Links for Keyword: Robotics

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 220

A bionic body is closer than you think By Dwayne Godwin, Jorge Cham Dwayne Godwin is a neuroscientist at the Wake Forest University School of Medicine. Jorge Cham draws the comic strip Piled Higher and Deeper at www.phdcomics.com. © 2016 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22222 - Posted: 05.17.2016

By BENEDICT CAREY Five years ago, a college freshman named Ian Burkhart dived into a wave at a beach off the Outer Banks in North Carolina and, in a freakish accident, broke his neck on the sandy floor, permanently losing the feeling in his hands and legs. On Wednesday, doctors reported that Mr. Burkhart, 24, had regained control over his right hand and fingers, using technology that transmits his thoughts directly to his hand muscles and bypasses his spinal injury. The doctors’ study, published by the journal Nature, is the first account of limb reanimation, as it is known, in a person with quadriplegia. Doctors implanted a chip in Mr. Burkhart’s brain two years ago. Seated in a lab with the implant connected through a computer to a sleeve on his arm, he was able to learn by repetition and arduous practice to focus his thoughts to make his hand pour from a bottle, and to pick up a straw and stir. He was even able to play a guitar video game. “It’s crazy because I had lost sensation in my hands, and I had to watch my hand to know whether I was squeezing or extending the fingers,” Mr. Burkhart, a business student who lives in Dublin, Ohio, said in an interview. His injury had left him paralyzed from the chest down; he still has some movement in his shoulders and biceps. The new technology is not a cure for paralysis. Mr. Burkhart could use his hand only when connected to computers in the lab, and the researchers said there was much work to do before the system could provide significant mobile independence. But the field of neural engineering is advancing quickly. Using brain implants, scientists can decode brain signals and match them to specific movements. Previously, people have learned to guide a cursor on a screen with their thoughts, monkeys have learned to skillfully use a robotic arm through neural signals and scientists have taught monkeys who were partly paralyzed to use an arm with a bypass system. This new study demonstrates that the bypass approach can restore critical skills to limbs no longer directly connected to the brain. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22106 - Posted: 04.14.2016

BRAINS get data about the world through senses – sight, hearing, taste, smell and touch. In a lab in North Carolina, a group of rats is getting an extra one. Thanks to implants in their brains, they have learned to sense and react to infrared light. The rats show the brain’s ability to process unfamiliar data– an early step towards augmenting the human brain. Miguel Nicolelis of Duke University School of Medicine is leading the experiment. His team implanted four clusters of electrodes in the rats’ barrel cortex – the part of the brain that handles whisker sensation (doi.org/bdb6). Each cluster is connected to a sensor that converts infrared light into an electrical signal. Feeding stations placed at the four corners of the rats’ cage take turns emitting infrared signals that guide the rats to them, releasing a reward only when the rats press a button on the feeding station that is emiting the infrared signal. In an older, single sensor version of the experiment, it took the rats one month to adapt. With four sensors, it took them just three days. “This is a truly remarkable demonstration of the plasticity of the mammalian brain,” says Christopher James of the University of Warwick, UK. All the extra data that goes into making the rats’ new sense doesn’t appear to diminish their original senses. “The results show that nature has apparently designed the adult mammalian brain with the possibility of upgrades, and Nicolelis’ team is leading the way showing how to do it,” says Andrea Stocco of the University of Washington in Seattle. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 7: Vision: From Eye to Brain
Link ID: 21999 - Posted: 03.17.2016

