Links for Keyword: Multiple Sclerosis

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 208

Fergus Walsh Medical correspondent UK doctors in Sheffield say patients with multiple sclerosis (MS) are showing "remarkable" improvements after receiving a treatment usually used for cancer. About 20 patients have received bone marrow transplants using their own stem cells. Some patients who were paralysed have been able to walk again. Prof Basil Sharrack, of Sheffield's Royal Hallamshire Hospital, said: "To have a treatment which can potentially reverse disability is really a major achievement." Around 100,000 people in the UK have MS, an incurable neurological condition. Most patients are diagnosed in their 20s and 30s. The disease causes the immune system to attack the lining of nerves in the brain and spinal cord. The treatment - known as an autologous haematopoietic stem cell transplant (HSCT) - aims to destroy the faulty immune system using chemotherapy. It is then rebuilt with stem cells harvested from the patient's own blood. These cells are at such an early stage they've not developed the flaws that trigger MS. Prof John Snowden, consultant haematologist at Royal Hallamshire Hospital, said: "The immune system is being reset or rebooted back to a time point before it caused MS." About 20 MS patients have been treated in Sheffield in the past three years. Prof Snowden added: "It's clear we have made a big impact on patients' lives, which is gratifying." In MS the protective layer surrounding nerve fibres in the brain and spinal cord - known as myelin - becomes damaged. The immune system mistakenly attacks the myelin, causing scarring or sclerosis. © 2016 BBC.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21796 - Posted: 01.18.2016

By Diana Kwon Symptoms come and go in most cases of multiple sclerosis (MS), a chronic disease in which the immune system attacks myelin, the nonconductive sheath that surrounds neurons' axons. Yet 10 to 15 percent of cases are progressive rather than relapsing. This more severe version appears later in life and is marked by steadily worsening symptoms. No treatments are currently available, but that might be about to change. In September pharmaceutical company Hoffmann–La Roche announced positive results from three large clinical trials of ocrelizumab, an injectable antibody medication that targets B cells, for both relapsing and progressive MS. They found that the drug was more effective at treating relapsing MS than interferon beta-1a (Rebif), a top-performing drug now used to treat the disease. Even more exciting, it slowed the advance of symptoms in patients with progressive MS for the entire 12-week duration of the study. “The drug has dramatic effects on relapsing MS, and we finally have our foot in the door with the progressive form,” says Stephen Hauser, a neurologist at the University of California, San Francisco, who was involved in the trials. The fact that ocrelizumab works on both types of MS is a tantalizing clue for scientists trying to understand the root causes of the disease and figure out why the inflammation of the relapsing form eventually turns into progressive degeneration in some patients. “These results give evidence that the inflammatory and the degenerative components of MS are related,” Hauser says. “The big question now is, If we begin treatment really early, can we protect relapsing patients from developing the progressive problems later on?” © 2015 Scientific American

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21724 - Posted: 12.27.2015

Laura Sanders Taking a pregnancy hormone staves off multiple sclerosis relapses, a small clinical trial suggests. The results hint at a potential therapy for women who suffer from MS, a debilitating disease in which the body’s immune system attacks the insulation that wraps around nerve cell fibers. A curious observation kicked off this line of research: Pregnancy offers a temporary reprieve for women with MS. Since that discovery, in the 1990s, scientists have been testing whether certain pregnancy hormones might combat MS in women who aren’t pregnant. In addition to a standard MS drug, 164 women with MS received either a placebo or estriol, an estrogen made by the placenta that peaks toward the end of pregnancy. After two years, women who received estriol had an average of 0.25 relapses a year, while women who received the placebo had 0.37 relapses a year, UCLA neurologist Rhonda Voskuhl and colleagues write online November 24 in Lancet Neurology. Researchers don’t know whether estriol would have similar effects in men with MS. The results warrant a larger clinical trial, the authors say. An accompanying commentary in the same issue of Lancet Neurology questions the results, though. MS specialist Annette Langer-Gould of Kaiser Permanente in Pasadena, Calif., raises methodological issues and writes that pregnancy comes with a host of changes that could be responsible for protection from MS. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: Hormones and Sex
Link ID: 21674 - Posted: 12.03.2015

