Links for Keyword: Miscellaneous

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 668

Alison Abbott Psychiatrist Joshua Gordon wants to use mathematics to improve understanding of the brain. The US National Institute of Mental Health (NIMH) has a new director. On 12 September, psychiatrist Joshua Gordon took the reins at the institute, which has a budget of US$1.5 billion. He previously researched how genes predispose people to psychiatric illnesses by acting on neural circuits, at Columbia University in New York. His predecessor, Thomas Insel, left the NIMH to join Verily Life Sciences, a start-up owned by Google’s parent company Alphabet, in 2015. Gordon says that his priorities at the NIMH will include “low-hanging clinical fruit, neural circuits and mathematics — lots of mathematics", and explains to Nature exactly what that means. What do you plan to achieve in your first year in office? I won’t be doing anything radical. I am just going to listen to and learn from all the stakeholders — the scientific community, the public, consumer advocacy groups and other government offices. But I can say two general things. In the past twenty years, my two predecessors, Steve Hyman [now director of the Stanley Center for Psychiatric Research at the Broad Institute in Cambridge, Massachusetts] and Tom Insel, embedded into the NIMH the idea that psychiatric disorders are disorders of the brain, and to make progress in treating them we really have to understand the brain. I will absolutely continue this legacy. This does not mean we are ignoring the important roles of the environment and social interactions in mental health — we know they have a fundamental impact. But that impact is on the brain. Second, I will be thinking about how NIMH research can be structured to give pay-outs in the short-, medium- and long-terms. © 2016 Macmillan Publishers Limited,

Related chapters from BN: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 22794 - Posted: 10.27.2016

by Bethany Brookshire Most of us spend our careers trying to meet — and hopefully exceed — expectations. Scientists do too. But the requirements for success in a job in academic science don’t always line up with the best scientific methods. The net result? Bad science doesn’t just happen — it gets selected for. What does it mean to be successful in science? A scientist gets a job and funding by publishing a lot of high-impact papers with novel findings. Those papers and findings beget awards and funding to do more science — and publish more papers. “The problem that we face is that the incentive system is focused almost entirely on getting research published, rather than on getting research right,” says Brian Nosek, a psychologist at the University of Virginia in Charlottesville. This idea of success has become so ingrained that scientists are even introduced when they give talks by the number of papers they have published or the amount of grant funding they have, says Marc Edwards, a civil engineer at Virginia Polytechnic Institute and State University in Blacksburg. But rewarding researchers for the number of papers they publish results in a “natural selection” of sloppy science, new research shows. The idea of scientific “success” equated as number of publications promotes not just lazy science but also unethical science, another paper argues. Both articles proclaim that it’s time for a culture shift. But with many scientific labs to fund and little money to do it, what does a new, better scientific enterprise look like? © Society for Science & the Public 2000 - 2016

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22779 - Posted: 10.24.2016

By Clare Wilson Glug glug glug. I’m drinking a big glass of ice water after getting thirsty, and it’s flowing easily down my throat like a river. But a study of thirsty and well hydrated people suggests this isn’t always the case. We rarely pay attention to the business of swallowing, but it may play a subtle role in controlling our fluid intake, on top of our conscious feelings of thirst. If we are dehydrated, swallowing is effortless; if we are overhydrated, swallowing feels more difficult, putting us off drinking, according to a study by Michael Farrell at Monash University in Melbourne, Australia, and his team. “Normally it’s something we are not really conscious of – away it goes,” says Farrell. But when his team asked volunteers to rate the sensation of taking a small sip of water, they found that people who had recently drunk a lot of water said it took much more effort to swallow than those who were mildly hydrated – their difficult ratings rose from one out of ten to nearly five. Is eight really great? When people were overhydrated, brain scans showed that swallowing was linked with more activity in certain regions of the brain, including the prefrontal cortex, which is responsible for conscious thought processes. “It suggests a mechanism for inhibition of drinking that we don’t usually think about,” says Zachary Knight at the University of California, San Francisco. © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22739 - Posted: 10.11.2016