By Sheena Goodyear, A brain implant the size of a paper-clip might one day help paralyzed people regain the ability to use their arms and legs via a wireless connection that will transmit their thoughts to an exoskeleton. It's not the first technology to allow paralyzed people to operate mechanical limbs with signals from their brain, but it has the potential to revolutionize the field because it's minimally invasive and totally wireless. It's made possible because of a matchstick-sized implant called a stentrode, crafted from nitinol, an alloy that is commonly used in brassiere underwires and eyeglass frames, according to a study published in the journal Nature Biotechnology. ​"It's really a new method for getting brain data out of the brain without performing brain surgery," Thomas Oxley, a neurologist at the University of Melbourne who designed the device, told CBC News. "Part of the reason that brain-machine interfaces have not been successful to this point is because they get rejected by the body, and the reason they get rejected is because they all require direct implantation into the brain. And to do that you have to take off the skull — you have to perform a craniotomy." ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21886 - Posted: 02.11.2016

By Emily Underwood Researchers have found a way to increase how fast, and for how long, four paralyzed people can type using just their thoughts. The advance has to do with brain-machine interfaces (BCI), which are implanted in brain tissue and record hundreds of neurons firing as people imagine moving a computer cursor. The devices then use a computer algorithm to decode those signals and direct a real cursor toward words and letters on a computer screen. One of the biggest problems with BCIs is the brain itself: When the soft, squishy organ shifts in the skull, as it frequently does, it can displace the electrode implants. As a result, the movement signal extracted from neuronal firing is constantly being distorted, making it impossible for a patient to keep the cursor from drifting off course without a researcher recalibrating the instrument every 10 minutes or so. In the new study, part of a clinical trial of BCIs called BrainGate, researchers performed several software tweaks that allow the devices to self-correct in real time by calculating the writer’s intention based on the words they’ve already written. The devices can now also correct for neuronal background noise whenever a person stops typing. These improvements, demonstrated in the video above, allow BCI users to type faster and for longer periods of time, up to hours or days, the team reports today in Science Translational Medicine. Though the technology still needs to be miniaturized and wireless before it can be used outside of the lab, the new work is a big step towards BCIs that paralyzed people can use on their own at home, the scientists say. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21626 - Posted: 11.12.2015

By KENNETH D. MILLER SOME hominid along the evolutionary path to humans was probably the first animal with the cognitive ability to understand that it would someday die. To be human is to cope with this knowledge. Many have been consoled by the religious promise of life beyond this world, but some have been seduced by the hope that they can escape death in this world. Such hopes, from Ponce de León’s quest to find a fountain of youth to the present vogue for cryogenic preservation, inevitably prove false. In recent times it has become appealing to believe that your dead brain might be preserved sufficiently by freezing so that some future civilization could bring your mind back to life. Assuming that no future scientists will reverse death, the hope is that they could analyze your brain’s structure and use this to recreate a functioning mind, whether in engineered living tissue or in a computer with a robotic body. By functioning, I mean thinking, feeling, talking, seeing, hearing, learning, remembering, acting. Your mind would wake up, much as it wakes up after a night’s sleep, with your own memories, feelings and patterns of thought, and continue on into the world. I am a theoretical neuroscientist. I study models of brain circuits, precisely the sort of models that would be needed to try to reconstruct or emulate a functioning brain from a detailed knowledge of its structure. I don’t in principle see any reason that what I’ve described could not someday, in the very far future, be achieved (though it’s an active field of philosophical debate). But to accomplish this, these future scientists would need to know details of staggering complexity about the brain’s structure, details quite likely far beyond what any method today could preserve in a dead brain. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21499 - Posted: 10.12.2015

A 26-year-old man who is paralysed in both legs has walked for the first time in five years – just by thinking about it. He is the first person to have his brain activity recorded and used to control a muscle-stimulating device in his legs. Every year, 250,000 to 500,000 people worldwide suffer spinal cord injuries, which can leave them partially or completely paralysed below the site of damage. Many rehabilitation clinics already offer functional electric stimulation (FES) devices, which activate the nerves that innervate leg muscles at the push of a button. But people with upper-body paralysis are not always able to operate the FES in this way. The new system bypasses the button and returns control to the brain. “We want to re-establish the connection between the brain and the leg muscles, to bring back the function that was once present,” says Zoran Nenadic at the University of California Irvine. To do that, Nenadic and his colleagues combined an FES system with a brain-computer interface. The team developed an electrode cap that picks up the brainwaves created when a person thinks specifically about walking or standing still. They tailored the device to pick up brain signals from their volunteer – a man who has had little sensation below his shoulder blades for five years. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21437 - Posted: 09.24.2015