A new drug for multiple sclerosis can cut relapses by almost 50% more than the current standard treatment, its manufacturer claims, raising the hopes of sufferers of the disease. The Swiss pharmaceutical giant Roche announced the headline results for its drug, ocrelizumab, but has not published the detailed outcome of its trials. The announcement was warmly welcomed by patients, not least because Roche claims the drug also has an impact on a form of the disease, called primary-progressive, which affects 10-15% of people with MS in the UK and for which there are no treatments. Roche claimed it cut disability in those patients by nearly a quarter. “These phase three trial results will provide a great deal of hope for people with primary-progressive MS, who currently don’t have any treatments available that can slow down the worsening of their condition,” said Nick Rijke, the MS Society’s executive director for policy and research. “Finding effective treatments for multiple sclerosis is our number one priority at the MS Society and this is a big moment. The drug was compared in the trials with Rebif, an established drug made by Merck that reduces relapses by about a third. Ocrelizumab – which does not yet have a brand name – was said to cut annual relapses by 46% and 47% compared with Rebif in the two trials. The biggest advantage, however, may be that it is claimed to cause fewer side effects than the established drug. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21490 - Posted: 10.09.2015

by Sarah Schwartz People with multiple sclerosis who got less sun exposure and had higher body mass as young adults developed the disease sooner than those who spent more time in the sun and were a normal weight, a new study finds. In a study of over 1,100 Danish people with MS — a nervous system condition that causes muscle weakness and pain — patients who were overweight at age 20 developed multiple sclerosis an average of 1.5 years sooner than patients of normal weight. And subjects who reported spending time in the sun every summer’s day during adolescence developed the disease 1.8 years later, on average, than patients who got less sun exposure, Danish researchers report online October 7 in Neurology. The results echo earlier work that found a link between adolescent obesity and risk of MS. And sun exposure may increase patients’ levels of vitamin D, which has been shown to protect against the disease, the researchers say. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 10: Biological Rhythms and Sleep
Link ID: 21486 - Posted: 10.08.2015

By Diana Kwon Multiple sclerosis (MS) relapses are known to swing with the seasons. Scientists have attributed these fluctuations to the rise and fall of vitamin D production, which is triggered by exposure to seasonal sunlight. Now a new study suggests that melatonin, a hormone that regulates your internal body clock and sleep cycles, could also play a protective role. MS is a disease of the central nervous system in which an abnormal immune response attacks the myelin sheath, or fatty protective layer, around neurons. The resulting degradation slows signaling between the brain and the rest of the body, potentially leading to a wide variety of symptoms that include weakness, vision problems and cognitive changes. The condition may affect as many as 2.3 million people worldwide. The cause of the disease remains unknown, although researchers have started to identify genetic risks and environmental factors, including smoking, viral infections and vitamin D levels in the bloodstream. The latest environmental influence, observed by Mauricio Farez, a neuroscientist at the Raúl Carrea Institute for Neurological Research, and colleagues could involve peak melatonin levels in the body, which occur during the darker months. The researchers assessed a group of 139 multiple sclerosis patients in Buenos Aires and found a 32 percent reduction in the number of relapses in the fall and winter, when people living in the Southern Hemisphere produce more of the hormone, compared with summer and spring. The results are published on the September 10 Cell. © 2015 Scientific American

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 10: Biological Rhythms and Sleep
Link ID: 21442 - Posted: 09.24.2015

By Sarah Schwartz Darkness and light may help prevent multiple sclerosis or fend off its symptoms. People who genetically produce less vitamin D, a compound normally boosted by sun exposure, have a greater risk of multiple sclerosis, researchers find. But the hormone melatonin, which the body produces in response to darkness, may reduce flare-ups for people who have the disease, another team of scientists reports. The studies may help researchers better understand and treat multiple sclerosis, a disease of the nervous system. It causes symptoms including muscle weakness, pain and vision loss in over 2 million people worldwide. Previous studies linked lower vitamin D levels to higher multiple sclerosis risk, but it was unclear whether this relationship was a coincidence. In work appearing August 25 in PLOS Medicine, scientists examined genetic data from thousands of Europeans and found that three genetic changes known to reduce vitamin D levels were associated with increased multiple sclerosis risk. These findings suggest that individuals with a higher risk of developing the disease, such as immediate family members of multiple sclerosis patients, should take steps to ensure they have sufficient levels of vitamin D, says study coauthor Brent Richards, a genetic epidemiologist at McGill University in Montreal. People can raise vitamin D levels to normal by taking an oral supplement. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 10: Biological Rhythms and Sleep
Link ID: 21399 - Posted: 09.11.2015

