the discovery of several key molecules and other underlying mechanisms. However, because one could not peer into the brain of behaving flies to eavesdrop on neurons in action, this field, in its original form, could only go so far in helping to explain the mechanisms of cognition. In 2010, when I was a postdoctoral researcher in the lab of Michael Dickinson, we developed the first method for measuring electrical activity of neurons in behaving Drosophila. A similar method was developed in parallel by Johannes Seelig and Vivek Jayaraman. In these approaches, one glues a fly to a custom plate that allows one to carefully remove the cuticle over the brain and measure neural activity via electrodes or fluorescence microscopy. Even though the fly is glued in place, the animal can still flap her wings in tethered flight or walk on an air-cushioned ball, which acts like a spherical treadmill beneath her legs. These technical achievements attracted the attention of the Drosophila neurobiology community, but should anyone really care about seeing a fly brain in action beyond this small, venerable, group of arthropod-loving nerds (of which I'm honored to be a member)? In other words, will these methods help to reveal anything of general relevance beyond flies? Increasingly, the answer looks to be yes. © 2019 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 14: Attention and Higher Cognition
Link ID: 26871 - Posted: 12.04.2019

By Lisa Sanders, M.D “Where am I?” the 68-year-old man asked. His daughter explained again: He was at Yale-New Haven Hospital in Connecticut. He had been found on the ground in the parking lot of the grocery store near his apartment. The man nodded, as if taking it all in, but minutes later asked again: Where am I? He had never had any memory issues before, but now he couldn’t remember that it was Saturday. Didn’t remember that he spent the morning moving the last of the boxes he had stored at his daughter’s house to his new apartment. He didn’t even remember that he had spent the past few months hashing out a pretty messy divorce. His soon-to-be ex-wife was also in the E.R., and again and again he asked her: Are we really getting divorced? Why? What happened? Earlier that day, his daughter received a call from the hospital saying that her father had fallen outside the supermarket and was brought in by an ambulance called by a good Samaritan. No one could tell her any more than that, and her father clearly didn’t remember. He had a scrape on his right cheek and over his eye, but otherwise he seemed fine. Except he couldn’t remember the events of the recent past. When asked his name and address, he responded promptly, but the address he gave was the house he shared for many years with his future ex-wife. He seemed stunned to find out he no longer lived there. The doctor in the E.R. was also surprised by the extent of the man’s memory loss. He seemed to have lost both his retrograde memory, recall of the events of the recent past, and his anterograde memory, the ability to form new memories from the present. But on examination, everything else seemed basically normal — except that his blood pressure was high, and he had the scrapes on his face. There was no sign of infection. His kidneys and liver seemed to be working just fine. A head CT scan showed no injuries to the bones of the face, the spinal cord in the neck or the brain. There was no trace of alcohol or drugs in his system. After a few hours, the man’s memory was still not functioning properly, and he was admitted to the hospital. © 2019 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26854 - Posted: 11.26.2019

By Veronique Greenwood A few years back, Ryan Herbison, then a graduate student in parasitology at the University of Otago, painstakingly collected about 1,300 earwigs and more than 2,500 sandhoppers from gardens and a beach in New Zealand. Then, he dissected and examined the insides of their heads. This macabre scavenger hunt was in search of worms that lay coiled within some of the insects. The worms are parasites that force earwigs and sandhoppers to march into bodies of water, drowning themselves so the worms’ aquatic offspring can thrive. “Like a back-seat driver, but a bit more sinister,” said Mr. Herbison, describing these mind-controlling parasites. “And sometimes they may just grab the steering wheel.” Just how they do that, though, has remained a bit of a mystery. But in a paper published Wednesday in Proceedings of the Royal Society B, Mr. Herbison and fellow researchers reported that the parasites seemed to be manipulating the production of host proteins involved in generating energy and movement in their unfortunate hosts. The analysis is limited, but the researchers speculated that the parasites may be affecting neuronal connections in the bugs’ brains and perhaps even interfering with memory in a way that puts the hosts at risk. Parasites use a variety of similar strategies. Some make cat urine suicidally attractive to mice, which are promptly eaten so that the parasites can go through the next phase of their life cycle in the cat. Others prompt ants to expose themselves on high tree branches, the better to be eaten by birds. And still others cause snails to hang out in open spaces, with swollen eyestalks pulsing like neon signs, for apparently the same reason. © 2019 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26845 - Posted: 11.22.2019