Doctors describe 16-year-old Sebastian DeLeon as a walking miracle — he is only the fourth person in the U.S. to survive an infection from the so-called brain-eating amoeba. Infection from Naegleria fowleri is extremely rare but almost always fatal. Between 1962 and 2015, there were only 138 known infections due to the organism, according to the Centers for Disease Control and Prevention. Just three people survived. This summer, two young people, one in Florida and one in North Carolina, became infected after water recreation. Only one had a happy ending. DeLeon is a 16-year-old camp counselor. The Florida Department of Health thinks he got the infection while swimming in unsanitary water on private property in South Florida before his family came to visit Orlando's theme parks. So many things had to go right for DeLeon to survive. On a Friday, he had a bad headache. The next day, his parents decided this was way more than just a migraine and took him to the emergency room at Florida Hospital for Children. Doctors persuaded the family to do a spinal tap to rule out meningitis, even though he didn't have a stiff neck, the telltale symptom. Sheila Black, the lab coordinator, looked at the sample and assumed she saw white blood cells. But then she took a second, longer look. "We are all detectives," Black said. "We literally had to look at this and study it for a while and watch for the movement because the amoeba can look like a white cell. So unless you're actually visually looking for this and looking for the movement, you're going to miss it." © 2016 npr

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22608 - Posted: 08.29.2016

Dean Burnett A lot of people, when they travel by car, ship, plane or whatever, end up feeling sick. They’re fine before they get into the vehicle, they’re typically fine when they get out. But whilst in transit, they feel sick. Particularly, it seems, in self-driving cars. Why? One theory is that it’s due to a weird glitch that means your brain gets confused and thinks it’s being poisoned. This may seem surprising; not even the shoddiest low-budget airline would get away with pumping toxins into the passengers (airline food doesn’t count, and that joke is out of date). So where does the brain get this idea that it’s being poisoned? Despite being a very “mobile” species, humans have evolved for certain types of movement. Specifically, walking, or running. Walking has a specific set of neurological processes tied into it, so we’ve had millions of years to adapt to it. Think of all the things going on in your body when you’re walking, and how the brain would pick up on these. There’s the steady thud-thud-thud and pressure on your feet and lower legs. There’s all the signals from your muscles and the movement of your body, meaning the motor cortex (which controls conscious movement of muscles) and proprioception (the sense of the arrangement of your body in space, hence you can know, for example, where your arm is behind your back without looking at it directly) are all supplying particular signals. © 2016 Guardian News and Media Limited

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 5: The Sensorimotor System
Link ID: 22570 - Posted: 08.18.2016

By Gary Stix In recent decades neuroscience has emerged as a star among the biological disciplines. But its enormous popularity as an academic career choice has been accompanied by a drop in the percentage of trained neuroscientists who actually work in academic research positions—largely because of a lack of funding. In 2014 the National Academies organized a workshop to ponder the question of whether this trend bodes well for the scientists-to-be who are now getting their Ph.D.s. The findings were published this summer in Neuron. Steven Hyman of the Broad Institute of the Massachusetts Institute of Technology and Harvard University, who helped to plan the workshop and was recently president of the Society for Neuroscience (SfN), welcomes the flood of doctoral students choosing the field but warns: “Insofar as talented young people are discouraged from academic careers by funding levels so low that they produce debilitating levels of competition or simply foreclose opportunities, the U.S. and the world are losing an incredibly precious resource.” Because there are not enough academic positions to go around, it is now the responsibility of professors to prepare students for alternative careers, says Huda Akil of the University of Michigan Medical School, lead author of the paper. “It's not just academia and industry” where trained neuroscientists can make contributions to society, says Akil, also a former SfN president: “It's nonprofits. It's social policy. It's science writing. It's man-machine interfaces. It's Big Data, or education, or any area where knowledge of the brain is relevant.” © 2016 Scientific American

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22564 - Posted: 08.17.2016

By Jonathan Webb Science reporter, BBC News Scientists have glimpsed activity deep in the mouse brain which can explain why we get thirsty when we eat, and why cold water is more thirst-quenching. A specific "thirst circuit" was rapidly activated by food and quietened by cooling down the animals' mouths. The same brain cells were already known to stimulate drinking, for example when dehydration concentrates the blood. But the new findings describe a much faster response, which predicts the body's future demand for water. The researchers went looking for this type of system because they were puzzled by the fact that drinking behaviour, in humans as well as animals, seems to be regulated very quickly. "There's this textbook model for homeostatic regulation of thirst, that's been around for almost 100 years, that's based on the blood," said the study's senior author Zachary Knight, from the University of California, San Francisco. "There are these neurons in the brain that… generate thirst when the blood becomes too salty or the blood volume falls too low. But lots of aspects of everyday drinking can't possibly be explained by that homeostatic model because they occur much too quickly." Take the "prandial thirst" that comes while we consume a big, salty meal - or the fact that we feel quenched almost as soon as we take a drink. © 2016 BBC.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22518 - Posted: 08.04.2016

