Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 340

By Scicurious In his State of the Union this year, President Obama referred to increasing support for science and technology, and mentioned the “Brain Activity Map”. Of course neuroscientists were instantly atwitter. It was the first we’d all heard of any Brain Activity Map. What is it? What did it mean? After a lot of speculation and some quickly formed opinions about whether or not it was a good idea…the White House has now unveiled what the project actually is: BRAIN, Brain Research through Advancing Innovative Neurotechnologies. And what is the project exactly? Will the BRAIN project end up as a BAM (Brain Activity Map)? Or a BUST (Badly Underfunded S**T)? I’d like to explore what I know, and I’d like to hear what everyone else knows as well. Am I wrong? Am I too optimistic? Too pessimistic? Have at. What is the BRAIN Project about? What are its goals? Well, nobody knows, actually. I certainly don’t know. But it appears that no one else knows either. “This working group, co-chaired by Dr. Cornelia “Cori” Bargmann (The Rockefeller University) and Dr. William Newsome (Stanford University), is being asked to articulate the scientific goals of the BRAIN initiative and develop a multi-year scientific plan for achieving these goals, including timetables, milestones, and cost estimates.” So basically, BRAIN is a very fancy initiative, with a fancy name…and so far, no goals. And of course, we’re all excited and trying to figure out what it’s going to be and whether or not it will work. Maybe it would have been in the better interest of the White House to wait until there were…you know, goals. But there is one goal that seems established here: new technologies. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18004 - Posted: 04.09.2013

By Sara Reardon and Bob Holmes, When President Obama called for $100 million in federal funding last week to map the human brain, he said he was hoping to “unlock the mystery of the three pounds of matter that sits between our ears.” Scientists hope that tracking brain activity neuron by neuron — an effort now called the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative — will revolutionize our understanding of brain function in the same way that the Human Genome Project is transforming our understanding of our genes. But just how do you go about mapping a brain? This is a question that two projects with similar lofty goals are already grappling with. The Human Brain Project aims to do it by creating a computer simulation of the entire brain. The Human Connectome Project is using magnetic resonance imaging to track the fibers that connect different regions of the brain on the millimeter scale, giving a rough-grained road map of the brain. To succeed, researchers will need to find noninvasive ways to record the firing of individual neurons, because all current methods involve opening the skull and, often, sticking electrodes into brain tissue. “Right now, you’re literally driving posts into the brain. It’s not very sophisticated,” says neurobiologist John Ngai of the University of California at Berkeley. A few groups are working on new approaches. The MindScope project at the Allen Institute for Brain Science in Seattle aims to map the visual cortex of mice. The team identifies where neurons are firing by injecting the brain with dyes or using genetically engineered proteins that bind to calcium molecules. When a neuron fires, calcium flows into the cell and activates the dye or protein. © 1996-2013 The Washington Post

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18003 - Posted: 04.09.2013

by Emily Underwood For neuroscientist Rafael Yuste, sitting in an ornate White House chamber yesterday listening to President Barack Obama heap praise—and some $100 million—on a brain-mapping initiative that he helped hatch was a "luminous" experience. "It felt like history," says the researcher, who works at Columbia University. "There is this enormous mystery waiting to be unlocked," Obama told the East Room crowd packed with leaders of American neuroscience during a 12-minute paean to brain research (likely the most expansive yet delivered by an American president). By "giving scientists the tools they need to get a dynamic picture of the brain in action," he said, the new initiative will help scientists find a cure for complex brain processes such as traumatic brain injury and Parkinson's, and create jobs that "we haven't even dreamt up yet." For all the lofty rhetoric, however, the White House didn't provide many details about how the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative will accomplish its mission. And the lack of detail is worrying not only BRAIN skeptics—who argue that it targets the wrong goal and could detract from other research efforts—but also even some staunch advocates such as Yuste. The way that the White House has packaged and plans to fund and coordinate the initiative, they say, is creating some unease. "As the proposal stands, it's still awfully vague, so it's hard not to have some reservations," says biophysicist Jeremy Berg of the University of Pittsburgh in Pennsylvania, who is a former director of the National Institute of General Medical Sciences at the National Institutes of Health (NIH). © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17990 - Posted: 04.05.2013

