Links for Keyword: Miscellaneous

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 121 - 140 of 668

By DENISE GRADY An electrical device glued to the scalp can slow cancer growth and prolong survival in people with the deadliest type of brain tumor, researchers reported on Saturday. The device is not a cure and, on average, adds only a few months of life when used along with the standard regimen of surgery, radiation and chemotherapy. Some doctors have questioned its usefulness. But scientists conducting a new study said the device was the first therapy in a decade to extend life in people with glioblastomas, brain tumors in which median survival is 15 months even with the best treatment. The disease affects about 10,000 people a year in the United States and is what killed Senator Edward M. Kennedy in 2009. It is so aggressive and hard to treat that even seemingly small gains in survival are considered important. The new findings mean the device should become part of the standard care offered to all patients with newly diagnosed glioblastomas, the researchers conducting the study said. The equipment consists of four pads carrying transducer arrays that patients glue to their scalps and change every few days. Wires lead to a six-pound operating system and power supply. Except for some scalp irritation, the device has no side effects, the study found. But patients have to wear it more or less around the clock and must keep their heads shaved. It generates alternating, low-intensity electrical fields — so-called tumor-treating fields — that can halt tumor growth by stopping cells from dividing, which leads to their death. The researchers said the technology might also help treat other cancers, and would be tested in mesothelioma and cancers of the lung, ovary, breast and pancreas. © 2014 The New York Times Company

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 20:
Link ID: 20319 - Posted: 11.17.2014

By Anna North Do you devour the latest neuroscience news, eager to learn more about how your brain works? Or do you click past it to something else, something more applicable to your life? If you’re in the latter camp, you may be in the majority. A new study suggests that many people just don’t pay that much attention to brain science, and its findings may raise a question: Is “neuro-literacy” really necessary? At Wired, Christian Jarrett writes, “It feels to me like interest in the brain has exploded.” He cites the prevalence of the word “brain” in headlines as well as “the emergence of new fields such as neuroleadership, neuroaesthetics and neuro-law.” But as a neuroscience writer, he notes, he may be “heavily biased” — and in fact, some research “suggests neuroscience has yet to make an impact on most people’s everyday lives.” For instance, he reports, Cliodhna O’Connor and Helene Joffe recently interviewed 48 Londoners about brain science for a paper published in the journal Science Communication. Anyone who thinks we live in an era of neuro-fixation may find the results a bit of a shock. Said one participant in the research: “Science of the brain? I haven’t a clue. Nothing at all. I’d be lying if I said there was.” Another: “Brain research I understand, an image of, I don’t know, a monkey or a dog with like the top of their head off and electrodes and stuff on their brain.” And another: “I might have seen it on the news or something, you know, some report of some description. But because they probably mentioned the word ‘science,’ or ‘We’re going to go now to our science correspondent Mr. Lala,’ that’s probably when I go, okay, it’s time for me to make a cup of tea.” According to the study authors, 71 percent of respondents “took pains to convey that neuroscience was not salient in their day-to-day life: it was ‘just not really on my radar.’” Some respondents associated brain research with scientists in white coats or with science classes (asked to free-associate about the term “brain research,” one respondent drew a mean-faced stick figure labeled “cross teacher”). And 42 percent saw science as something alien to them, removed from their own lives. © 2014 The New York Times Company

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 20: ; Chapter 14: Attention and Higher Cognition
Link ID: 20315 - Posted: 11.15.2014