By JoAnna Klein I expected a bumpy ride on a whitewater trip, so when I fell off my raft and coughed up the water I’d inhaled, I wasn’t afraid. But at the time I didn’t know I was swimming with a deadly parasite. I’d been at a bachelorette party at the U.S. National Whitewater Center in Charlotte, N.C., but after returning home I learned that I had shared the churning rapids with Naegleria fowleri, a single-celled amoeba found mostly in soil and warm freshwater lakes, rivers and hot springs. An Ohio teenager had contracted the amoeba infection after visiting the center around the same time I did, and some of the waters and sediment at and around the center had tested positive for the bug. News that my friends and I had all been at risk of exposure triggered a few days of worry. The illness is rare and, if infected, symptoms show up between one and 10 days after exposure. Chances were that we were fine (we were), but the experience prompted me to learn more about the parasite. Naegleria fowleri lives in fresh water, but not in salt water. If forced up the nose, it can enter the brain and feed on its tissue, resulting in an infection known as primary amebic meningoencephalitis. Death occurs in nearly all of those infected with the parasite, usually within five days after infection. The 18-year-old Ohio woman who died most likely contracted the parasite when she sucked water through her nose after falling from a raft during a church trip. Samples from a channel at the rafting center, collected by the Centers for Disease Control and Prevention, tested positive for the bug. The center’s channels are man-made, and it gets its water from the Charlotte-Mecklenburg Utilities Department and two wells on its property. The center has announced that it disinfects all water with ultraviolet radiation and chlorine, and it added more after the water tests. © 2016 The New York Times Company

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 20: ; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22514 - Posted: 08.04.2016

By Libby Copeland Don’t get him wrong: Dean Burnett loves the brain as much as the next neuroscientist. But if he’s being honest, it’s “really quite rubbish in a lot of ways,” he says. In his new book, Idiot Brain, Burnett aims to take our most prized organ down a peg or two. Burnett is most fascinated by the brain’s tendency to trip us up when it’s just trying to help. His book explores many of these quirks: How we edit our own memories to make ourselves look better without knowing it; how anger persuades us we can take on a bully twice our size; and what may cause us to feel like we’re falling and jerk awake just as we’re falling asleep. (It could have something to do with our ancestors sleeping in trees.) We caught up with Burnett, who is also a science blogger for The Guardian and a stand-up comic, to ask him some of our everyday questions and frustrations with neuroscience. Why is it that we get motion sickness when we’re traveling in a plane or a car? We haven’t evolved, obviously, to ride in vehicles; that’s a very new thing in evolutionary terms. So the main theory as to why we get motion sickness is that it’s essentially a conflict in the senses that are being relayed to the subcortical part of the brain where the senses are integrated together. The body and the muscles are saying we are still. Your eyes are saying the environment is still. The balance sense in the ears are detecting movement. The brain is getting conflicting messages from the fundamental senses, and in evolutionary terms there’s only one thing that can cause that, which is a neurotoxin. And as a result the brain thinks it’s been poisoned and what do you do when you’ve been poisoned? Throw up.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22508 - Posted: 08.03.2016

By James Gallagher Controlling human nerve cells with electricity could treat a range of diseases including arthritis, asthma and diabetes, a new company says. Galvani Bioelectronics hopes to bring a new treatment based on the technique before regulators within seven years. GlaxoSmithKline and Verily, formerly Google, Life Sciences, are behind it. Animal experiments have attached tiny silicone cuffs, containing electrodes, around a nerve and then used a power supply to control the nerve's messages. One set of tests suggested the approach could help treat type-2 diabetes, in which the body ignores the hormone insulin. They focused on a cluster of chemical sensors near the main artery in the neck that check levels of sugar and the hormone insulin. The sensors send their findings back to the brain, via a nerve, so the organ can coordinate the body's response to sugar in the bloodstream. GSK vice-president of bioelectronics Kris Famm told the BBC News website: "The neural signatures in the nerve increase in type 2-diabetes. "By blocking those neural signals in diabetic rats, you see the sensitivity of the body to insulin is restored." And early work suggested it could work in other diseases too. "It isn't just a one-trick-pony, it is something that if we get it right could have a new class of therapies on our hands," Mr Famm said. But he said the field was only "scratching the surface" when it came to understanding which nerve signals have what effect in the body. Both the volume and rhythm of the nerve signals could be having an effect rather than it being a simple case of turning the nerve on or off. © 2016 BBC