Dana Smith In January, the European Commission pledged 500 million euros to work towards creating a functional model of the human brain. Then, yesterday, Barack Obama officially announced an initiative to advance neuroscience, funding a large-scale research project aimed at unlocking the secrets of the brain that involves over $100 million in federal spending in the first year alone, as well as investments from private organizations. Both projects are geared towards creating a working model of the brain, mapping its 100 billion neurons. The first, the Human Brain Project, is being spearheaded by Professor Henry Markram of École Polytechnique Fédérale de Lausanne. Together with collaborators from 86 other European institutions, they aim to simulate the workings of the human brain using a giant super computer. This would mean compiling information about the activity of individual neurons and neuronal circuits throughout the brain in a massive database. They then hope to integrate the biological actions of these neurons to create theoretical maps of different subsystems, and eventually, through the magic of computer simulation, a working model of the entire brain. Neurologic and psychiatric disorders collectively "affect 100 million Americans and cost us $500 billion each year in terms of health-care costs." Similarly, the United States' recently renamed Brain Research Through Advancing Innovative Neurotechnologies, or BRAIN (previously the Brain Activity Map Project, or BAM), is an initiative that will be organized through the National Institutes of Health, National Science Foundation, and Defense Advanced Research Projects Agency, and carried out in a number of universities and research institutes throughout the U.S. © 2013 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17989 - Posted: 04.05.2013

By Puneet Kollipara President Barack Obama has unveiled a long-term neuroscience research initiative that will develop new tools and technologies to study human and animal brains on larger scales than currently possible. Announced April 2, the BRAIN Initiative could ultimately help researchers better understand human behavior and thought and develop new ways to diagnose, treat and cure neurological and psychiatric diseases. The initiative is slated to begin in October, with $100 million budgeted for the project in fiscal year 2014. The National Institutes of Health, the Defense Advanced Research Projects Agency and the National Science Foundation will lead the effort, which Obama likened to the Human Genome Project in terms of its ambitious aims and the scientific and health benefits the initiative could yield. The human brain remains one of the greatest scientific mysteries. Researchers can now probe only a small number of neurons simultaneously or get relatively crude looks at specific regions or the entirety of the brain. But scientists believe that understanding the action of circuits containing thousands or millions of coordinated neurons could lead to a better understanding of how the brain works — as well as what goes wrong when it doesn’t. Short for Brain Research through Advancing Innovative Neurotechnologies, the BRAIN Initiative would seek to develop tools and technologies to measure and manipulate the firing patterns of all neurons in a circuit. Other new tools — hardware, software and databases — would store the data, make it public and analyze it. The initiative takes its inspiration from a research vision known as the Brain Activity Map, which originated from a group of neuroscientists, nanoscientists and research groups. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17984 - Posted: 04.03.2013

By John Horgan Does anyone still remember “The Decade of the Brain“? Youngsters don’t, but perhaps some of my fellow creaky, cranky science-lovers do. In 1990, the brash, fast-growing Society for Neuroscience convinced Congress to name the ’90s the Decade of the Brain. The goal, as President George Bush put it, was to boost public awareness of and support for research on the “three-pound mass of interwoven nerve cells” that serves as “the seat of human intelligence, interpreter of senses and controller of movement.” One opponent of this public-relations stunt was Torsten Wiesel, who won a Nobel Prize in 1981 for work on the neural basis of vision. When I interviewed him in 1998 for my book The Undiscovered Mind, he grumbled that the Decade of the Brain was “foolish.” Scientists “need at least a century, maybe even a millennium,” to understand the brain, Wiesel said. “We are at the very beginning of brain science.” I recalled Wiesel’s irritable comments as I read about big new neuroscience initiatives in the U.S. and Europe. In January, the European Union announced it would sink more than $1 billion over the next decade into the Human Brain Project, an attempt to construct a massive computer simulation of the brain. The project, according to The New York Times, involves more than 150 institutions. Meanwhile, President Barack Obama is reportedly planning to commit more than $3 billion to a similar project, called the Brain Activity Map. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17943 - Posted: 03.25.2013

