Links for Keyword: Sexual Behavior

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1425

Moises Velasquez-Manoff This Valentine’s Day, as you bask in the beauty of your beloved, don’t just thank his or her genes and your good fortune; thank microbes. Research on the microbes that inhabit our bodies has progressed rapidly in recent years. Scientists think that these communities, most of which live in the gut, shape our health in myriad ways, affecting our vulnerability to allergic diseases like hay fever, how much weight we put on, our susceptibility to infection and maybe even our moods. They can also, it seems, make us sexy. Susan Erdman, a microbiologist at M.I.T., calls it the “glow of health.” The microbes you harbor, she argues, can make your skin smooth and your hair shiny; they may even put a spring in your step. She stumbled on the possibility some years ago when, after feeding mice a probiotic microbe originally isolated from human breast milk, a technician in her lab noticed that the animals grew unusually lustrous fur. Further observation of males revealed thick skin bristling with active follicles, elevated testosterone levels and oversize testicles, which the animals liked showing off. Microbes had transformed these animals into rodent heartthrobs. When given to females, the probiotic also prompted deeper changes. Levels of a protein called interleukin 10, which helps to prevent inflammatory disease and ensure successful pregnancy, went up, as did an important hormone called oxytocin. Oxytocin, often called the love hormone, helps mammals bond with one another. Our bodies may release it when we kiss (and mean it), when women breast-feed, even when people hang out with good friends. And the elevated oxytocin Dr. Erdman saw had important effects during motherhood. Some of the mice in her studies were eating a high-fat, high-sugar diet — junk-foody fare that’s known to shift the microbiome into an unhealthy state. Not surprisingly perhaps, mothers that didn’t imbibe the probiotics were less caring and tended to neglect their pups. But mothers that had high oxytocin thanks to the probiotic were nurturing and reared their pups more successfully. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 23221 - Posted: 02.13.2017

By STEPH YIN If you’re reading this at home, pause and put on a song you can’t resist dancing to. Go on, bop your head to the beat. Let yourself wiggle a bit. Throw in some arms and legs. If you’re reading this at work, maybe imagine these things at your desk. As you’re dancing, pay attention to where and how you’re moving. How much are you swaying your hips? Are your legs moving together or independently of each other? How vigorously are you moving your torso? You should note those movements, because very specific patterns may make some people appear to be better dancers than others. That’s the conclusion of a study published on Thursday in Scientific Reports, in which researchers asked 200 people to rate 39 female dancers. A few features stood out as contributing to higher-quality dance: big hip swings, and the right and left limbs moving independently of one another (which the researchers describe as asymmetric arm and thigh movements). The researchers speculate that those moves serve two purposes for heterosexual women. “One is, they’re showing off their reproductive quality, perhaps their hormonal status, to males,” said Nick Neave, an associate professor of psychology at Northumbria University in England and an author of the paper. “Another is, they’re showing off how good they are to female rivals.” In 2011, the same researchers reported that women preferred certain dance moves by men, especially exaggerated movements in the upper body. In other studies, Dr. Neave and his colleagues have found links between male dance attractiveness and risk-taking, as well as handgrip strength, a marker for overall body strength. “We know that dance moves are signaling strength and vigor in males,” Dr. Neave said. “Now we’re beginning to do the same research with females.” In the study, his team asked 39 female university students in Britain to dance alone to a drum beat. The researchers used a motion-capture system to track the women’s moves. They animated each dancer as an avatar to try to make sure that only the dance movements — and no other physical features — would affect ratings. Then they recruited 57 men and 143 women to watch 15-second clips of the avatars and rate them each on a numeric scale. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 23212 - Posted: 02.10.2017

Nicola Davis Girls as young as six years old believe that brilliance is a male trait, according research into gender stereotypes. The US-based study also found that, unlike boys, girls do not believe that achieving good grades in school is related to innate abilities. Andrei Cimpian, a co-author of the research from New York University, said that the work highlights how even young children can absorb and be influenced by gender stereotypes – such as the idea that brilliance or giftedness is more common in men. Are gendered toys harming childhood development? Read more “Because these ideas are present at such an early age, they have so much time to affect the educational trajectories of boys and girls,” he said. Writing in the journal Science, researchers from three US universities describe how they carried out a range of tests with 400 children, half of whom were girls, to probe the influence of gender stereotypes on children’s notions of intelligence and ability. In the first test, a group of 96 boys and girls of ages five, six and seven, were read a story about a highly intelligent person, and were asked to guess the person’s gender. They were then presented with a series of pictures showing pairs of adults, some same-sex, some opposite sex, and were asked to pick which they thought was highly intelligent. Finally, the children were asked to match certain objects and traits, such as “being smart”, to pictures of men and women. © 2017 Guardian News and Media Limited