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22507 - Posted: 08.03.2016

By Elahe Izadi It's referred to as the "brain-eating amoeba." Naegleria fowleri resides in warm freshwater, hot springs and poorly maintained swimming pools. When the single-celled organism enters a person's body through the nose, it can cause a deadly infection that leads to destruction of brain tissue. These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention. But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused by N. fowleri, said health officials in North Carolina. Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while whitewater rafting in Charlotte during a church trip, the Charlotte Observer reported. The N. fowleri infection "resulted in her developing a case of meningitis ... and inflaming of the brain and surrounding tissues, and unfortunately she died of this condition," Mecklenburg County Health Department director Marcus Plescia told reporters Wednesday. Plescia said that, while they were still gathering information from health officials in Ohio, they do know one of the stops Seitz's group made was to the U.S. National Whitewater Center.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22355 - Posted: 06.24.2016

Gary Stix Unlike biochemistry and psychology, brain science did not exist as a separate academic field until the middle of the 20th century. In recent decades, neuroscience has emerged as a star among the biological disciplines. In 2014 a workshop organized by the National Academy of Medicine met to ponder the question of whether all bodes well for the scientists-to-be who are now getting their PhDs and laboring away at postdoctoral fellowships. Will the field be able to absorb this wealth of new talent—and is it preparing students with the quantitative skills needed to understand the workings of an organ with some 86 billion neurons and hundreds of trillions of connections among all of those cells? Steven Hyman of the Broad Institute of Harvard and MIT, who helped with the planning of the workshop and was recently president of the Society for Neuroscience (SfN), welcomed the flood of doctoral students choosing neuroscience, but warned: “Insofar as talented young people are discouraged from academic careers by funding levels so low that they produce debilitating levels of competition or simply foreclose opportunities, the U.S. and the world are losing an incredibly precious resource.” I got in touch with one member of the National Academy of Medicine panel, Huda Akil of the University of Michigan Medical School, the lead author on a paper in Neuron that summarized the workshop’s findings. Akil, also a former SfN president, is a noted researcher in the neurobiology of emotions. © 2016 Scientific American,

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22338 - Posted: 06.20.2016

By Monique Brouillette The brain presents a unique challenge for medical treatment: it is locked away behind an impenetrable layer of tightly packed cells. Although the blood-brain barrier prevents harmful chemicals and bacteria from reaching our control center, it also blocks roughly 95 percent of medicine delivered orally or intravenously. As a result, doctors who treat patients with neurodegenerative diseases, such as Parkinson's, often have to inject drugs directly into the brain, an invasive approach that requires drilling into the skull. Some scientists have had minor successes getting intravenous drugs past the barrier with the help of ultrasound or in the form of nanoparticles, but those methods can target only small areas. Now neuroscientist Viviana Gradinaru and her colleagues at the California Institute of Technology show that a harmless virus can pass through the barricade and deliver treatment throughout the brain. Gradinaru's team turned to viruses because the infective agents are small and adept at entering cells and hijacking the DNA within. They also have protein shells that can hold beneficial deliveries, such as drugs or genetic therapies. To find a suitable virus to enter the brain, the researchers engineered a strain of an adeno-associated virus into millions of variants with slightly different shell structures. They then injected these variants into a mouse and, after a week, recovered the strains that made it into the brain. A virus named AAV-PHP.B most reliably crossed the barrier. © 2016 Scientific American,