Monya Baker At first glance, it looks like an oddly shaped campfire: smoky grey shapes light up with red sparks and flashes. But the video actually represents a different sort of crackle — the activity of individual neurons across a larval fish brain. It is the first time that researchers have been able to image an entire vertebrate brain at the level of single cells. “We see the big picture without losing resolution,” says Phillipp Keller, a microscopist at the Howard Hughes Medical Institute's Janelia Farm Research Campus in Ashburn, Virginia, who developed the system with Janelia neurobiologist Misha Ahrens. The researchers are able to record activity across the whole fish brain almost every second, detecting 80% of its 100,000 neurons. (The rest lie in hard-to-access areas, such as between the eyes; their activity is visible but cannot be pinned down to single cells.) The work is published today in Nature Methods1. “It’s phenomenal,” says Rafael Yuste, a neuroscientist at Columbia University in New York. “It is a bright star now in the literature, suggesting that it is not crazy to map every neuron in the brain of an animal.” Yuste has been leading the call for a big biology project2 that would do just that in the human brain, which contains about 85,000 times more neurons than the zebrafish brain. The resolution offered by the zebrafish study will enable researchers to understand how different regions of the brain work together, says Ahrens. With conventional techniques, imaging even 2,000 neurons at once is difficult, so researchers must pick and choose which to look at, and extrapolate. Now, he says, “you don't need to guess what is happening — you can see it”. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17922 - Posted: 03.19.2013

By TIM REQUARTH For months, Henry Markram and his team had been feeding data into a supercomputer, four vending-machine-size black boxes whirring quietly in the basement of the Swiss Federal Institute of Technology in Lausanne. The Blue Brain computer has 10,000 virtual neurons. The colors represent the neurons' electric voltage at a specific moment. The boxes housed thousands of microchips, each programmed to act like a brain cell. Cables carried signals from microchip to microchip, just as cells do in a real brain. In 2006, Dr. Markram flipped the switch. Blue Brain, a tangled web of nearly 10,000 virtual neurons, crackled to life. As millions of signals raced along the cables, electrical activity resembling real brain waves emerged. “That was an incredible moment,” he said, comparing the simulation to what goes on in real brain tissue. “It didn’t match perfectly, but it was pretty good. As a biologist, I was amazed.” Deciding then that simulating the entire brain on a supercomputer would be possible within his lifetime, Dr. Markram, now 50, set out to prove it. That is no small feat. The brain contains nearly 100 billion neurons organized into networks with 100 trillion total connections, all firing split-second spikes of voltage in a broth of complex biological molecules in constant flux. In 2009, Dr. Markram conceived of the Human Brain Project, a sprawling and controversial initiative of more than 150 institutions around the world that he hopes will bring scientists together to realize his dream. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17921 - Posted: 03.19.2013

By Ben Thomas In 1956, a legion of famed scientific minds descended on Dartmouth College to debate one of mankind’s most persistent questions: Is it possible to build a machine that thinks? The researchers had plenty to talk about – biologists and mathematicians had suggested since the 1940s that nerve cells probably served as binary logic gates, much like transistors in computer mainframes. Meanwhile, computer theorists like Alan Turing and Claude Shannon had been arguing for years that intelligence and learning could – at least in theory – be programmed into a machine of sufficient complexity. Within the next few decades, many researchers predicted, we’d be building machines capable of conscious thought. Fifty-odd years after that first Dartmouth Conference, our sharpest supercomputers still struggle to hold basic conversations. We’ve created software that can drive our cars and predict our purchases, but the dreams of a true artificial brain – and of a working neuron-by-neuron model of the human brain itself – look even more distant than they did in the 1950s. The more we learn about how the brain works, the more interwoven and inextricable we realize its components and processes are – and the less like a computer it seems. Take synapses, for example – the points where neurons link up and exchange information. Neuroscientists estimate that a human brain may contain about 150 trillion of them, and no two are quite identical – either to one another, or to any synapse in anyone else’s brain. On top of this complexity, every neuron in a brain is constantly learning, adapting, fine-tuning its sensitivity, tinkering with its synaptic connections – rarely wired the same way from one day to the next. In light of all this, it’s not hard to see why many scientists seriously doubt that we’ll map an entire human brain any time this century – much less engineer a digital version from scratch. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17920 - Posted: 03.19.2013