By Bec Crew Mike meet everyone, everyone meet Mike. No, no, don’t wave. He can’t see, you’re just making this awkward. Also known as Miracle Mike, Mike the Headless Chicken was a plump, five-year-old cockerel when he was unceremoniously beheaded on 10 September 1945. Farmer Lloyd Olsen of Fruita in Colorado did the deed because his wife Clara was having her mother over for dinner that night, and Olsen knew she’d always enjoyed a bit of roast chicken neck. With that in mind, Olsen tried to save most of Mike’s neck as he lopped his head off, but in doing so, he accidentally made his axe miss Mike’s jugular vein, plus one ear and most of his brain stem, and to his surprise, Mike didn’t die. In fact, Mike stuck around for a good 18 months without his head. Immediately after it happened, Mike reeled around like any headless chicken would, but soon settled down. He even started pecking at the ground for food with his newly minted stump, and made preening motions. His crows had become throaty gurglings. Olsen, bewildered, left him to it. The next morning, when Olsen found Mike asleep in the barn, having attempted to tuck his head under his wing as he always had, the farmer took it upon himself to figure out how to feed this unwitting monstrosity. Mike had earned that much. All Olsen had to do was deposit food and water into Mike’s exposed oesophagus via a little eyedropper. He even got small grains of corn sometimes as a treat. © 2014 Scientific American

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20126 - Posted: 09.29.2014

One of the best things about being a neuroscientist used to be the aura of mystery around it. It was once so mysterious that some people didn’t even know it was a thing. When I first went to university and people asked what I studied, they thought I was saying I was a “Euroscientist”, which is presumably someone who studies the science of Europe. I’d get weird questions such as “what do you think of Belgium?” and I’d have to admit that, in all honesty, I never think of Belgium. That’s how mysterious neuroscience was, once. Of course, you could say this confusion was due to my dense Welsh accent, or the fact that I only had the confidence to talk to strangers after consuming a fair amount of alcohol, but I prefer to go with the mystery. It’s not like that any more. Neuroscience is “mainstream” now, to the point where the press coverage of it can be studied extensively. When there’s such a thing as Neuromarketing (well, there isn’t actually such a thing, but there’s a whole industry that would claim otherwise), it’s impossible to maintain that neuroscience is “cool” or “edgy”. It’s a bad time for us neurohipsters (which are the same as regular hipsters, except the designer beards are on the frontal lobes rather than the jaw-line). One way that we professional neuroscientists could maintain our superiority was by correcting misconceptions about the brain, but lately even that avenue looks to be closing to us. The recent film Lucy is based on the most classic brain misconception: that we only use 10% of our brain. But it’s had a considerable amount of flack for this already, suggesting that many people are wise to this myth. We also saw the recent release of Susan Greenfield’s new book Mind Change, all about how technology is changing (damaging?) our brains. This is a worryingly evidence-free but very common claim by Greenfield. Depressingly common, as this blog has pointed out many times. But now even the non-neuroscientist reviewers aren’t buying her claims. © 2014 Guardian News and Media Limited

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 20: ; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 20011 - Posted: 08.30.2014

By Erik Schechter The folks who brought us the giant, smartphone-controlled cyborg cockroach are back—this time, with a wired-up scorpion. Be afraid. Backyard Brains, a small Michigan-based company dedicated to spreading the word about neuroscience, has been running surgical experiments on these deadly arachnids for the past two months, using electrical current to induce them to strike. Dylan Miller, a summer intern working the project, insists it's the first time that an electrical current has ever been used to remotely induce a scorpion to strike with its pedipalps (claws) and tail. "I was originally looking at how scorpions sense the ground vibrations of their prey," says Miller, a neuroscience major at Michigan State University, "and I just kind of stumbled on this defensive response." In retrospect, it's easy to see how Miller got there. Scorpions use vibrations and their tactile sense to navigate the world, identifying both prey and predator. A touch on the leg, for instance, tells a scorpion that it's under attack, provoking a defensive fight-or-flight reaction—either fleeing from danger or going full-out Bruce Lee. In nature, the scorpion would have to be physically touched for that to happen. But in the lab, an electrode to the leg nerves and a tiny, remote-controlled function generator feeding a signal will do the trick. The scorpion experiments build on the earlier work Backyard Brains has done with cockroaches, namely RoboRoach. A Kickstarter project back in June 2013 and now a real for-sale home kit, RoboRoach enables purchasers to surgically implant a live roach with three sets of electrodes and then control its movement with a smartphone app via a Bluetooth control unit worn on the roach's back. The controversial kit has been criticized as cruel by people like cognitive ethologist Marc Bekoff, but the company argues that RoboRoach's educational "benefits outweigh the cost." Undaunted by the criticism, Backyard Brains co-founder Gregory Gage was already tossing around the idea of robo-scorpions last October. ©2014 Hearst Communication, Inc