By Michelle Roberts Health editor, BBC News online People genetically prone to low vitamin-D levels are at increased risk of multiple sclerosis, a large study suggests. The findings, based on the DNA profiles of tens of thousands of people of European descent, add weight to the theory that the sunshine vitamin plays a role in MS. Scientists are already testing whether giving people extra vitamin D might prevent or ease MS. Experts say the jury is still out. It is likely that environmental and genetic factors are involved in this disease of the nerves in the brain and spinal cord, they say. And if you think you may not be getting sufficient vitamin D from sunlight or your diet, you should discuss this with your doctor. Taking too much vitamin D can also be dangerous. Research around the world already shows MS is more common in less sunny countries, further from the equator. But it is not clear if this relationship is causal - other factors might be at play. To better understand the association, investigators at McGill University in Canada compared the prevalence of MS in a large group of Europeans with and without a genetic predisposition to low vitamin D. © 2015 BBC.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21339 - Posted: 08.26.2015

Richard Harris American medicine is heading into new terrain, a place where a year's supply of drugs can come with a price tag that exceeds what an average family earns. Pharmacy benefit manager Express Scripts says last year more than half a million Americans racked up prescription drug bills exceeding $50,000. Barbara Haedtke of Portland, Ore., knows this all too well. When she was diagnosed with multiple sclerosis in 2001 at the age of 35, she was prescribed Avonex, at a cost of around $10,000 a year. Her health insurance paid most of that until she and her husband found themselves without jobs during an economic downturn. "We were in the hole, and so $10,000 was a lot of money," she says. "Under the best circumstances it's a lot of money, but then particularly it was really difficult." Barbara Haedtke says she's grateful for a drug-company program that helps cover copays, but doesn't know how long she'll get that benefit. The drug company gave her the medication at no charge until she once again had a job with insurance, and for that, she says, she's really grateful. But the story doesn't end there. Haedtke used Avonex for about a decade and watched with disbelief as the price more than tripled. She's now taking a new drug, Tecfidera, that's priced even higher — $66,000 a year, according to her pharmacy receipt. The drug is supposed to help reduce the number of episodes that characterize multiple sclerosis, a disease in which nerve fibers gradually degenerate, causing muscle weakness, numbness, loss of balance and even paralysis. © 2015 NPR

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20973 - Posted: 05.25.2015

Heidi Ledford An experimental antibody drug aimed at protecting nerves from the ravages of multiple sclerosis offers hope for a new way to combat the neurological disease — if researchers can definitively show that it works. The antibody, anti-LINGO-1, is intended to stimulate regrowth of the myelin sheath, the fatty protective covering on nerve cells that is damaged by multiple sclerosis. Its developer, Biogen of Cambridge, Massachusetts, will present results from a small clinical trial at an American Academy of Neurology meeting this week in Washington DC. If the initial promising results from the trial are confirmed, it will be the first such myelin-regeneration therapy. Other researchers are racing to find more targets and compounds that act similarly. “Once we get a positive result, the field will move very quickly,” says Jack Antel, a neurologist at McGill University in Montreal, Canada. But that excitement is tempered by practical hurdles: there is as yet no proven way to measure remyelination of nerve cells in living humans. Myelin sheaths insulate and support axons, the fibres that transmit signals between nerve cells. In multiple sclerosis, immune attack destroys these sheaths. Stripped of this protective coating, the axons gradually wither away, causing the numbness and muscle spasms that are characteristic of the disease. The 12 drugs approved in the United States to treat multiple sclerosis slow this immune attack — although sometimes with dangerous side effects. But none stops it, says Bruce Trapp, a neuroscientist at the Cleveland Clinic in Ohio. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20830 - Posted: 04.22.2015