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 14: Attention and Consciousness
Link ID: 23154 - Posted: 01.27.2017

By NATALIE ANGIER Whether personally or professionally, Daniel Kronauer of Rockefeller University is the sort of biologist who leaves no stone unturned. Passionate about ants and other insects since kindergarten, Dr. Kronauer says he still loves flipping over rocks “just to see what’s crawling around underneath.” In an amply windowed fourth-floor laboratory on the east side of Manhattan, he and his colleagues are assaying the biology, brain, genetics and behavior of a single species of ant in ambitious, uncompromising detail. The researchers have painstakingly hand-decorated thousands of clonal raider ants, Cerapachys biroi, with bright dots of pink, blue, red and lime-green paint, a color-coded system that allows computers to track the ants’ movements 24 hours a day — and makes them look like walking jelly beans. The scientists have manipulated the DNA of these ants, creating what Dr. Kronauer says are the world’s first transgenic ants. Among the surprising results is a line of Greta Garbo types that defy the standard ant preference for hypersociality and instead just want to be left alone. The researchers also have identified the molecular and neural cues that spur ants to act like nurses and feed the young, or to act like queens and breed more young, or to serve as brutal police officers, capturing upstart nestmates, spread-eagling them on the ground and reducing them to so many chitinous splinters. Dr. Kronauer, who was born and raised in Germany and just turned 40, is tall, sandy-haired, blue-eyed and married to a dentist. He is amiable and direct, and his lab’s ambitions are both lofty and pragmatic. “Our ultimate goal is to have a fundamental understanding of how a complex biological system works,” Dr. Kronauer said. “I use ants as a model to do this.” As he sees it, ants in a colony are like cells in a multicellular organism, or like neurons in the brain: their fates joined, their labor synchronized, the whole an emergent force to be reckoned with. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 23141 - Posted: 01.24.2017

written by Claire Lehmann I learned about Debra through reading her LA Times op-ed on the futility of gender neutral parenting. I got in touch with Debra because I wanted to learn more about her field of sex neuroscience, her own research and her thoughts on studying sex differences in the brain. Because the study of sex and sex differences is often fraught with political roadblocks, I also wanted to get a picture of how a neuroscientist-sex researcher approaches some of these contentious issues. Hi Debra, thanks for chatting to Quillette. Can you briefly tell us who you are — where you studied, who was your supervisor and what made you interested in neuroscience, in particular sex neuroscience? I am a sex researcher at York University in Toronto and I write about the science of sex for several media outlets, including Playboy. For my PhD, which I just defended, I worked with Dr. Keith Schneider, who has pioneered new methods in high-resolution fMRI and is the Director of the University of Delaware’s Center for Biomedical and Brain Imaging, and Dr. James Cantor at the University of Toronto, who is a world expert in the brain imaging of pedophilia. I remember opening up a textbook during my first neuroscience course as an undergraduate student, seeing images from an fMRI study, and thinking it was incredible. I decided to pursue neuroscience in grad school and had the opportunity to do a placement in sexology as part of my Master’s degree. That’s how I got hooked! And I haven’t looked back. © 2017 Quillette

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23137 - Posted: 01.24.2017

In the mood? Feeling sexy and romantic has been linked to a hormone named kisspeptin. Researchers hope the chemical may help treat people with some sexual problems. Kisspeptin occurs naturally in the body, where it stimulates the release of other signalling chemicals that have been linked to reproduction. Now a study of 29 heterosexual young men has found that injections of the hormone enhance the brain’s response to sexual and romantic pictures of couples. After injection, MRI scans showed increased activity in the regions of the brain that are usually stimulated by sexual arousal and romance. But this activity was only prompted by arousing pictures – non-sexy images did not have the same effect. “Our findings indicate that kisspeptin could play a role in stimulating some of the emotions and responses that lead to sex and reproduction,” says Waljit Dhillo, at Imperial College London. “Ultimately, we are keen to look into whether kisspeptin could be an effective treatment for psychosexual disorders.” The team now plans to study the effects of the hormone in a larger group of people, including women as well as men. Journal reference: Journal of Clinical Investigation © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 23136 - Posted: 01.24.2017