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19891 - Posted: 07.29.2014

By EDWARD ROTHSTEIN PHILADELPHIA — Clambering upward in dim violet light, stepping from one glass platform to another, you trigger flashes of light and polyps of sound. You climb through protective tubes of metallic mesh as you make your way through a maze of pathways. You are an electrical signal coursing through a neural network. You are immersed in the human brain. Well, almost. Here at the Franklin Institute, you’re at least supposed to get that impression. You pass through this realm (the climbing is optional) as part of “Your Brain” — the largest permanent exhibition at this venerable institution, and one of its best. That show, along with two other exhibitions, opens on Saturday in the new $41 million, 53,000-square-foot Nicholas and Athena Karabots Pavilion. This annex — designed by Saylor Gregg Architects, with an outer facade draped in a “shimmer wall” of hinged aluminum panels created by the artist Ned Kahn — expands the institution’s display space, educational facilities and convention possibilities. It also completes a transformation that began decades ago, turning one of the oldest hands-on science museums in the United States (as the Franklin puts it) into a contemporary science center, which typically combines aspects of a school, community center, amusement park, emporium, theater, international museum and interactive science lab — while also combining, as do many such institutions, those elements’ strengths and weaknesses. That brain immersion gallery gives a sense of this genre’s approach. It is designed more for amusement, effect and social interaction (cherished science center goals) than understanding. So I climb, but I’m not convinced. I hardly feel like part of a network of dendrites and axons as I weave through these pathways. I try, though, to imagine these tubes of psychedelically illuminated mesh filled with dozens of chattering children leaping around. That might offer a better inkling of the unpredictable, raucous complexity of the human brain. © 2014 The New York Times Company

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 19730 - Posted: 06.14.2014

In a new study, scientists at the National Institutes of Health took a molecular-level journey into microtubules, the hollow cylinders inside brain cells that act as skeletons and internal highways. They watched how a protein called tubulin acetyltransferase (TAT) labels the inside of microtubules. The results, published in Cell, answer long-standing questions about how TAT tagging works and offer clues as to why it is important for brain health. Microtubules are constantly tagged by proteins in the cell to designate them for specialized functions, in the same way that roads are labeled for fast or slow traffic or for maintenance. TAT coats specific locations inside the microtubules with a chemical called an acetyl group. How the various labels are added to the cellular microtubule network remains a mystery. Recent findings suggested that problems with tagging microtubules may lead to some forms of cancer and nervous system disorders, including Alzheimer’s disease, and have been linked to a rare blinding disorder and Joubert Syndrome, an uncommon brain development disorder. “This is the first time anyone has been able to peer inside microtubules and catch TAT in action,” said Antonina Roll-Mecak, Ph.D., an investigator at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, and the leader of the study. Microtubules are found in all of the body’s cells. They are assembled like building blocks, using a protein called tubulin. Microtubules are constructed first by aligning tubulin building blocks into long strings. Then the strings align themselves side by side to form a sheet. Eventually the sheet grows wide enough that it closes up into a cylinder. TAT then bonds an acetyl group to alpha tubulin, a subunit of the tubulin protein.