Five men with complete motor paralysis were able to voluntarily generate step-like movements thanks to a new strategy that non-invasively delivers electrical stimulation to their spinal cords, according to a new study funded in part by the National Institutes of Health. The strategy, called transcutaneous stimulation, delivers electrical current to the spinal cord by way of electrodes strategically placed on the skin of the lower back. This expands to nine the number of completely paralyzed individuals who have achieved voluntary movement while receiving spinal stimulation, though this is the first time the stimulation was delivered non-invasively. Previously it was delivered via an electrical stimulation device surgically implanted on the spinal cord. In the study, the men’s movements occurred while their legs were suspended in braces that hung from the ceiling, allowing them to move freely without resistance from gravity. Movement in this environment is not comparable to walking; nevertheless, the results signal significant progress towards the eventual goal of developing a therapy for a wide range of individuals with spinal cord injury. “These encouraging results provide continued evidence that spinal cord injury may no longer mean a life-long sentence of paralysis and support the need for more research,” said Roderic Pettigrew, Ph.D., M.D., director of the National Institute of Biomedical Imaging and Bioengineering at NIH. “The potential to offer a life-changing therapy to patients without requiring surgery would be a major advance; it could greatly expand the number of individuals who might benefit from spinal stimulation. It’s a wonderful example of the power that comes from combining advances in basic biological research with technological innovation.”

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21242 - Posted: 08.01.2015

Carl Zimmer A single neuron can’t do much on its own, but link billions of them together into a network and you’ve got a brain. But why stop there? In recent years, scientists have wondered what brains could do if they were linked together into even bigger networks. Miguel A. Nicolelis, director of the Center for Neuroengineering at Duke University, and his colleagues have now made the idea a bit more tangible by linking together animal brains with electrodes. In a pair of studies published on Thursday in the journal Scientific Reports, the researchers report that rats and monkeys can coordinate their brains to carry out such tasks as moving a simulated arm or recognizing simple patterns. In many of the trials, the networked animals performed better than individuals. “At least some times, more brains are better than one,” said Karen S. Rommelfanger, director of the Neuroethics Program at the Center for Ethics at Emory University, who was not involved in the study. Brain-networking research might someday allow people to join together in useful ways, Dr. Rommelfanger noted. Police officers might be able to make collective decisions on search-and-rescue missions. Surgeons might collectively operate on a single patient. But she also warned that brain networks could create a host of exotic ethical quandaries involving privacy and legal responsibility. If a brain network were to commit a crime, for example, who exactly would be guilty? © 2015 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21160 - Posted: 07.11.2015

Computers built to mimic the brain can now recognise images, speech and even create art, and it’s all because they are learning from data we churn out online Do androids dream of electric squid? (Image: Reservoir Lab at Ghent University) I AM watching it have a very odd dream – psychedelic visions of brain tissue folds, interspersed with chunks of coral reef. The dreamer in question is an artificial intelligence, one that live-streams from a computer on the ground floor of the Technicum building in Ghent University, Belgium. This vision has been conjured up after a viewer in the chat sidebar suggests "brain coral" as a topic. It's a fun distraction – and thousands of people have logged on to watch. But beyond that, the bot is a visual demonstration of a technology that is finally coming of age: neural networks. The bot is called 317070, a name it shares with the Twitter handle of its creator, Ghent graduate student Jonas Degrave. It is based on a neural network that can recognise objects in images, except that Degrave runs it in reverse. Given static noise, it tweaks its output until it creates images that tally with what viewers are requesting online. The bot's live-stream page says it is "hallucinating", although Degrave says "imagining" is a little more accurate. Degrave's experiment plays off recent Google research which aimed to tackle one of the core issues with neural networks: that no one knows how neural networks come up with their answers. The images the network creates to satisfy simple instructions can give us some insights. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 14: Attention and Consciousness
Link ID: 21149 - Posted: 07.09.2015