By NANCY L. SEGAL and SATOSHI KANAZAWA In 1973, the biologist Robert Trivers and the computer scientist Dan Willard made a striking prediction about parents and their offspring. According to the principles of evolutionary theory, they argued, the male-to-female ratio of offspring should not be 50-50 (as chance would dictate), but rather should vary as a function of how good (or bad) the conditions are in which the parents find themselves. Are the parents’ resources plentiful — or scarce? The Trivers-Willard hypothesis holds that when their conditions are good, parents will have more male offspring: Males with more resources are likely to gain access to more females, thereby increasing the frequency with which their genes (and thus their parents’ genes) are preserved in future generations. Conversely, male offspring that lack resources are likely to lose out to males that have more resources, so in bad conditions it pays for parents to “invest” more in daughters, which will have more opportunities to mate. It follows, as a kind of corollary, that when parents have plentiful resources they will devote those resources more to their sons, whereas when resources are scarce, parents will devote them more to their daughters. In short: If things are good, you have more boys, and give them more stuff. If things are bad, you have more girls, and give more of your stuff to them. Is this hypothesis correct? In new research of ours, to be published in the April issue of The Journal of Experimental Child Psychology, we suggest that in the case of breast-feeding, at least, it appears to be. In recent years, evidence has emerged suggesting that in various mammalian species, breast milk — which is, of course, a resource that can be given to children — is tailored for the sex of each offspring. For example, macaque monkey mothers produce richer milk (with higher gross energy and fat content) for sons than for daughters, but also provide greater quantities of milk and higher concentrations of calcium for daughters than for sons. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 23135 - Posted: 01.23.2017

By Alice Klein Who needs men? A female shark separated from her long-term mate has developed the ability to have babies on her own. Leonie the zebra shark (Stegostoma fasciatum) met her male partner at an aquarium in Townsville, Australia, in 1999. They had more than two dozen offspring together before he was moved to another tank in 2012. From then on, Leonie did not have any male contact. But in early 2016, she had three baby sharks. Intrigued, Christine Dudgeon at the University of Queensland in Brisbane, Australia, and her colleagues began fishing for answers. Zoologger: The amphibious fish that mates with itself One possibility was that Leonie had been storing sperm from her ex and using it to fertilise her eggs. But genetic testing showed that the babies only carried DNA from their mum, indicating they had been conceived via asexual reproduction. Some vertebrate species have the ability to reproduce asexually even though they normally reproduce sexually. These include certain sharks, turkeys, Komodo dragons, snakes and rays. However, most reports have been in females who have never had male partners. There are very few reports of asexual reproduction occurring in females with previous sexual histories, says Dudgeon. An eagle ray and a boa constrictor, both in captivity, are the only other female animals that have been documented switching from sexual to asexual reproduction. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 23110 - Posted: 01.17.2017

By Virginia Morell Japanese macaques and sika deer live comfortably together on Japan’s Yakushima Island: The deer eat fruit the monkeys drop from the trees, and the monkeys groom and sometimes hitch a ride on the deer. But a couple years ago, one of the macaques took this relationship to a new level. Unable to get a mate of his own kind, this low-ranking snow monkey used the deer’s back for his pleasure (as pictured, and also shown in this not-suitable-for-work video). He did not penetrate her, but did ejaculate, and the deer then licked her back clean, researchers report in the current issue of Primates. The monkey was later seen attempting to mount another deer, but she objected and threatened him. He also guarded his unlikely love interests, chasing away any other male monkeys who came near. Scientists have only reported one other case of sexual relations in the wild between unrelated species. That one involved male Antarctic fur seals coercing king penguins; once, after sating his lust, the seal ate the bird. In both cases, scientists suspect that the males were unable to acquire a mate of their own kind, and seasonal hormonal surges led them to seek love elsewhere. © 2017 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 23074 - Posted: 01.10.2017