Two drugs already on the market — an antifungal and a steroid — may potentially take on new roles as treatments for multiple sclerosis. According to a study published in Nature today, researchers discovered that these drugs may activate stem cells in the brain to stimulate myelin producing cells and repair white matter, which is damaged in multiple sclerosis. The study was partially funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. Specialized cells called oligodendrocytes lay down multiple layers of a fatty white substance known as myelin around axons, the long “wires” that connect brain cells. Myelin acts as an insulator and enables fast communication between brain cells. In multiple sclerosis there is breakdown of myelin and this deterioration leads to muscle weakness, numbness and problems with vision, coordination and balance. “To replace damaged cells, the scientific field has focused on direct transplantation of stem cell-derived tissues for regenerative medicine, and that approach is likely to provide enormous benefit down the road. We asked if we could find a faster and less invasive approach by using drugs to activate native nervous system stem cells and direct them to form new myelin. Our ultimate goal was to enhance the body’s ability to repair itself,” said Paul J. Tesar, Ph.D., associate professor at Case Western Reserve School of Medicine in Cleveland, and senior author of the study. It is unknown how myelin-producing cells are damaged, but research suggests they may be targeted by malfunctioning immune cells and that multiple sclerosis may start as an autoimmune disorder. Current therapies for multiple sclerosis include anti-inflammatory drugs, which help prevent the episodic relapses common in multiple sclerosis, but are less effective at preventing long-term disability. Scientists believe that therapies that promote myelin repair might improve neurologic disability in people with multiple sclerosis.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20825 - Posted: 04.21.2015

Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord. The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN) External Web Site Policy. Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems. The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology. “These promising results support the need for future studies to further evaluate the benefits and risks of HDIT/HCT and directly compare this treatment strategy to current MS therapies,” said NIAID Director Anthony S. Fauci, M.D. “If the findings from this study are confirmed, HDIT/HCT may become a potential therapeutic option for people with this often-debilitating disease, particularly those who have not been helped by standard treatments.”

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 20447 - Posted: 01.01.2015

By Esther Hsieh A little-known fact: the tongue is directly connected to the brain stem. This anatomical feature is now being harnessed by scientists to improve rehabilitation. A team at the University of Wisconsin–Madison recently found that electrically stimulating the tongue can help patients with multiple sclerosis (MS) improve their gait. MS is an incurable disease in which the insulation around the nerves becomes damaged, disrupting the communication between body and brain. One symptom is loss of muscle control. In a study published in the Journal of Neuro-Engineering and Rehabilitation, Wisconsin neuroscientist Yuri Danilov and his team applied painless electrical impulses to the tip of the tongue of MS patients during physical therapy. Over a 14-week trial, patients who got tongue stimulation improved twice as much on variables such as balance and fluidity as did a control group who did the same regimen without stimulation. The tongue has extensive motor and sensory integration with the brain, Danilov explains. The nerves on the tip of the tongue are directly connected to the brain stem, a crucial hub that directs basic bodily processes. Previous research showed that sending electrical pulses through the tongue activated the neural network for balance; such activation may shore up the circuitry weakened by MS. The team is also using tongue stimulation to treat patients with vision loss, stroke damage and Parkinson's. “We have probably discovered a new way for the neurorehabilitation of many neurological disorders,” Danilov says. © 2014 Scientific American

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20332 - Posted: 11.20.2014

|By Bret Stetka Multiple sclerosis (MS) is an electrical disorder, or rather one of impaired myelin, a fatty, insulating substance that better allows electric current to bolt down our neurons and release the neurotransmitters that help run our bodies and brains. Researchers have speculated for some time that the myelin degradation seen in MS is due, at least in part, to autoimmune activity against the nervous system. Recent work presented at the MS Boston 2014 Meeting suggests that this aberrant immune response begins in the gut. Eighty percent of the human immune system resides in the gastrointestinal tract. Alongside it are the trillions of symbiotic bacteria, fungi and other single-celled organisms that make up our guts’ microbiomes. Normally everyone wins: The microorganisms benefit from a home and a steady food supply; we enjoy the essential assistance they provide in various metabolic and digestive functions. Our microbiomes also help calibrate our immune systems, so our bodies recognize which co-inhabitants should be there and which should not. Yet mounting evidence suggests that when our resident biota are out of balance, they contribute to numerous diseases, including diabetes, rheumatoid arthritis, autism and, it appears, MS by inciting rogue immune activity that can spread throughout the body and brain. One study presented at the conference, out of Brigham and Women’s Hospital (BWH), reported a single-celled organism called methanobrevibacteriaceae that activates the immune system is enriched in the gastrointestinal tracts of MS patients whereas bacteria that suppress immune activity are depleted. Other work, which resulted from a collaboration among 10 academic researcher centers across the U.S. and Canada, reported significantly altered gut flora in pediatric MS patients while a group of Japanese researchers found that yeast consumption reduced the chances of mice developing an MS-like disease by altering gut flora. © 2014 Scientific American