CONCORD, N.H. — Can an algorithm pass for an author? Can a robot rock the house? A series of contests at Dartmouth College is about to find out. Dartmouth is seeking artificial intelligence algorithms that create "human-quality" short stories, sonnets and dance music sets that will be pitted against human-produced literature, poetry and music selections. The judges won't know which is which. The goal is to determine whether people can distinguish between the two, and whether they might even prefer the computer-generated creativity. "Historically, often when we have advances in artificial intelligence, people will always say, 'Well, a computer couldn't paint a sunset,' or 'a computer couldn't write a beautiful love sonnet,' but could they? That's the question," said Dan Rockmore, director of the Neukom Institute for Computational Science at Dartmouth. Rockmore, a mathematics and computer science professor, spun off the idea for the contests from his experience riding a stationary bike. He started thinking about how the music being played during his spin class helped him pedal at the right the pace, and he was surprised when the instructor told him he selected the songs without the help of computer software. "I left there thinking, 'I wonder if I could write a program that did that, or somebody could?'" he said. "Because that is a creative act — a good spin instructor is a total artist. It sort of opened my mind to thinking about whether a computer or algorithm could produce something that was indistinguishable from or even perhaps preferred over what the human does." The competitions are variations of the "Turing Test," named for British computer scientist Alan Turing, who in 1950 proposed an experiment to determine if a computer could have humanlike intelligence. The classic Turing test involves intelligent computer programs that can fool a person carrying on a conversation with it, and there have been many competitions over the years, said Manuela Veloso, professor of computer science and robotics at Carnegie Mellon University and past president of the Association for the Advancement of Artificial Intelligence. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 21135 - Posted: 07.06.2015

by Helen Thomson A brain implant that can decode what someone wants to do has allowed a man paralysed from the neck down to control a robotic arm with unprecedented fluidity – and enjoy a beer at his own pace. Erik Sorto was left unable to move any of his limbs after an accident severed his spinal cord 12 years ago. People with similar injuries have previously controlled prosthetic limbs using implants placed in their motor cortex – an area of the brain responsible for the mechanics of movement. This is far from ideal because it results in delayed, jerky motions as the person thinks about all the individual aspects of the movement. When reaching for a drink, for example, they would have to think about moving their arm forward, then left, then opening their hand, then closing their hand around the cup and so on. Richard Andersen at the California Institute of Technology in Pasadena and his colleagues hoped they could achieve a more fluid movement by placing an implant in the posterior parietal cortex – a part of the brain involved in planning motor movements. "We thought this would allow us to decode brain activity associated with the overall goal of a movement – for example, 'I want to pick up that cup', rather than the individual components," said Anderson at the NeuroGaming Conference in San Francisco, California, where he presented the work this month. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20972 - Posted: 05.23.2015