Morwenna Ferrier Is my face attractive? Don’t answer that. Not because I’m ducking out of this, but because you can’t. Attractiveness is subjective, perhaps the most subjective question of all; that we outsource the answer to Google (and we do, in our droves) is ironic since it depends on a bias that is impossible to unpack. Yet in searching the internet for an answer, it also reveals the question to be one of the great existential tensions of our time. Because, as we all know, being attractive is absolutely 100% the A-road to happiness. If you are Googling to rate your attractiveness, then you are probably working on the assumption that you aren’t. You’re also, possibly, more vulnerable and susceptible to being told that you aren’t. In short, you’re a sitting duck, someone who had a sore throat and who asked good old Dr Google for advice only to be told it was cancer. Still, it’s only in investigating precisely why Google is the last person you should ask – being a search engine therefore insentient – that you can start cobbling together an idea of what attractiveness really is. It’s worth starting with semantics. Beauty is not attractiveness and vice versa, though we commonly confuse the two. Beauty (arguably) has a template against which we intuit and against which we measure ourselves. It is hinged around genetics and a particular look associated with this politically correct (and largely western-governed) model. Darwin wouldn’t agree: “It is certainly not true that there is in the mind of man any universal standards of beauty with respect to the human body,” he said. But a lot has changed since his time. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 23030 - Posted: 12.28.2016

Laura Sanders Pregnancy changes nearly everything about an expectant mother’s life. That includes her brain. Pregnancy selectively shrinks gray matter to make a mom’s brain more responsive to her baby, and those changes last for years, scientists report online December 19 in Nature Neuroscience. “This study, coupled with others, suggests that a women’s reproductive history can have long-lasting, possibly permanent changes to her brain health,” says neuroscientist Liisa Galea of the University of British Columbia in Vancouver, who was not involved in the study. Researchers performed detailed anatomy scans of the brains of 25 women who wanted to get pregnant with their first child. More scans were performed about two months after the women gave birth. Pregnancy left signatures so strong that researchers could predict whether women had been pregnant based on the changes in their brains. The women who had carried a child and given birth had less gray matter in certain regions of their brains compared with 20 women who had not been pregnant, 19 first-time fathers and 17 childless men. These changes were still evident two years after pregnancy. A shrinking brain sounds bad, but “reductions in gray matter are not necessarily a bad thing,” says study coauthor Elseline Hoekzema, a neuroscientist at Leiden University in the Netherlands. A similar reduction happens during adolescence, a refinement that is “essential for a normal cognitive and emotional development,” says Hoekzema, who, along with colleagues, did most of the work at Universitat Autònoma de Barcelona. Following those important teenage years, pregnancy could be thought of almost as a second stage of brain maturing, she says. |© Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 8: Hormones and Sex
Link ID: 23002 - Posted: 12.20.2016

By Claire Asher We pride ourselves on our big brains, but when it comes to figuring out whether people or other animals with particularly big brains do better than others, the evidence has been lacking. Now, for the first time, a study in red deer is showing that bigger brained mammals tend to be more successful in the wild, and that brain size is a heritable trait that they can pass on to their offspring. Corina Logan from the University of Cambridge and her team have looked at the skulls of 1314 red deer (Cervus elaphus) from the Isle of Rum. The complete life histories of the deer are well known thanks to the Isle of Rum Red Deer Project, which has been collecting data on the island for more than 40 years, spanning seven deer generations. “This kind of study has not been conducted before because it requires long-term data from a large number of individuals,” says Logan. Heritable heads The team found that the ratio of skull volume to body size was highly heritable, explaining 63 per cent of variation between individuals. Female deer with larger skulls lived significantly longer and raised more offspring to adulthood, though it’s not clear yet why bigger brains are advantageous to females. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22987 - Posted: 12.14.2016

By Sam Wong Size matters. Bigger genitals mean more mating success for male mosquito fish, a relative of the guppy. But the development of longer male organs prompts females to evolve bigger brains to help them escape overeager mates. Mating among mosquito fish is far from romantic. The male makes no effort to court partners, instead sneaking up and attempting to copulate by force up to a thousand times a day. It uses a modified anal fin, the gonopodium, to deliver sperm into the female. In this sort of mating system, the relationship between males and females can resemble that between predators and prey, which commonly involve an evolutionary arms race where adaptations on one side are closely matched by changes on the other. For example, big-brained predators tend to prey on big-brained prey, as the two try to outsmart each other. Séverine Buechel and colleagues at Stockholm University in Sweden wondered if a similar arms race was going on between male and female mosquito fish. Do females evolve bigger brains to defend against sneaky males, and do males evolve bigger brains in response? To test this, the team looked at what happened to brain size when males were bred to have longer gonopodia. Male mosquito fish have long gonopodia compared with related species in which coercion is not the dominant mating strategy, and males with longer gonopodia tend to be more successful at mating. The researchers found that breeding more well-endowed males led to bigger-brained females. But there was no arms race: male brains didn’t get bigger at the same time. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22973 - Posted: 12.10.2016