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19729 - Posted: 06.14.2014

By ANNA NORTH The “brain” is a powerful thing. Not the organ itself — though of course it’s powerful, too — but the word. Including it in explanations of human behavior might make those explanations sound more legitimate — and that might be a problem. Though neuroscientific examinations of everyday experiences have fallen out of favor somewhat recently, the word “brain” remains popular in media. Ben Lillie, the director of the science storytelling series The Story Collider, drew attention to the phenomenon last week on Twitter, mentioning in particular a recent Atlantic article: “Your Kid’s Brain Might Benefit From an Extra Year in Middle School.” In the piece, Jessica Lahey, a teacher and education writer, examined the benefits of letting kids repeat eighth grade. Mr. Lillie told Op-Talk the word “brain” could take the emphasis off middle-school students as people: The piece, he said, was “not ignoring the fact that the middle schooler (in this case) is a person, but somehow taking a quarter-step away by focusing on a thing we don’t really think of as human.” The New York Times isn’t immune to “brain”-speak — in her 2013 project “Brainlines,” the artist Julia Buntaine collected all Times headlines using the word “brain” since 1851. She told Op-Talk in an email that “the number of headlines about the brain increased exponentially since around the year 2000, where some years before there were none at all, after that there were at least 30, 40, 80 headlines.” Adding “brain” to a headline may make it sound more convincing — some research shows that talking about the brain has measurable effects on how people respond to scientific explanations. In a 2008 study, researchers found that adding phrases like “brain scans indicate” to explanations of psychological concepts like attention made those explanations more satisfying to nonexpert audiences. Perhaps disturbingly, the effect was greatest when the explanations were actually wrong. © 2014 The New York Times Company

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 19703 - Posted: 06.06.2014

Katia Moskvitch The hundreds of suckers on an octopus’s eight arms leech reflexively to almost anything they come into contact with — but never grasp the animal itself, even though an octopus does not always know what its arms are doing. Today, researchers reveal that the animal’s skin produces a chemical that stops the octopus’s suckers from grabbing hold of its own body parts, and getting tangled up. “Octopus arms have a built-in mechanism that prevents the suckers from grabbing octopus skin,” says neuroscientist Guy Levy at the Hebrew University of Jerusalem, the lead author of the work, which appears today in Current Biology1. It is the first demonstration of a chemical self-recognition mechanism in motor control, and could help scientists to build better bio-inspired soft robots. To find out just how an octopus avoids latching onto itself, Levy and his colleagues cut off an octopus’s arm and subjected it to a series of tests. (The procedure is not considered traumatic, says Levy, because octopuses occasionally lose an arm in nature and behave normally while the limb regenerates.) The severed arms remained active for more than an hour after amputation, firmly grabbing almost any object, with three exceptions: the former host; any other live octopus; and other amputated arms. “But when we peeled the skin off an amputated arm and submitted it to another amputated arm, we were surprised to see that it grabbed the skinned arm as any other item,” says co-author Nir Nesher, also a neuroscientist at the Hebrew University. © 2014 Nature Publishing Group,

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19623 - Posted: 05.16.2014

By Matty Litwack One year ago, I thought I was going to die. Specifically, I believed an amoeba was eating my brain. As I’ve done countless times before, I called my mother in a panic: “Mom, I think I’m dying.” As she has done countless times before, she laughed at me. She doesn’t really take me seriously anymore, because I’m a massive hypochondriac. If there exists a disease, I’ve probably convinced myself that I have it. Every time I have a cough, I assume it’s lung cancer. One time I thought I had herpes, but it was just a piece of candy stuck to my face. In the case of the brain amoeba, however, I had a legitimate reason to believe I was dying. Several days prior, I had visited a doctor to treat my nasal congestion. The doctor deemed my sickness not severe enough to warrant antibiotics and instead suggested I try a neti pot to clear up my congestion. A neti pot is a vessel shaped like a genie’s lamp that’s used to irrigate the sinuses with saline solution. My neti pot came with an instruction manual, which I immediately discarded. Why would I need instructions? Nasal irrigation seemed like a simple enough process: water goes up one nostril and flows down the other – that’s just gravity. I dumped a bottle of natural spring water into the neti pot, mixed in some salt, shoved it in my nostril and started pouring. If there was in fact a genie living in the neti pot, I imagine this was very unpleasant for him. The pressure in my sinuses was instantly reduced. It worked so well that over the next couple of days, I was raving about neti pots to anybody who would allow me to annoy them. It was honestly surprising how little people wanted to hear about nasal irrigation. Some nodded politely, others asked me to stop talking about it, but one friend had a uniquely interesting reaction: “Oh, you’re using a neti pot?” he asked. “Watch out for the brain-eating amoeba.” This was hands-down the strangest warning I had ever received. I assumed it was a joke, but I made a mental note to Google brain amoebas as soon as I was done proselytizing the masses on the merits of saltwater nose genies. © 2014 Scientific American