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22313 - Posted: 06.13.2016

By Jane E. Brody Truth to tell, sometimes I don’t follow my own advice, and when I suffer the consequences, I rediscover why I offer it. I’ve long recommended drinking plenty of water, perhaps a glass with every meal and another glass or two between meals. If not plain water, which is best, then coffee or tea without sugar (but not alcoholic or sugary drinks) will do. I dined out recently after an especially active day that included about five miles of walking, 40 minutes of lap swimming and a 90-minute museum visit. I drank only half a glass of water and no other beverage with my meal. It did seem odd that I had no need to use the facilities afterward, not even after a long trip home. But I didn’t focus on why until the next day when, after a fitful night, I awoke exhausted, did another long walk and swim, and cycled to an appointment four miles away. I arrived parched, begging for water. After downing about 12 ounces, I was a new person. I no longer felt like a lead balloon. It seems mild dehydration was my problem, and the experience prompted me to take a closer look at the body’s need for water under a variety of circumstances. Although millions of Americans carry water bottles wherever they go and beverage companies like Coke and Pepsi would have you believe that every life can be improved by the drinks they sell, the truth is serious dehydration is not common among ordinary healthy people. But there are exceptions, and they include people like me in the Medicare generation, athletes who participate in particularly challenging events like marathons, and infants and small children with serious diarrhea. Let’s start with some facts. Water is the single most important substance we consume. You can survive for about two months without food, but you would die in about seven days without water. Water makes up about 75 percent of an infant’s weight and 55 percent of an older person’s weight. © 2016 The New York Times Company

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22192 - Posted: 05.09.2016

Scott O. Lilienfeld1*, Katheryn C. Sauvigné2, Steven Jay Lynn3, Robin L. Cautin4, Robert D. Latzman2 and Irwin D. Waldman1 The goal of this article is to promote clear thinking and clear writing among students and teachers of psychological science by curbing terminological misinformation and confusion. To this end, we present a provisional list of 50 commonly used terms in psychology, psychiatry, and allied fields that should be avoided, or at most used sparingly and with explicit caveats. We provide corrective information for students, instructors, and researchers regarding these terms, which we organize for expository purposes into five categories: inaccurate or misleading terms, frequently misused terms, ambiguous terms, oxymorons, and pleonasms. For each term, we (a) explain why it is problematic, (b) delineate one or more examples of its misuse, and (c) when pertinent, offer recommendations for preferable terms. By being more judicious in their use of terminology, psychologists and psychiatrists can foster clearer thinking in their students and the field at large regarding mental phenomena. Scientific thinking necessitates clarity, including clarity in writing (Pinker, 2014). In turn, clarity hinges on accuracy in the use of specialized terminology. Clarity is especially critical in such disciplines as psychology and psychiatry, where most phenomena, such as emotions, personality traits, and mental disorders, are “open concepts.” Open concepts are characterized by fuzzy boundaries, an indefinitely extendable indicator list, and an unclear inner essence (Pap, 1958; Meehl, 1986). © 2007 - 2015 Frontiers Media S.A

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 20: ; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 22096 - Posted: 04.12.2016

By Neuroskeptic Do you want to be more successful? Happier? More intelligent? Don’t despair. The answer, we’re told, is right in front of your nose—or rather, right behind it. It’s your own brain. Thanks to neuroscience, you can hack your gray matter. According to the sales pitch, almost anything is possible, if you can master your brain—and if you can afford to buy the products that promise to help you do that. But how many of these neuroproducts are neurobullshit? And what makes neuroscience so attractive to people with something to sell? I’m a neuroscientist who has been blogging about the brain for the past eight years. Over this time I’ve noticed a steady increase in the number of neuroscience-themed commercial products. There are brain pills to optimize your mental focus. There are futuristic-looking headbands that promise to measure or stimulate your neural activity in order to make you smarter, or help you sleep better, or even meditate better. There is no end of “brain training” apps and neuroscience-themed self-help books. These products tend to have names based around “Neuro” or “Brain.” And they will come advertised as being “created by neuroscientists,” “based on the latest brain research,” or at least endorsed by some leading brain expert. Once you look beyond the “neuro” gloss, however, you’ll see that many of these products aren’t new at all, but just old products in new packaging. A recent, and notorious, example of this was “Fifth Quarter Fresh,” a brand of chocolate milk.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 22090 - Posted: 04.11.2016