Barbara J. King Birdsong is music to human ears. It has inspired famous composers. For the rest of us, it may uplift the spirit and improve attention or simply be a source of delight, fun and learning. But have you ever wondered what birds themselves hear when they sing? After all, we know that other animals' perceptions don't always match ours. Anyone who lives with a dog has probably experienced their incredible acute hearing and smell. Psychologists Robert J. Dooling and Nora H. Prior think they've found an answer to that question — for, at least, some birds. In an article published online last month in the journal Animal Behaviour, they conclude that "there is an acoustic richness in bird vocalizations that is available to birds but likely out of reach for human listeners." Dooling and Prior explain that most scientific investigations of birdsong focus on things like pitch, tempo, complexity, structural organization and the presence of stereotypy. They instead focused on what's called temporal fine structure and its perception by zebra finches. Temporal fine structure, they write, "is generally defined as rapid variations in amplitude within the more slowly varying envelope of sound." Struggling to fully grasp that definition, I contacted Robert Dooling by email. In his response, he suggested that I think of temporal fine structure as "roughly the difference between voices when they are the same pitch and loudness." Temporal fine structure is akin, then, to timbre, sometimes defined as "tone color" or, in Dooling's words, the feature that's "left between two complex sounds when the pitch and level are equalized." © 2016 npr

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 8: Hormones and Sex
Link ID: 22942 - Posted: 12.03.2016

By Clare Wilson Could a brain stimulation device change our sex drive? The first study of this approach suggests that people’s libido can be turned up or down, depending on the device’s setting. The study didn’t measure how much sex people had in real life, instead it measured participant’s sexual responsiveness. Unusually, this was done by fixing customised vibrators to people’s genitals and gauging how their brainwaves changed when they expected a stimulating buzz. “You want to see if they want what you’re offering,” says Nicole Prause at the University of California, Los Angeles. “This is a good model for sexual desire.” The technique involves transcranial magnetic stimulation (TMS), where a paddle held above the head uses a strong magnetic field to alter brain activity. It can be used to treat depression and migraines, and is being investigated for other uses, including preventing bed-wetting, and helping those with dyslexia. The part of the head targeted in this study – called the left dorsolateral prefrontal cortex, roughly above the left temple – is involved in the brain’s reward circuitry. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22936 - Posted: 12.01.2016

Carrie Arnold There was one sound that biologist Rusty Gonser always heard at Cranberry Lake — and there was one sound that he would never hear again. Every summer for more than 25 years, Gonser and his wife, Elaina Tuttle, had made the trip to this field station in the Adirondack Mountains — a 45-minute boat ride from the nearest road. Now, as he moored his boat to the shaky wooden dock, he heard a familiar and short song that sounded like 'oh-sweet-Canada'. The whistle was from a white-throated sparrow calling hopefully for a mate. What he didn't hear was the voice or laughter of his wife. For the first time, Gonser was at Cranberry Lake alone. Just a few weeks earlier, Tuttle had died of breast cancer. Her entire career, and most of Gonser's, had been devoted to understanding every aspect of the biology of the white-throated sparrow (Zonotrichia albicollis). Less than six months before she died this year at the age of 52, the couple and their team published a paper1 that was the culmination of that work. It explained how a chance genetic mutation had put the species on an extraordinary evolutionary path. The mutation had flipped a large section of chromosome 2, leaving it unable to pair up with a partner and exchange genetic information. The more than 1,100 genes in the inversion were inherited together as part of a massive 'supergene' and eventually drove the evolution of two different 'morphs' — subtypes of the bird that are coloured differently, behave differently and mate only with the opposite morph. Tuttle and Gonser's leap was to show that this process is nearly identical to the early evolution of certain sex chromosomes, including the human X and Y. The researchers realized that they were effectively watching the bird evolve two sex chromosomes, on top of the two it already had. © 2016 Macmillan Publishers Limited,