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 19618 - Posted: 05.15.2014

By Floyd Skloot, March 27, 2009. I was fine the night before. The little cold I’d had was gone, and I’d had the first good night’s sleep all week. But when I woke up Friday morning at 6:15 and got out of bed, the world was whirling counterclockwise. I knocked against the bookcase, stumbled through the bathroom doorway and landed on my knees in front of the sink. It was as though I’d been tripped by a ghost lurking beside the bed. Even when I was on all fours, the spinning didn’t stop. Lightheaded, reaching for solid support, I made it back to bed and, showing keen analytical insight, told my wife, Beverly, “Something’s wrong.” The only way I could put on my shirt was to kneel on the floor first. I teetered when I rose. Trying to keep my head still, moving only my eyes, I could feel my back and shoulders tightening, forming a shell. Everything was in motion, out of proportion, unstable. I barely made it downstairs for breakfast, clutching the banister, concentrating on each step and, when I finally made it to the kitchen, feeling too aswirl to eat anyway. I didn’t realize it at the time, but those stairs would become my greatest risk during this attack of relentless, intractable vertigo. Vertigo — the feeling that you or your surroundings are spinning — is a symptom, not a disease. You don’t get a diagnosis of vertigo; instead, you present with vertigo, a hallmark of balance dysfunction. Or with dizziness, a more generalized term referring to a range of off-kilter sensations including wooziness, faintness, unsteadiness, spatial disorientation, a feeling akin to swooning. It happens to almost everyone: too much to drink or standing too close to the edge of a roof or working out too hard or getting up too fast. © 1996-2014 The Washington Post

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19516 - Posted: 04.22.2014

By JAMES GORMAN There are lots of reasons scientists love fruit flies, but a big one is their flying ability. These almost microscopic creatures, with minimalist nervous systems and prey to every puff of wind, must often execute millisecond aerial ballets to stay aloft. To study fly flight, scientists have to develop techniques that are almost as interesting as the flies. At Cornell University, for instance, researchers have been investigating how the flies recover when their flight is momentarily disturbed. Among their conclusions: a small group of fly neurons is solving calculus problems, or what for humans are calculus problems. To do the research, the members of Cornell team — Itai Cohen and his colleagues, including Z. Jane Wang, John Guckenheimer, Tsevi Beatus and Leif Ristroph, who is now at New York University — glue tiny magnets to the flies and use a magnetic pulse to pull them this way or that. In the language of aeronautics, the scientists disturb either the flies’ pitch (up or down), yaw (left or right) or roll, which is just what it sounds like. The system, developed by Dr. Ristroph as a graduate student in Dr. Cohen’s lab, involves both low and high tech. On the low end, the researchers snip bits of metal bristle off a brush to serve as micromagnets that they glue to the flies’ backs. At the high end, three video cameras record every bit of the flight at 8,000 frames per second, and the researchers use computers to merge the data from the cameras into a three-dimensional reconstruction of the flies’ movements that they can analyze mathematically. © 2014 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19388 - Posted: 03.20.2014