By Charles Q. Choi and Txchnologist Scientists scanning the human brain can now tell whom a person is thinking of, the first time researchers have been able to identify what people are imagining from imaging technologies. Work to visualize thought is starting to pile up successes. Recently, scientists have used brain scans to decode imagery directly from the brain, such as what number people have just seen and what memory a person is recalling. They can now even reconstruct videos of what a person has watched based on their brain activity alone. Cornell University cognitive neuroscientist Nathan Spreng and his colleagues wanted to carry this research one step further by seeing if they could deduce the mental pictures of people that subjects conjure up in their heads. “We are trying to understand the physical mechanisms that allow us to have an inner world, and a part of that is how we represent other people in our mind,” Spreng says. His team first gave 19 volunteers descriptions of four imaginary people they were told were real. Each of these characters had different personalities. Half the personalities were agreeable, described as liking to cooperate with others; the other half were less agreeable, depicted as cold and aloof or having similar traits. In addition, half these characters were described as outgoing and sociable extroverts, while the others were less so, depicted as sometimes shy and inhibited. The scientists matched the genders of these characters to each volunteer and gave them popular names like Mike, Chris, Dave or Nick, or Ashley, Sarah, Nicole or Jenny. © 2013 Scientific American

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17906 - Posted: 03.15.2013

By Partha Mitra The Sherlock Holmes novel The Hound of the Baskervilles features the great Grimpen Mire, a treacherous marsh in Dartmoor, England. Holmes’ protagonist, the naturalist Stapleton, knows where the few secure footholds are, allowing him to cross the mire and reach the hills with rare plants and butterflies, but he warns Dr. Watson that a false step can be fatal, the bog inexorably consuming the unsuspecting traveller. Trying to unravel the complexities of the brain is a bit like crossing the great Grimpen Mire: one needs to know where the secure stepping-stones are, and a false step can mean sinking into a morass. As we enter the era of Big Brain Science projects, it is important to know where the next firm foothold is. As a goal worthy of a multi-billion dollar brain project, we have now been offered a motto that is nearly as rousing as “climb every mountain”: “record every action potential from every neuron.” According to recent reporting in the New York Times, this goal, proclaimed in a paper published in 2012, will be the basis of a decade-long “Brain Activity Map” project. Not content with a goal as lofty as this in worms, flies and mice, the press reports imply (and the authors also speculate) that these technologies will be used for comprehensive spike recordings in the human brain, generating a “Brain Activity Map” that will provide the answers to Alzheimers and Schizophrenia and lead us out of the “impenetrable jungles of the brain” that hapless neuroscientists have wandered over the past century. Neuroscience is most certainly in need of integration, and brain research will without doubt benefit from the communal excitement and scaled up funding associated with a Big Brain Initiative. However, success will depend on setting the right goals and guarding against irrational exuberance. Successful big science projects are engineering projects with clear, technically feasible goals: setting a human on the moon, sequencing the Human Genome, finding the Higgs Boson. The technologies proposed in the paper under discussion may or may not be feasible in a given species (they will not be feasible in the normal human brain, since the methods involved are invasive and require that the skull be surgically opened). However, technology development is notoriously difficult to predict, and may carry unforeseen benefits. What we really need to understand is whether the overall goal is meaningful. © 2013 Scientific American,