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22900 - Posted: 11.23.2016

By Solomon Israel, A May-December romance brings benefits for young female gray jays mated to older males, according to new Canadian research. The paper, published this month in the journal Animal Behaviour, used almost four decades of data on a marked population of gray jays in Ontario's Algonquin Park to study how the birds adjust their reproductive habits in response to changes in temperature and other conditions. Gray jays, also known as Canada jays or whisky jacks, don't migrate south in the winter, instead living year-round in boreal forests across Canada and the northern U.S. They manage this feat of survival by caching food all over their large, permanent habitats, then retrieving it during the winter months. The small, fluffy birds take advantage of those winter supplies to nest much earlier than most other birds, laying eggs between late February and March. Gray jays don't migrate during the winter, instead relying on hidden caches of food to feed themselves and their offspring. (Dan Strickland) The researchers found that female gray jays that laid their eggs earlier in the season had the most reproductive success, with a higher survival rate for offspring. ©2016 CBC/Radio-Canada

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22836 - Posted: 11.07.2016

Susan Milius For widemouthed, musical midshipman fish, melatonin is not a sleep hormone — it’s a serenade starter. In breeding season, male plainfin midshipman fish (Porichthys notatus) spend their nights singing — if that’s the word for hours of sustained foghorn hums. Males dig trysting nests under rocks along much of North America’s Pacific coast, then await females drawn in by the crooning. New lab tests show that melatonin, familiar to humans as a possible sleep aid, is a serenade “go” signal, says behavioral neurobiologist Ni Feng of Yale University. From fish to folks, nighttime release of melatonin helps coordinate bodily timekeeping and orchestrate after-dark biology. The fish courtship chorus, however, is the first example of the hormone prompting a launch into song, according to Andrew Bass of Cornell University. And what remarkable vocalizing it is. The plainfin midshipman male creates a steady “mmm” by quick-twitching specialized muscles around its air-filled swim bladder up to 100 times per second in chilly water. A fish can extend a single hum for about two hours, Feng and Bass report October 10 in Current Biology. That same kind of super-fast muscle shakes rattle-snake tails and trills vocal structures in songbirds and bats. |© Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 10: Biological Rhythms and Sleep
Link ID: 22767 - Posted: 10.19.2016

By Christian Jarrett It’s been said that men and women are so unlike each other, it’s as if they’re from different planets – a claim that continues to amuse and irritate. John Gray’s original mega-selling book Men are from Mars, Women are from Venus, first published in the early 1990s, has sold millions, spawning numerous parodies (such as Katherine Black and Finn Contini’s Women May Be from Venus, But Men are Really from Uranus) and even comedy stage shows, such as Men are from Mars, Women are from Venus, Live! currently playing off Broadway.) While our physical differences in size and anatomy are obvious, the question of psychological differences between the genders is a lot more complicated and controversial. There are issues around how to reliably measure the differences. And when psychologists find them, there are usually arguments over whether the causes are innate and biological, or social and cultural. Are men and women born different or does society shape them that way? These questions are particularly thorny when you consider our differences in personality. Most research suggests that men and women really do differ on some important traits. But are these differences the result of biology or cultural pressures? And just how meaningful are they in the real world? One possibility is that most differences are tiny in size but that combined they can have important consequences. One of the most influential studies in the field, published in 2001 by pioneering personality researchers Paul Costa, Robert McCrae and Antonio Terracciano, involved over 23,000 men and women from 26 cultures filling out personality questionnaires. © 2016 BBC.

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22746 - Posted: 10.12.2016

Susan Milius ORLANDO, Fla. — When sex chromosomes among common pill bugs go bad from disuse, borrowed bacterial DNA comes to the rescue. Certain pill bugs grow up female because of sex chromosomes cobbled together with genes that jumped from the bacteria. Genetic analysis traces this female-maker DNA to Wolbachia bacteria, Richard Cordaux, based at the University of Poitiers with France’s scientific research center CNRS, announced September 29 at the International Congress of Entomology. Various kinds of Wolbachia infect many arthropods, spreading from mother to offspring and often biasing their hosts’ sex ratios toward females (and thus creating even more female offspring). In the common pill bug (Armadillidium vulgare), Wolbachia can favor female development two ways. Just by bacterial infection without any gene transfer, bacteria passed down to eggs can make genetic males develop into functional females. Generations of Wolbachia infections determining sex let these pill bugs’ now-obsolete female-making genes degenerate. Which makes it very strange that certain populations of pill bugs with no current Wolbachia infection still produce abundant females. That’s where Cordaux and Poitier colleague Clément Gilbert have demonstrated a second way that Wolbachia makes lady pill bugs — by donating DNA directly to the pill bug genes. The researchers, who share an interest in sex determination, have built a case that Wolbachia inserted feminizing genes into pill bug chromosomes. The bacterial genes thus created a new sex chromosome. 5|© Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 22717 - Posted: 10.02.2016