By Klint Finley Today’s neuroscientists need expertise in more than just the human brain. They must also be accomplished hardware engineers, capable of building new tools for analyzing the brain and collecting data from it. There are many off-the-shelf commercial instruments that help you do such things, but they’re usually expensive and hard to customize, says Josh Siegle, a doctoral student at the Wilson Lab at MIT. “Neuroscience tends to have a pretty hacker-oriented culture,” he says. “A lot of people have a very specific idea of how an experiment needs to be done, so they build their own tools.” The problem, Siegle says, is that few neuroscientists share the tools they build. And because they’re so focused on creating tools for their specific experiments, he says, researchers don’t often consider design principles like modularity, which would allow them to reuse tools in other experiments. That can mean too much redundant work as researchers spend time solving problems others already have solved, and building things from scratch instead of repurposing old tools. ‘We just want to build awareness of how open source eliminates redundancy, reduces costs, and increases productivity’ That’s why Siegle and Jakob Voigts of the Moore Lab at Brown University founded Open Ephys, a project for sharing open source neuroscience hardware designs. They started by posting designs for the tools they use to record electrical signals in the brain. They hope to kick start an open source movement within neuroscience by making their designs public, and encouraging others to do the same. “We don’t necessarily want people to use our tools specifically,” Siegle says. “We just want to build awareness of how open source eliminates redundancy, reduces costs, and increase productivity.” © 2014 Condé Nast.

Related chapters from BN: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19353 - Posted: 03.12.2014

Penis envy. Repression. Libido. Ego. Few have left a legacy as enduring and pervasive as Sigmund Freud. Despite being dismissed long ago as pseudoscientific, Freudian concepts such as these not only permeate many aspects of popular culture, but also had an overarching influence on, and played an important role in the development of, modern psychology, leading Time magazine to name him as one of the most important thinkers of the 20th century. Before his rise to fame as the founding father of psychoanalysis, however, Freud trained and worked as a neurologist. He carried out pioneering neurobiological research, which was cited by Santiago Ramóny Cajal, the father of modern neuroscience, and helped to establish neuroscience as a discipline. The eldest of eight children, Freud was born on 6 May, 1856, in the Moravian town of Příbor, in what is now the Czech Republic. Four years later, Freud's father Jakob, a wool merchant, moved the family to Austria in search of new business opportunities. Freud subsequently entered the university there, aged just 17, to study medicine and, in the second year of his degree, became preoccupied with scientific research. His early work was a harbinger of things to come – it focused on the sexual organs of the eel. The work was, by all accounts, satisfactory, but Freud was disappointed with his results and, perhaps dismayed by the prospect of dissecting more eels, moved to Ernst Brücke's laboratory in 1877. There, he switched to studying the biology of nervous tissue, an endeavour that would last for 10 years. © 2014 Guardian News and Media Limited

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 20: ; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19350 - Posted: 03.12.2014

By JoNel Aleccia The first of 18,000 University of California, Santa Barbara, students lined up for shots Monday as the school began offering an imported vaccine to halt an outbreak of dangerous meningitis that sickened four, including one young man who lost his feet. "My dad's a pediatrician and he's been sending me emails over and over to go get it," said Carly Chianese, 20, a junior from Bayville, N.Y., who showed up a half-hour before the UCSB clinic opened. It’s the second time in three months that government health officials have inoculated U.S. college students with an emergency vaccine, Bexsero, to protect against the B strain of meningitis. More than 5,400 students at Princeton University in New Jersey received the vaccine in December after an outbreak sickened eight there. Another 4,400 got booster shots last week. No new cases have been detected at UCSB since November, but health officials said the vaccine licensed in Europe, Australia and Canada but not in the U.S. would stop future spread of the infection. Current vaccines available in the U.S. protect against four strains of meningitis, but not the B strain. Bacterial meningitis is a serious infection that kills 1 in 10 affected and leaves 20 percent with severe disabilities. Shots will be offered at UCSB from Monday through March 7, with a second series planned for later this spring. “During the last couple of outbreaks on college campuses, there have been additional cases over a year or two years,” said Dr. Amanda Cohn, a medical epidemiologist with the Centers for Disease Control and Prevention. “There is certainly that possibility. We strongly recommend that students get vaccinated.”