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17879 - Posted: 03.09.2013

Meredith Wadman Ron Kalil, a neuroscientist at the University of Wisconsin–Madison, didn’t expect to see his son among the 28,500 attendees at the meeting of the Society for Neuroscience in New Orleans last October. And he wondered why Tom Kalil, deputy director for policy at the White House’s Office of Science and Technology Policy (OSTP), was accompanied by Miyoung Chun, vice-president of science programmes at the Kavli Foundation in Oxnard, California. Tom Kalil told his father that the Kavli Foundation had wanted his help in bringing nanoscientists together behind an ambitious idea. Ron Kalil says he thought: “Why are you talking about it at a neuroscience meeting?” He understands now. These two people, neither of them a working scientist, had been quietly pushing into existence the Brain Activity Map (BAM), the largest and most ambitious effort in fundamental biology since the Human Genome Project — and one that would need advances in both nanoscience and neuroscience to achieve its goals. This is the kind of science — big and bold — that politicians like. President Barack Obama praised brain mapping in his State of the Union address on 12 February. Soon after, Francis Collins, director of the US National Institutes of Health (NIH) in Bethesda, Maryland, which will be the lead agency on the project, talked up the idea in a television appearance. The Obama administration is expected to provide more details about the initiative this month, possibly in conjunction with the release of the federal 2014 budget request. But already, some scientists are wondering whether the project, a concept less than two years old and still evolving, can win new funding from Congress, or whether it would crowd out projects pitched by individual scientists. “Creative science is bottom-up, not top-down,” says Cori Bargmann, a neurobiologist at the Rockefeller University in New York. “Are we talking about central planning inside the Beltway?” © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17875 - Posted: 03.07.2013

By JOHN MARKOFF In setting the nation on a course to map the active human brain, President Obama may have picked a challenge even more daunting than ending the war in Afghanistan or finding common ground with his Republican opponents. In more than a century of scientific inquiry into the interwoven cells known as neurons that make up the brain, researchers acknowledge they are only beginning to scratch the surface of a scientific challenge that is certain to prove vastly more complicated than sequencing the human genome. The Obama administration is hoping to announce as soon as next month its intention to assemble the pieces — and, even more challenging, the financing — for a decade-long research project that will have the goal of building a comprehensive map of the brain’s activity. At present, scientists are a long way from doing so. Before they can even begin the process, they have to develop the tools to examine the brain. And before they develop tools that will work on humans, they must succeed in doing so in a number of simpler species — assuming that what they learn can even be applied to humans. Besides the technological and scientific challenges, there are a host of issues involving storing the information researchers gather, and ethical concerns about what can be done with the data. Also highly uncertain is whether the science will advance quickly enough to meet the time frames being considered for what is being called the Brain Activity Map project. Many neuroscientists are skeptical that a multiyear, multibillion dollar effort to unlock the brain’s mysteries will succeed.“I believe the scientific paradigm underlying this mapping project is, at best, out of date and at worst, simply wrong,” said Donald G. Stein, a neurologist at the Emory University School of Medicine in Atlanta. “The search for a road map of stable, neural pathways that can represent brain functions is futile.” © 2013 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17850 - Posted: 02.26.2013

By Gary Stix The era of Big Neuroscience has arrived. In late January, The Human Brain Project—an attempt to create a computer simulation of the brain at every scale from the nano nano to the macro biotic—announced that it had successfully arranged a billion Euro funding package for a 10-year run. And then on Feb. 18, an article in The New York Times took the wraps off a plan to spend perhaps billions of dollars for an effort to record large collections of brain cells and figure out what exactly they are doing. Is this the Large Hadron Collider vs. the Superconducting Supercollider redux? Not yet. The billions for the Brain Activity Map, the U.S. project, are still a wish that has yet to be granted. But, despite as-always hazy government finances, brain researchers are thinking large as they never have before, and invoking the attendant rhetoric of moon shots, next-generation Human Genome Projects and the need for humankind to muster the requisite visionary zeal to tackle one of science’s “last frontiers.” Oy, spare me that last part. The challenges these projects have set for themselves, though, illustrate the challenge of going from today’s crude profiles of a biological machine of incomprehensible complexity to an accurate rendering of the goings-on of some 100 billion neurons woven together by a pulsating tapestry of 100 trillion electrical interconnections. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17849 - Posted: 02.26.2013