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20186 - Posted: 10.09.2014

By Pippa Stephens Health reporter, BBC News A key difference in the brains of male and female MS patients may explain why more women than men get the disease, a study suggests. Scientists at Washington University School of Medicine in the US found higher levels of protein S1PR2 in tests on the brains of female mice and dead women with MS than in male equivalents. Four times more women than men are currently diagnosed with MS. Experts said the finding was "really interesting". MS affects the nerves in the brain and spinal cord, which causes problems with muscle movement, balance and vision. It is a major cause of disability, and affects about 100,000 people in the UK. Abnormal immune cells attack nerve cells in the central nervous system in MS patients. There is currently no cure, although there are treatments that can help in the early stages of the disease. Researchers in Missouri looked at relapsing remitting MS, where people have distinct attacks of symptoms that then fade away either partially or completely. About 85% of people with MS are diagnosed with this type. Scientists studied the blood vessels and brains of healthy mice, mice with MS, and mice without the gene for S1PR2, a blood vessel receptor protein, to see how it affected MS severity. They also looked at the brain tissue samples of 20 people after they had died. They found high levels of S1PR2 in the areas of the brain typically damaged by MS in both mice and people. The activity of the gene coding for S1PR2 was positively correlated with the severity of the disease in mice, the study said. Scientists said S1PR2 could work by helping to make the blood-brain barrier, in charge of stopping potentially harmful substances from entering the brain and spinal fluid, more permeable. BBC © 2014

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: Hormones and Sex
Link ID: 19595 - Posted: 05.10.2014

by Andy Coghlan A pregnancy hormone could prove a simple way to treat multiple sclerosis, after showing promise in a trial of 158 women with MS. MS is a neurological condition that results from damage to the brain and nerves inflicted by the body's own immune system. It affects 2.3 million people worldwide. Symptoms include extreme tiredness, blurred vision, muscle weakness and problems with balance and movement. The symptoms of women with MS tend to ease when they are pregnant, but worsen again after giving birth. This could be because of a hormone called oestriol, which is only produced in significant amounts during pregnancy. The hormone is thought to help suppress the mother's immune system to prevent it attacking the fetus. Fewer relapses Rhonda Voskuhl of the University of California, Los Angeles, and her colleagues wondered whether giving oestriol to people with MS who aren't pregnant might also help with symptoms. They gave 8 milligrams of oestriol daily to 86 women with MS, along with their medication, Copaxone (glatiramer acetate). The women had the most common form of MS, called relapsing-remitting MS, which results in periodic flare-ups of symptoms followed by recovery. After one year, they had 47 per cent fewer relapses than a control group that took Copaxone and a placebo. After two years, the relapse rate was 32 per cent lower than the control group in the group given the hormone, suggesting the effects had plateaued. "We think the oestriol group had bottomed out, and there was nothing left to improve," Voskuhl said, as she presented the preliminary results at the annual meeting of the American Academy of Neurology in Philadelphia last week. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: Hormones and Sex
Link ID: 19569 - Posted: 05.04.2014

Combining the estrogen hormone estriol with Copaxone, a drug indicated for the treatment of patients with relapsing forms of multiple sclerosis (MS), may improve symptoms in patients with the disorder, according to preliminary results from a clinical study of 158 patients with relapsing remitting multiple sclerosis (RRMS). The findings were presented today by Rhonda Voskuhl, M.D., from the University of California, Los Angeles, at the American Academy of Neurology Annual Meeting in Philadelphia. The study was funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health; and the National Multiple Sclerosis Society. “While these results are encouraging, the results of this Phase II study should be considered preliminary as a larger study would be needed to know whether benefits outweigh the risks for persons affected by MS. At present, we cannot recommend estrogen as part of standard therapy for MS. We encourage patients to talk with their doctors before making any changes to their treatment plans,” said Walter Koroshetz, M.D., deputy director of NINDS. MS is an autoimmune disorder in which immune cells break down myelin, a protective covering that wraps around nerve cells. Loss of myelin results in pain, movement and balance problems as well as changes in cognitive ability. RRMS is the most common form of the disorder. Patients with RRMS experience relapses, or flare-ups, of neurological symptoms, followed by recovery periods during which the symptoms improve.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: Hormones and Sex
Link ID: 19552 - Posted: 04.30.2014