I’m fairly new to San Francisco, so I’m still building my mental database of restaurants I like. But this weekend, I know exactly where I’m heading to for dinner: Nick’s Crispy Tacos. Then, when I get home, I’m kicking back to a documentary I’ve never heard of, a Mongolian drama called The Cave of the Yellow Dog. An artificially intelligent algorithm told me I’d enjoy both these things. I’d like the restaurant, the machine told me, because I prefer Mexican food and wine bars “with a casual atmosphere,” and the movie because “drama movies are in my digital DNA.” Besides, the title shows up around the web next to Boyhood, another film I like. Nara Logics, the company behind this algorithm, is the brainchild (pun intended) of its CTO and cofounder, Nathan Wilson, a former research scientist at MIT who holds a doctorate in brain and cognitive science. Wilson spent his academic career and early professional life immersed in studying neural networks—software that mimics how a human mind thinks and makes connections. Nara Logics’ brain-like platform, under development for the past five years, is the product of all that thinking.. The Cambridge, Massachusetts-based company includes on its board such bigwig neuroscientists as Sebastian Seung from Princeton, Mriganka Sur from MIT, and Emily Hueske of Harvard’s Center for Brain and Science. So what does all that neuroscience brain power have to offer the tech world, when so many Internet giants—from Google and Facebook to Microsoft and Baidu—already have specialized internal teams looking to push the boundaries of artificial intelligence? These behemoths use AI to bolster their online services, everything from on-the-fly translations to image recognition services. But to hear Wilson tell it, all that in-house work still leaves a large gap—namely, all the businesses and people who could benefit from access to an artificial brain but can’t build it themselves. “We’re building a pipeline, and taking insights out of the lab to intelligent, applied use cases,” Wilson tells WIRED. “Nara is AI for the people.”

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 20967 - Posted: 05.23.2015

by Jessica Hamzelou An exoskeleton that enables movement and provides tactile feedback has helped eight paralysed people regain sensation and move previously paralysed muscles "I FELT the ball!" yelled Juliano Pinto as he kicked off the Football World Cup in Brazil last year. Pinto, aged 29 at the time, lost the use of his lower body after a car accident in 2006. "It was the most moving moment," says Miguel Nicolelis at Duke University in North Carolina, head of the Walk Again Project, which developed the thought-controlled exoskeleton that enabled Pinto to make his kick. Since November 2013, Nicolelis and his team have been training Pinto and seven other people with similar injuries to use the exoskeleton – a robotic device that encases the limbs and converts brain signals into movement. The device also feeds sensory information to its wearer, which seems to have partially reawakened their nervous system. When Nicolelis reassessed his volunteers after a year of training, he found that all eight people had regained sensations and the ability to move muscles in their once-paralysed limbs. "Nobody expected it at all," says Nicolelis, who presented the results at the Brain Forum in Lausanne, Switzerland, on 31 March. "When we first saw the level of recovery, there was not a single person in the room with a dry eye." When a person's spinal cord is injured, the connection between body and brain can be damaged, leaving them unable to feel or move parts of their body. If a few spinal nerves remain, people can sometimes regain control over their limbs, although this can involve years of rehabilitation. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20805 - Posted: 04.16.2015

|By Simon Makin People can control prosthetic limbs, computer programs and even remote-controlled helicopters with their mind, all by using brain-computer interfaces. What if we could harness this technology to control things happening inside our own body? A team of bioengineers in Switzerland has taken the first step toward this cyborglike setup by combining a brain-computer interface with a synthetic biological implant, allowing a genetic switch to be operated by brain activity. It is the world's first brain-gene interface. The group started with a typical brain-computer interface, an electrode cap that can register subjects' brain activity and transmit signals to another electronic device. In this case, the device is an electromagnetic field generator; different types of brain activity cause the field to vary in strength. The next step, however, is totally new—the experimenters used the electromagnetic field to trigger protein production within human cells in an implant in mice. The implant uses a cutting-edge technology known as optogenetics. The researchers inserted bacterial genes into human kidney cells, causing them to produce light-sensitive proteins. Then they bioengineered the cells so that stimulating them with light triggers a string of molecular reactions that ultimately produces a protein called secreted alkaline phosphatase (SEAP), which is easily detectable. They then placed the human cells plus an LED light into small plastic pouches and inserted them under the skin of several mice. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20770 - Posted: 04.08.2015