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19289 - Posted: 02.25.2014

By JAMES GORMAN The question of how moles move all that dirt when they tunnel just under the surface of lawns has never attracted the extensive study that other forms of locomotion — like the flight of birds and insects, or even the jet-propulsion of jellyfish — have. But scientists at the University of Massachusetts and Brown University have recently been asking exactly how, and how hard, moles dig. Yi-Fen Lin, a graduate student at the University of Massachusetts, reported at a recent meeting of the Society for Integrative and Comparative Biology that moles seem to swim through the earth, and that the stroke they use allows them to pack a lot of power behind their shovel-like paws. Ms. Lin measured the power of hairy-tailed moles that she captured in Massachusetts and found they could exert a force up to 40 times their body weight. She also analyzed and presented X-ray videos taken of moles in a laboratory enclosure tunneling their way through a material chosen for its consistency and uniform particle size: cous cous. Angela M. Horner recorded the videos while studying the movement of Eastern moles in the lab of Thomas Roberts, a professor at Brown. One reason moles have not been studied as much as some other animals may be that they are not easy to capture or keep in a laboratory. “People said, ‘You won’t be able to catch them and you won’t be able to keep them alive,’ ” said Elizabeth R. Dumont, an evolutionary biologist who is Ms. Lin’s dissertation adviser. Ms. Lin solved the first problem by camping out in mole territory, on golf courses and farms, and marking their tunnels with sticks that she would watch for hours until movement indicated a mole on the move. © 2014 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 19179 - Posted: 01.29.2014

By Evelyn Boychuk, Caleb is a 14-year-old who enjoys playing video games and reading any book he can get his hands on – and in his spare time, he edits neuroscience papers for a scientific journal. Frontiers for Young Minds is the first journal to bring kids into the middle of the scientific process by making them editors – and it’s free for everyone. The idea came “from the depths of my mind, in a moment when I was bored at a scientific meeting,” says Bob Knight, editor in chief of Frontiers for Young Minds and a professor of psychology and neuroscience at the University of California, Berkeley. This is one of many science outreach efforts that are trying to get youth excited about science, technology, engineering and math courses. A preview version with 15 articles was released at the Society for Neuroscience conference on Nov. 11. The official launch of the monthly journal is planned for the U.S.A. Science and Engineering Festival in Washington D.C. in April. “The kids have been great,” says Knight. “Their reviews are not filtered, they just tell you what they think.” In an e-mail, one of the young editors said, “'Hey Bob, I have to tell you, I didn’t understand anything in this article. The words are too big and it’s too confusing,'” Knight recounted. When Caleb was asked if he would edit an article for this preview, "it seemed like an interesting opportunity," he said, so he gave it a try. © CBC 2014

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook
Related chapters from MM:Chapter 20:
Link ID: 19145 - Posted: 01.18.2014

By Ashutosh Jogalekar Often you will hear people talking about why drugs are expensive: it’s the greedy pharmaceutical companies, the patent system, the government, capitalism itself. All these factors contribute to increasing the price of a drug, but one very important factor often gets entirely overlooked: Drugs are expensive because the science of drug discovery is hard. And it’s just getting harder. In fact purely on a scientific level, taking a drug all the way from initial discovery to market is considered harder than putting a man on the moon, and there’s more than a shred of truth to this contention. In this series of posts I will try to highlight some of the purely scientific challenges inherent in the discovery of new medicines. I am hoping that this will make laymen appreciate a little better why the cost of drugs doesn’t have everything to do with profit and power and much to do with scientific ignorance and difficulty; as one leading scientist I know quips, “Drugs are not expensive because we are evil, they are expensive because we are stupid.” I could actually end this post right here by stating one simple, predominant reason why the science of drug discovery is so tortuous: it’s because biology is complex. The second reason is because we are dealing with a classic multiple variable optimization problem, except that the variables to be optimized again pertain to a very poorly understood, complex and unpredictable system. The longer answer will be more interesting. The simple fact is that we still haven’t figured out the workings of biological systems – the human body in this case – to an extent that allows us to rationally and predictably modify, mitigate or cure their ills using small organic molecules. That we have been able to do so to an unusually successful degree is a tribute to both human ingenuity and plain good luck. But there’s still a very long way to go. © 2014 Scientific American