By Maggie Fox Medical marijuana pills or an oral spray made from cannabis may help ease some of the painful spasms caused by multiple sclerosis that make day-to-day life hard for patients, according to new guidelines from the American Academy of Neurology. But the synthetic formulations of marijuana don’t change the course of the disease and might cause unpleasant side-effects, the experts at the academy caution. There is not enough evidence to make any recommendation on smoking marijuana for MS patients, stresses Dr. Vijayshree Yadav of Oregon Health & Science University, who led the team writing the guidelines. Synthetic marijuana in pill form, including the Marinol brand, is legal for use in treating nausea and loss of appetite in cancer. An oral spray called Sativex is approved for treating MS symptoms in Britain but not in the U.S. MS patients often seek alternative and complementary therapies because they have so few options for the chronic and incurable condition, caused when the immune system mistakenly attacks the nerves. A review of those therapies found there's no evidence most of them work. The review found that the herb Ginkgo biloba might help fatigue, but not thinking and memory problems. There’s also some evidence that magnetic therapy may help fatigue.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19402 - Posted: 03.25.2014

By Michelle Roberts Health editor, BBC News online Statins may be useful in treating advanced multiple sclerosis (MS), say UK researchers. Early trial results in The Lancet show the cholesterol-lowering pills slow brain shrinkage in people with MS. The University College London (UCL) scientists say large trials can now begin. These will check whether statins benefit MS patients by slowing progression of the disease and easing their symptoms. MS is a major cause of disability, affecting nerves in the brain and spinal cord, which causes problems with muscle movement, balance and vision. Currently there is no cure, although there are treatments that can help in the early stages of the disease. Usually, after around 10 years, around half of people with MS will go on to develop more advanced disease - known as secondary progressive MS. It is this later stage disease that Dr Jeremy Chataway and colleagues at UCL hope to treat with low cost statins. To date, no licensed drugs have shown a convincing impact on this later stage of the disease. For their phase two trial, which is published in the Lancet, Dr Chataway's team randomly assigned 140 people with secondary progressive MS to receive either 80mg of a statin called simvastatin or a placebo for two years. The high, daily dose of simvastatin was well tolerated and slowed brain shrinkage by 43% over two years compared with the placebo. Dr Chataway said: "Caution should be taken regarding over-interpretation of our brain imaging findings, because these might not necessarily translate into clinical benefit. However, our promising results warrant further investigation in larger phase three disability-driven trials." BBC © 2014

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 19383 - Posted: 03.19.2014

by Nathan Seppa MS patients who harbor low levels of vitamin D early in their disease fare worse over the next several years than patients with higher levels. Multiple sclerosis is marked by damage to the fatty sheaths coating nerve fibers in the brain. The result can be an off-and-on series of symptoms including loss of muscle control, numbness and problems thinking. Vitamin D, which the body makes from sun exposure, has shown promise in fighting a variety of diseases and may limit this MS onslaught (SN: 7/16/11, p. 22). In 2002, researchers studying the effect of the drug beta-interferon-1b against MS set aside blood samples from 465 patients. When researchers recently analyzed those samples, they found that patients who had blood levels of vitamin D exceeding 20 nanograms per milliliter at six and 12 months after the onset of MS had fewer symptom flare-ups during the rest of the five-year study than those with lower readings did. Some scientists think 20 nanograms per milliliter is a healthy level; others see 30 as a healthier minimum. MRI scans revealed that, after five years, those who had started out with low vitamin D levels had four times as much myelin damage as those who had higher levels. The results appear in the March JAMA Neurology. A. Ascherio et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurology. Vol. 71, March 2014, p. 306. doi:10.1001/jamaneurol.2013.5993. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 10: Biological Rhythms and Sleep
Link ID: 19344 - Posted: 03.11.2014