Fergus Walsh Medical correspondent When I picked up the human brain in my hands, several things ran through my mind. My immediate concern was I might drop it or that it would fall apart in my hands - fortunately neither happened. Second, I was struck by how light the human brain is. I should say this was half a brain - the right hemisphere - the left had already been sent for dissection. The intact human brain weighs only around 3lbs (1.5kg) - just 2% of body-weight, and yet it consumes 20% of its energy. The brain I was holding had been steeped in formalin, a preserving fluid, for about three weeks and is one of several hundred brains donated every year for medical research. It was only after I'd got used to the feel of the brain in my hands that I could then start to wonder about how such a simple-looking structure could be capable of so much. This brain had experienced, processed, interpreted an entire human life - the thoughts, emotions, language, memory, emotion, cognition, awareness, and consciousness - all the things that make us human and each of us unique. You may think yuck, but I'm with the scientists and surgeon who declare: "Brains are beautiful". The pathology team at the Bristol Brain Bank had kindly allowed us to film as part of the BBC "In the Mind" season, looking at many aspects of mental health. My brief was to examine some of the latest advances in neuroscience. There is a genuine sense of excitement among researchers about the direction and progress being made in our knowledge of the brain. © 2016 BBC.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 20: ; Chapter 15: Language and Lateralization
Link ID: 21904 - Posted: 02.17.2016

By Brian Owens Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.” So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. Although some large-scale initiatives like the government-funded Human Genome Project have made all data completely open, MNI will be the first scientific institute to follow that path, Rouleau says. “It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. Opening access to the tissue samples in MNI’s biobank and to its extensive databank of brain scans and other data will have a major impact, Rouleau hopes. “We think that it is a way to accelerate discovery and the application of neuroscience.” After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. They include freely providing all results, data, software, and algorithms; and requiring collaborators from other institutions to also follow the open principles. © 2016 American Association for the Advancement of Science.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 21813 - Posted: 01.23.2016

Laura Sanders Faced with a shortage of the essential nutrient selenium, the brain and the testes duke it out. In selenium-depleted male mice, testes hog the trace element, leaving the brain in the lurch, scientists report in the Nov. 18 Journal of Neuroscience. The results are some of the first to show competition between two organs for trace nutrients, says analytical neurochemist Dominic Hare of the University of Technology Sydney and the Florey Institute of Neuroscience and Mental Health in Melbourne. In addition to uncovering this brain-testes scuffle, the study “highlights that selenium in the brain is something we can’t continue to ignore,” he says. About two dozen proteins in the body contain selenium, a nonmetallic chemical element. Some of these proteins are antioxidants that keep harmful molecules called free radicals from causing trouble. Male mice without enough selenium have brain abnormalities that lead to movement problems and seizures, neuroscientist Matthew Pitts of the University of Hawaii at Manoa and colleagues found. In some experiments, Pitts and his colleagues depleted selenium by interfering with genes. Male mice engineered to lack two genes that produce proteins required for the body to properly use selenium had trouble balancing on a rotating rod and moving in an open field. In their brains, a particular group of nerve cells called parvalbumin interneurons didn’t mature normally. © Society for Science & the Public 2000 - 2015.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21640 - Posted: 11.18.2015

Sarah Schwartz With outposts in nearly every organ and a direct line into the brain stem, the vagus nerve is the nervous system’s superhighway. About 80 percent of its nerve fibers — or four of its five “lanes” — drive information from the body to the brain. Its fifth lane runs in the opposite direction, shuttling signals from the brain throughout the body. Doctors have long exploited the nerve’s influence on the brain to combat epilepsy and depression. Electrical stimulation of the vagus through a surgically implanted device has already been approved by the U.S. Food and Drug Administration as a therapy for patients who don’t get relief from existing treatments. Now, researchers are taking a closer look at the nerve to see if stimulating its fibers can improve treatments for rheumatoid arthritis,heart failure, diabetes and even intractable hiccups. In one recent study, vagus stimulation made damaged hearts beat more regularly and pump blood more efficiently. Researchers are now testing new tools to replace implants with external zappers that stimulate the nerve through the skin. But there’s a lot left to learn. While studies continue to explore its broad potential, much about the vagus remains a mystery. In some cases, it’s not yet clear exactly how the nerve exerts its influence. And researchers are still figuring out where and how to best apply electricity. © Society for Science & the Public 2000 - 2015.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21633 - Posted: 11.14.2015