Related chapters from BN: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19105 - Posted: 01.07.2014

by Alyssa Botelho Women with breast cancer often enjoy several years in remission, only to then be given the devastating news that they have developed brain tumours. Now we are finally starting to understand how breast cancer cells are able to spread undetected in the brain: they masquerade as neurons and hijack their energy supply. For every tumour that originates in the brain, 10 arrive there from other organ systems. Understanding how tumours spread, or metastasise, and survive in the brain is important because the survival rate of people with brain metastases is poor – only a fifth are still alive a year after being diagnosed. Rahul Jandial, a neurosurgeon at the City of Hope Cancer Center in Duarte, California, wanted to explore how breast cancer cells are able to cross the blood-brain barrier and escape destruction by the immune system. "If, by chance, a malignant breast cancer cell swimming in the bloodstream crossed into the brain, how would it survive in a completely new, foreign habitat?" Jandial says. He and his team wondered if breast cancer cells that could use the resources around them – neurotransmitters and other chemicals in the brain – would be the ones that survived and flourished. To test the idea, they took samples of metastatic breast cancer cells from the brains of several women and grew them in the lab. They compared the expression of proteins involved in detecting and absorbing GABA – a common neurotransmitter that neurons convert into energy – in these cells with what happens in non-metastatic breast cancer cells. © Copyright Reed Business Information Ltd

Related chapters from BN: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19102 - Posted: 01.07.2014

By Christian Jarrett Christmas is over and the start of the movie awards season is only weeks away! This is my excuse for a post about cinema and the brain. Over the years I’ve been keeping note of actors who studied neuroscience and other similar factoids and now I have the chance to share them with you. So here, in no particular order, are 10 surprising links between the worlds of Hollywood and brain research: 1. Actress Mayim Bialik is a neuroscientist. Bialik currently plays the character of neuroscientist Amy Fowler in the Big Bang Theory, which is neat because Bialik herself has a PhD in neuroscience. Her PhD thesis, completed at UCLA in 2007, has the title: “Hypothalamic regulation in relation to maladaptive, obsessive-compulsive, affiliative, and satiety behaviors in Prader-Willi syndrome.” “I don’t try and rub my neuroscience brain in people’s face[s],” Bialik says, “but when we have lab scenes … I have had to say that’s not where the tectum would be, we need it down here … or I’ve actually carved the fourth ventricle into slices … ’cause you know, why not have me do it.” Among her other acting roles, Bialik also featured in the short film for Michael Jackson’s Liberian Girl and she played the child version of Bette Midler’s character in Beaches (1988). 2. Natalie Portman is a neuroscientist. Perform a Google Scholar search on her name and you won’t get very far. But under her original name of Natalie Hershlag, the Oscar-winning actress co-authored a paper in 2002 on the role of the frontal lobes in infants’ understanding of “object permanence” – recognizing that things still exist even when you can’t see them. According to the Mind Hacks blog, Ms. Portman contributed to this research while working as a research assistant at Harvard University. Her paper has now been cited in the literature over 100 times. © 2013 Condé Nast.

Related chapters from BN: Chapter 1: Introduction: Scope and Outlook; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 20: ; Chapter 14: Attention and Higher Cognition
Link ID: 19079 - Posted: 12.31.2013