Ruth Williams After copulation, Drosophila melanogaster females are able to create long-term memories of unpleasant events—electric shocks—that virgin females cannot, according to a study published today in Science Advances (November 20). The authors suspect the memory boost may improve the chance of survival of the female during the subsequent egg-laying period as well as guide her choice of laying sites. Whatever the reason, the enhanced memory joins a list of physiological and behavioral effects on female flies that result from sex. “It’s quite impressive and convincing [data],” says entomologist Elwyn Isaac of the University of Leeds who was not involved in the research. “They propose that the sex peptide gets into the [female’s] circulation and somehow gets across the blood brain barrier [to activate memory].” It’s “very interesting,” Isaac continues, because until now, sex peptide—a protein produced in the male reproductive system and found in ejaculate—was thought to act on sensory neurons in the female’s uterus. These neurons produce a receptor protein to which sex peptide binds and are thought to be necessary for the peptide’s many effects on females, which include ramping up ovulation, increasing egg-laying behavior, changing food preference to a high-protein diet, and causing the female to reject other males. But, the authors of the new study, “show definitely that those neurons are not required for this [long-term memory] effect,” Isaac says. Indeed, deletion of the receptor in these neurons made no difference to the flies’ long-term memory formation after sex. © 1986–2019 The Scientist

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 8: Hormones and Sex
Link ID: 26843 - Posted: 11.22.2019

By R. Douglas Fields Neuroscientists have always presumed that learning and memory depend on strengthening or weakening the connection points between neurons (synapses), increasing or decreasing the likelihood that the cell is going to pass along a message to its neighbor. But recently some researchers have started pursuing a completely different theory that does not involve changing the strength of synaptic transmission; in fact, it does not even involve neurons. Instead other types of brain cells, called glia, are responsible. A new study from the University of Toronto, published on-line this week in the journal Neuron furnishes support for this theory. It provides evidence that the basic act of learning whether one’s environs are safe or not, a behavior common to all animals, depends on glial cells that form the fatty sheath called myelin—electrical insulation that covers nerve fibers. The new theory postulates that establishing indelible memories that can be recalled long after sensory input or training on a task involves an interaction between glia and peculiar brain waves produced during sleep. “The role of myelin in cognitive functions has been largely neglected, an omission elegantly rectified by this paper,” says myelin researcher Bernard Zalc, at the Sorbonne Université in Paris, commenting on this new study. Traditionally researchers who study the myelin insulation on nerve fibers, called axons, have focused on diseases, such as multiple sclerosis, in which the fatty sheath is damaged. In multiple sclerosis, neural transmission fails, causing wide-ranging disabilities. Much like the plastic coating on a copper wire, myelin was understood to be vital for neural transmission but inert and irrelevant to information processing and memory storage. © 2019 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26832 - Posted: 11.19.2019

By David Z. Hambrick, Daisuke S. Katsumata Disagreements are virtually inevitable in a romantic relationship. More than 90 percent of couples argue, according to a survey by the University of Michigan’s Institute for Social Research, with nearly half quarreling at least once a month. Common topics of marital disagreement are money, sex and time spent together. None of this will surprise anyone who has been in a long-term relationship. But a new study indicates that a cognitive ability may help to explain why some couples are more successful in resolving their differences. University of North Carolina Greensboro psychologist Levi Baker and his colleagues report that spouses who were high in working memory capacity had better memory for each other’s statements in discussions about problems. In turn, these couples showed greater progress in resolving their problems over time. The study suggests that it’s not just dogged commitment that gets couples through rough spots, but a cognitive factor that directly affects the quality of partners’ communication with each other. The sample included 101 couples (93 heterosexual, 7 lesbian and 1 gay) that had been married for less than three months. Working individually, the newlyweds first completed tests of working memory capacity, which is the ability to hold information in the focus of attention over a short period, as when following what someone is saying to you in a conversation. In one of the tests used by Baker and his colleagues, called “operation span,” the test-taker sees an arithmetic problem on the screen and attempts to solve it, after which a letter appears. After some number of these trials, the person is prompted to recall the letters in the order in which they were presented. © 2019 Scientific American