By Alan Boyle, Science Editor, NBC News BOSTON — The brain-mapping project that the Obama administration wants to facilitate isn't necessarily aimed at adding billions of dollars to the money already being spent on research, according to the scientists who inspired the idea. Instead, it's aimed at harnessing new technologies to uncover the secrets of neural function less expensively and more completely. "We can bring down the cost and increase the quality of the technology," said Harvard geneticist George Church, one of the researchers who proposed the Brain Activity Map Project last year. "We are trying to work with current funding [levels] to bring down the cost." The New York Times reported on Monday that the White House has embraced the idea of having the Office of Science and Technology Policy spearhead the project, with participation by the National Institutes of Health and other federal agencies. The federal initiative is to be unveiled as early as next month, the Times quoted its sources as saying. The roots of the project go back months if not years earlier: The goals of the BAM Project were outlined last June in a white paper appearing in the journal Neuron. The researchers proposed a 15-year international effort to map the functions of the brain's complex neural circuitry to an unprecedented degree — using traditional tools such as magnetic resonance imaging in combination with novel technologies such as nanosensors and wireless fiber-optic probes that can be implanted into the brain, and genetically engineered cells that can be linked up with brain cells to record their activity. © 2013 NBCNews.com

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17822 - Posted: 02.19.2013

By Pallab Ghosh Science correspondent, BBC News, Boston Scientists are set to release the first batch of data from a project designed to create the first map of the human brain. The project could help shed light on why some people are naturally scientific, musical or artistic. Some of the first images were shown at the American Association for the Advancement of Science meeting in Boston. I found out how researchers are developing new brain imaging techniques for the project by having my own brain scanned. Scientists at Massachusetts General Hospital are pushing brain imaging to its limit using a purpose built scanner. It is one of the most powerful scanners in the world. The scanner's magnets need 22MW of electricity - enough to power a nuclear submarine. The researchers invited me to have my brain scanned. I was asked if I wanted "the 10-minute job or the 45-minute 'full monty'" which would give one of the most detailed scans of the brain ever carried out. Only 50 such scans have ever been done. I went for the full monty. It was a pleasant experience enclosed in the scanner's vast twin magnets. Powerful and rapidly changing magnetic fields were looking to see tiny particles of water travelling along the larger nerve fibres. By following the droplets, the scientists in the adjoining cubicle are able to trace the major connections within my brain. Arcs of understanding The result was a 3D computer image that revealed the important pathways of my brain in vivid colour. One of the lead researchers, Professor Van Wedeen, gave me a guided tour of the inside of my head. BBC © 2013

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17814 - Posted: 02.18.2013

By JOHN MARKOFF The Obama administration is planning a decade-long scientific effort to examine the workings of the human brain and build a comprehensive map of its activity, seeking to do for the brain what the Human Genome Project did for genetics. The project, which the administration has been looking to unveil as early as March, will include federal agencies, private foundations and teams of neuroscientists and nanoscientists in a concerted effort to advance the knowledge of the brain’s billions of neurons and gain greater insights into perception, actions and, ultimately, consciousness. Scientists with the highest hopes for the project also see it as a way to develop the technology essential to understanding diseases like Alzheimer’s and Parkinson’s, as well as to find new therapies for a variety of mental illnesses. Moreover, the project holds the potential of paving the way for advances in artificial intelligence. The project, which could ultimately cost billions of dollars, is expected to be part of the president’s budget proposal next month. And, four scientists and representatives of research institutions said they had participated in planning for what is being called the Brain Activity Map project. The details are not final, and it is not clear how much federal money would be proposed or approved for the project in a time of fiscal constraint or how far the research would be able to get without significant federal financing. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 17813 - Posted: 02.18.2013