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 8: Hormones and Sex
Link ID: 26790 - Posted: 11.05.2019

By Christoph Droesser In 2004, a paper appeared in the journal Psychological Science, titled “Music Lessons Enhance IQ.” The author, composer and University of Toronto Mississauga psychologist Glenn Schellenberg, had conducted an experiment with 144 children randomly assigned to four groups: one learned the keyboard for a year, one took singing lessons, one joined an acting class, and a control group had no extracurricular training. The IQ of the children in the two musical groups rose by an average of seven points in the course of a year; those in the other two groups gained an average of 4.3 points. Schellenberg had long been skeptical of the science underpinning claims that music education enhances children’s abstract reasoning, math, or language skills. If children who play the piano are smarter, he says, it doesn’t necessarily mean they are smarter because they play the piano. It could be that the youngsters who play the piano also happen to be more ambitious or better at focusing on a task. Correlation, after all, does not prove causation. The 2004 paper was specifically designed to address those concerns. And as a passionate musician, Schellenberg was delighted when he turned up credible evidence that music has transfer effects on general intelligence. But nearly a decade later, in 2013, the Education Endowment Foundation funded a bigger study with more than 900 students. That study failed to corroborate Schellenberg’s findings, finding no evidence that music lessons improved math and literacy skills.

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26788 - Posted: 11.04.2019

Specialized brain activation “replays” the possible routes that rats can take as they navigate a space, helping them keep track of the paths they’ve already taken and choose among the routes that they can take next, according to a National Institutes of Health-funded study published in the journal Neuron. “These findings reveal an internal ‘replay’ process in the brain that allows animals to learn from past experiences to form memories of paths leading toward goals, and subsequently to recall these paths for planning future decisions,” said Shantanu Jadhav, Ph.D., assistant professor at Brandeis University, Waltham, Massachusetts, and senior author of the study. “These results help us better understand how coordinated activation at the level of neurons can contribute to the complex processes involved in learning and decision-making.” The hippocampus, a structure located in the middle of the brain, is critical to learning and memory and contains specialized “place” cells that relay information about location and orientation in space. These place cells show specific patterns of activity during navigation that can be “replayed” later in forward or reverse order, almost as if the brain were fast-forwarding or rewinding through routes the rats have taken. In previous research, Jadhav and colleagues had discovered these replay events, marked by bursts of neural activity called sharp-wave ripples, lead to coordinated activity in the hippocampus and the prefrontal cortex, an area of the brain just behind the forehead that is involved in decision-making.

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26775 - Posted: 10.31.2019

Pien Huang Alexandra Chen was a trauma specialist working in Lebanon and Jordan when she noticed that a specific group of kids were struggling in schools. Chen kept getting referrals for refugee students who had fled the war in Syria. They were having trouble focusing and finishing schoolwork. Some had even dropped out of school. She wondered to what extent the different stressors they faced — exposure to violence in Syria, lack of resources or concerns for the future — affected how they navigate their daily lives. Specifically, she wondered, which had a bigger impact: past trauma or the poverty they now lived in? Experts she wrote to said they didn't know and advised her to investigate the question herself. Chen, who's now getting her Ph.D. at Harvard, worked with a team to devise a study that aimed to untangle the threads of poverty, trauma and other adversities. They studied 240 teen Syrian refugees, comparing them with a group of 210 Jordanian youth who were also considered at-risk but didn't have a background of war. The researchers gave the teenagers surveys to gauge trauma and insecurity. To determine poverty, they asked the teens whether their families had items such as bedframes, cars, TVs, smartphones, refrigerators and water heaters. © 2019 npr

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 11: Emotions, Aggression, and Stress
Link ID: 26762 - Posted: 10.29.2019

By Veronique Greenwood To the rippling sound of an aquarium pump, a small crab comes around the corner. It moves sideways, sticking close to the walls. But when it catches sight of a mussel — laid as a reward at the end of the maze it has just walked — the crab breaks into a skipping run, throwing itself on the treat with abandon. This crustacean, one of many shore crabs scooped by researchers from under a pier in Swansea, Wales, had just completed an intriguing feat: Without any guidance from researchers, it found its way to the end of a small maze. According to a paper in Biology Letters on Wednesday, shore crabs can learn to navigate a lab-rat-style maze and remember it weeks later. While crabs that have never seen the maze before bump around aimlessly, experienced crabs race to the finish line with no wrong turns. The study, one of the few to look at whether crustaceans can perform such feats, suggests that crabs are quite capable of remembering routes. Maze running could also be a way to measure the effects of changes in the sea, like ocean acidification and warming, on crabs’ cognitive abilities. Crabs often clamber through complex landscapes in their daily lives, says Edward Pope, a marine biologist at Swansea University who is an author of the new study. So, it is not particularly surprising that crabs would be able to find their way through a maze and even be able to remember it later. What was surprising, however, was just how clear the results of the study were. During the first week of the experiment, no crabs got to the end of the maze without taking wrong turns, some of them detouring six or seven times. By week four, some could race to the end flawlessly. Even the worst-performing crab took no more than three wrong turns. To see how the crabs would perform when there was no food in the maze, and thus no trace in the water of a snack to guide them, the researchers waited a couple of weeks and put the crabs back in the maze. They also tested crabs that had never seen the maze. “The conditioned animals all ran to the end of the maze expecting there to be food,” Dr. Pope said. © 2019 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26751 - Posted: 10.25.2019

By Kelly Servick WASHINGTON, D.C. —Sending a mouse through a maze can tell you a lot about how its little brain learns. But what if you could change the size and structure of its brain at will to study what makes different behaviors possible? That’s what Elan Barenholtz and William Hahn are proposing. The cognitive psychologist and computer scientist, both at Florida Atlantic University in Boca Raton, are running versions of classic psychology experiments on robots equipped with artificial intelligence. Their laptop-size robotic rovers can move and sense the environment through a camera. And they’re guided by computers running neural networks–models that bear some resemblance to the human brain. Barenholtz presented this “robopsychology” approach here last week at the American Psychological Association’s Technology Mind & Society Conference. He and Hahn told Science how they’re using their unusual new test subjects. The interview has been edited for clarity and length. Q: Why put neural networks in robots instead of just studying them on a computer? Elan Barenholtz: There are a number of groups trying to build models to simulate certain functions of the brain. But they’re not making a robot walk around and recognize stuff and carry out complex cognitive functions. William Hahn: What we want is the organism itself to guide its own behavior and get rewards. One way to think about it would be to try to build the simplest possible models. What is the minimum complexity you need to put in one of these agents so that it acts like a squirrel or it acts like a cat? © 2019 American Association for the Advancement of Science