By Breanna Draxler Brain differences between the 23 participants were quantified at each surface vertex. Values below the global mean are shown in cool colors while values above this average are shown in warm colors. Image courtesy of Sophia Mueller et al. Every person thinks and acts a little differently than the other 7 billion on the planet. Scientists now say that variations in brain connections account for much of this individuality, and they’ve narrowed it down to a few specific regions of the brain. This might help us better understand the evolution of the human brain as well as its development in individuals. Each human brain has a unique connectome—the network of neural pathways that tie all of its parts together. Like a fingerprint, every person’s connectome is unique. To find out where these individual connectomes differed the most, researchers used an MRI scanning technique to take cross-sectional pictures of 23 people’s brains at rest. Researchers found very little variation in the areas of the participants’ brains responsible for basic senses and motor skills. It’s a pretty straight shot from the finger to the part of the brain that registers touch, for example, or from the eye to the vision center. Thus we apparently all sense the world in more or less the same way. The real variety arose in the parts of the brain associated with personality, like the frontoparietal lobe. This multipurpose area in the brain curates sensory data into complex thoughts, feelings or actions and allows us to interpret the things we sense (i.e., we recognize a red, round object as an apple). Because there are many ways to get from sensation to reaction, and many different ways to react to what we sense, each individual’s brain blazes its own paths.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 17774 - Posted: 02.09.2013

By JUDY BATTISTA NEW ORLEANS — The N.F.L., faced with increasing concern about the toll of concussions and confronted with litigation involving thousands of former players, is planning to form a partnership with General Electric to jump-start development of imaging technology that would detect concussions and encourage the creation of materials to better protect the brain. The four-year initiative, which is expected to begin in March with at least $50 million from the league and G.E., is the result of a late October conversation between Commissioner Roger Goodell and G.E.’s chief executive, Jeffrey Immelt, a former offensive tackle at Dartmouth. When Goodell explained his idea of getting leading companies in innovation to join the N.F.L. to accelerate research, Immelt said he wanted to help. After years of insisting there was no link between head injuries sustained on the field and long-term cognitive impairment, the N.F.L. has altered rules, fined and suspended players who hit opponents in the head and contributed millions of dollars for the study of head injuries. “Is this their way of defending themselves with this cloud over the sport? I’d be lying if I told you it had nothing to do with it,” Kevin Guskiewicz, the founding director of the Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center at the University of North Carolina, said of the initiative. Guskiewicz is a member of the league’s Head, Neck and Spine Committee and the chairman of a subcommittee focused on safety equipment and playing rules. He will work with the N.F.L. and G.E. to identify areas of focus. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 15: Language and Our Divided Brain
Link ID: 17750 - Posted: 02.04.2013

By R. Douglas Fields Imagine if your biggest health problem could be solved with the flip of a switch. Deep-brain stimulation (DBS) offers such a dramatic recovery for a range of neurological illnesses, including Parkinson's disease, epilepsy and major depression. Yet the metal electrodes implanted in the brain are too bulky to tap into intricate neural circuitry with precision and corrode in contact with tissue, so their performance degrades over time. Now neurophysiologists have developed a method of DBS that avoids these problems by using microscopic magnets to stimulate neurons. In experiments published in June 2012 in Nature Communications, neurophysiologist John T. Gale of the Cleveland Clinic and his colleague Giorgio Bonmassar, a physicist at Harvard Medical School and an expert on brain imaging, tested whether micromagnets (which are half a millimeter in diameter) could induce neurons from rabbit retinas to fire. They found that when they electrically energized a micromagnet positioned next to a neuron, it fired. In contrast to the electric currents induced by DBS, which excite neurons in all directions, magnetic fields follow organized pathways from pole to pole, like the magnetic field that surrounds the earth. The researchers found that they could direct the stimulus precisely to individual neurons, and even to particular areas of a neuron, by orienting the magnetic coil appropriately. “That may help us avoid the side effects we see in DBS,” Gale says, referring to, for instance, the intense negative emotions that are sometimes accidentally triggered when DBS is used to relieve motor problems in Parkinson's. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17747 - Posted: 02.02.2013