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26681 - Posted: 10.08.2019

By Jane E. Brody Late one morning in June, L.J.’s husband got a distressed call from one of his wife’s colleagues. “You’d better come here right away. Your wife is acting weird,” the colleague said. Ms. J., who had just returned from a doctor visit during which she underwent a minor painful procedure, kept asking her colleague for a password despite being told each time that there was none. Ms. J., a 61-year-old arts administrator in New York who did not want her full name used, seemed physically O.K., her colleague recalled. She knew who she was, she walked and talked properly, but what she said made no sense. Plus, Ms. J. could remember nothing that happened after she left the doctor’s office and made her way to work. When Ms. J. continued to behave oddly, the alarmed colleague called 911 and paramedics took her to Mount Sinai St. Luke’s Hospital. The next thing Ms. J. remembers is waking up hours later in a hospital bed and asking, “Where am I? Why am I here?” In the interim, Dr. Carolyn Brockington, a vascular surgeon and director of the hospital’s stroke unit, had examined her and ordered a CT scan and M.R.I. of her brain. All the results were normal. There was no physical weakness, no structural abnormality, no evidence of a stroke, seizure or transient ischemic attack. So, what had happened? A diagnosis of exclusion: Transient global amnesia, often called T.G.A. It is a temporary lapse in memory that can never be retrieved. “It’s as if the brain is on overload and takes a break to recharge,” Dr. Brockington said in an interview. She likened it to rebooting a computer to eradicate an unexplainable glitch. Those with T.G.A. do not experience any alteration in consciousness or abnormal movements. Only the ability to lay down memories is affected. All other parts of the brain appear to be working normally. © 2019 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 15: Language and Lateralization
Link ID: 26616 - Posted: 09.16.2019

By Lateshia Beachum A Tokyo-based cashier allegedly stole credit card information from 1,300 customers. According to police, he used only his brain to take the information. Yusuke Taniguchi, 34, was arrested Thursday when police said they discovered he used the stolen information to purchase bags worth an estimated $2,600 in March, according to CNN. The police intercepted that order and delivered Taniguchi’s bags themselves to catch the alleged thief, according to Vice. People close to the investigation have told news media that Taniguchi has a “photographic memory.” Police say the part-time cashier retained customer credit card information in the short amount of time it took for them to purchase their goods, according to SoraNews24. He remembered all the details until he was able to write down the information, which he would later use to shop online, police said. But science doesn’t really back the claims of his photographic memory. Scientists have not found evidence of photographic memories, but there are people with very good memories who can recall information in astounding detail — an eidetic memory — according to Daniel Burns, a professor of psychology at Union College in New York. Most people conflate having an eidetic memory with a photographic memory, but scientists who study memory draw a hard line between the two, he said. A person with an eidetic memory is able to recall an image in great detail after seeing it once, with the ability to remember the image up to four minutes. But the eidetic image is not identical even though it has many perceptual similarities, according to Burns. Furthermore, eidetic memory is most commonly found in children between the ages of 6 and 12, and it’s hardly ever found in adults, according to research. “In our mind, a ‘photographic memory’ is being able to look at something and days later call up a picture that’s identical to the actual image,” he said. “That doesn’t seem to exist.” © 1996-2019 The Washington Post

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26613 - Posted: 09.15.2019

Ed Yong Annika Reinhold says that she likes playing with animals (she has two cats) and “doing unconventional things that no one has done before.” When the chance came up to teach rats to play hide-and-seek, she was a natural candidate. One might question the wisdom of training rats to hide, but there’s a good reason to do so. In neuroscience, animal research is traditionally about control and conditioning—training animals, in carefully regulated settings, to do specific tasks using food rewards. But those techniques aren’t very useful for studying the neuroscience of play, which is universal to humans, widespread among animals, and the antithesis of control and conditioning. Playing is about freedom and fun. How do you duplicate those qualities in a lab? After watching YouTube videos of pets and their owners, Michael Brecht, a neuroscientist at the Humboldt University of Berlin, came up with the idea of using hide-and-seek. Reinhold, a master’s student in his lab, jumped at the chance. She knew that rats are social, intelligent, and playful, and will chase, roughhouse, and wrestle with one another, much like human children do. Perhaps they’d play with her. “I was optimistic enough to try it,” she says. She began by getting six adolescent rats accustomed to a 300-square-foot room fitted with boxes and barriers behind which they (or Reinhold) could hide. She also habituated the animals to her by stroking them, chasing them with her hands, and tickling them.

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 4: Development of the Brain
Link ID: 26610 - Posted: 09.13.2019

By Laura Sanders A honeybee that’s been promoted to forager has upgrades in her nerve cells, too. Vibration-sensing nerve cells, or neurons, are more specialized in bees tasked with finding food compared with younger, inexperienced adult bees, researchers report August 26 in eNeuro. This neural refinement may help forager bees better sense specific air vibrations produced by their fellow foragers during waggle dances — elaborate routines that share information about food location, distance and quality (SN Online: 1/24/14). Researchers compared certain neurons in adult bees that had emerged from their cells one to three days earlier to neurons of forager bees, which were older than 10 days. In the foragers, these neurons had more refined shapes, the team found. These vibration-detecting cells, called DL-INT-1 neurons, appear sparser in certain areas, with fewer message-receiving tendrils called dendrites. Refined dendrites may be a sign that these cells are more selective in their connections. And in foragers, these neurons also appear to handle information more efficiently than their counterparts in the young adult bees, experiments with electrodes reveal. These changes in shape and behavior suggest that in foragers, neurons become adept at decoding vibrations produced by other foragers’ waggle dances, say computational neuroscientist Ajayrama Kumaraswamy of the Ludwig-Maximilians-Universität München in Germany and colleagues. But it’s not clear whether foraging experience in the fields or the passage of time itself prompts these refinements. © Society for Science & the Public 2000–2019

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 15: Language and Lateralization
Link ID: 26543 - Posted: 08.27.2019

Laura Sanders Seconds before a memory pops up, certain nerve cells jolt into collective action. The discovery of this signal, described in the Aug. 16 Science, sheds light on the mysterious brain processes that store and recall information. Electrodes implanted in the brains of epilepsy patients picked up neural signals in the hippocampus, a key memory center, while the patients were shown images of familiar people and places, including former President Barack Obama and the Eiffel Tower in Paris. As the participants took in this new information, electrodes detected a kind of brain activity called sharp-wave ripples, created by the coordinated activity of many nerve cells in the hippocampus. Later blindfolded, the patients were asked to remember the pictures. One to two seconds before the participants began describing each picture, researchers noticed an uptick in sharp-wave ripples, echoing the ripples detected when the subjects had first seen the images. That echo suggests that these ripples are important for learning new information and for recalling it later, Yitzhak Norman of the Weizmann Institute of Science in Rehovot, Israel, and colleagues write in the study. Earlier studies suggested that these ripples in the hippocampus were important for forming memories. But it wasn’t clear if the ripples also had a role in bringing memories to mind. In another recent study, scientists also linked synchronized ripples in two parts of the brain to better memories of word pairs (SN Online: 3/5/19). |© Society for Science & the Public 2000 - 2019

Related chapters from BN: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 26512 - Posted: 08.19.2019

By Gretchen Reynolds Weight training may have benefits for brain health, at least in rats. When rats lift weights, they gain strength and also change the cellular environment inside their brains, improving their ability to think, according to a notable new study of resistance training, rodents and the workings of their minds. The study finds that weight training, accomplished in rodents with ladders and tiny, taped-on weights, can reduce or even reverse aspects of age-related memory loss. The finding may have important brain-health implications for those of us who are not literal gym rats. Most of us discover in middle age, to our chagrin, that brains change with age and thinking skills dip. Familiar names, words and the current location of our house keys begin to elude us. But a wealth of helpful past research indicates that regular aerobic exercise, such as walking or jogging, can prop up memory and cognition. In these studies, which have involved people and animals, aerobic exercise generally increases the number of new neurons created in the brain’s memory center and also reduces inflammation. Unchecked, inflammation in the brain may contribute to the development of dementia and other neurodegenerative conditions. Far less has been known, though, about whether and how resistance training affects the brain. A few studies with older people have linked weight training to improved cognition, but the studies have been small and the linkages tenuous. While researchers know that lifting weights builds muscle, it is not yet clear how, at a molecular level, it would affect the cells and functions of the brain. © 2019 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 4: Development of the Brain
Link ID: 26447 - Posted: 07.24.2019