by Hal Hodson For a few days last summer, a handful of students walked through a park behind the University of Hannover in Germany. Each walked solo, but followed the same route as the others: made the same turns, walked the same distance. This was odd, because none of them knew where they were going. Instead, their steps were steered from a phone 10 paces behind them, which sent signals via bluetooth to electrodes attached to their legsMovie Camera. These stimulated the students' muscles, guiding their steps without any conscious effort. Max Pfeiffer of the University of Hannover was the driver. His project directs electrical currentMovie Camera into the students' sartorius, the longest muscle in the human body, which runs from the inside of the knee to the top of the outer thigh. When it contracts, it pulls the leg out and away from the body. To steer his test subjects left, Pfeiffer would zap their left sartorius, opening their gait and guiding them in that direction. Pfeiffer hopes his system will free people's minds up for other things as they navigate the world, allowing them to focus on their conversation or enjoy their surroundings. Tourists could keep their eyes on the sights while being imperceptibly guided around the city. Acceptance may be the biggest problem, although it is possible that the rise of wearable computing might help. Pfeiffer says the electrode's current causes a tingling sensation that diminishes the more someone uses the system. Volunteers said they were comfortable with the system taking control of their leg muscles, but only if they felt they could take control back. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20761 - Posted: 04.06.2015

Davide Castelvecchi Boots rigged with a simple spring-and-ratchet mechanism are the first devices that do not require power aids such as batteries to make walking more energy efficient. People walking in the boots expend 7% less energy than they do walking in normal shoes, the devices’ inventors report on 1 April in Nature1. That may not sound like much, but the mechanics of the human body have been shaped by millions of years of evolution, and some experts had doubted that there was room for further improvement in human locomotion, short of skating along on wheels. “It is the first paper of which I’m aware that demonstrates that a passive system can reduce energy expenditure during walking,” says Michael Goldfarb, a mechanical engineer at Vanderbilt University in Nashville, Tennessee, who develops exoskeletons for aiding people with disabilities. As early as the 1890s, inventors tried to boost the efficiency of walking by using devices such as rubber bands, says study co-author Gregory Sawicki, a biomedical engineer and locomotion physiologist at North Carolina State University in Raleigh. More recently, engineers have built unpowered exoskeletons that enable people to do tasks such as lifting heavier weights — but do not cut down the energy they expend. (Biomechanists still debate whether the running ‘blades’ made famous by South African sprinter Oscar Pistorius are more energetically efficient than human feet.2, 3) For their device, Sawicki and his colleagues built a mechanism that parallels human physiology. When a person swings a leg forward to walk, elastic energy is stored mostly in the Achilles tendon of their standing leg. That energy is released when the standing leg's foot pushes into the ground and the heel lifts off, propelling the body forwards. “There is basically a catapult in our ankle,” Sawicki says. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20750 - Posted: 04.02.2015

By Abby Phillip Jan Scheuermann, who has quadriplegia, brings a chocolate bar to her mouth using a robot arm guided by her thoughts. Research assistant Elke Brown watches in the background. (University of Pittsburgh Medical Center) Over at the Defense Advanced Research Projects Agency, also known as DARPA, there are some pretty amazing (and often top-secret) things going on. But one notable component of a DARPA project was revealed by a Defense Department official at a recent forum, and it is the stuff of science fiction movies. According to DARPA Director Arati Prabhakar, a paralyzed woman was successfully able use her thoughts to control an F-35 and a single-engine Cessna in a flight simulator. It's just the latest advance for one woman, 55-year-old Jan Scheuermann, who has been the subject of two years of groundbreaking neurosignaling research. First, Scheuermann began by controlling a robotic arm and accomplishing tasks such as feeding herself a bar of chocolate and giving high fives and thumbs ups. Then, researchers learned that -- surprisingly -- Scheuermann was able to control both right-hand and left-hand prosthetic arms with just the left motor cortex, which is typically responsible for controlling the right-hand side. After that, Scheuermann decided she was up for a new challenge, according to Prabhakar.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20647 - Posted: 03.04.2015

Elizabeth Gibney DeepMind, the Google-owned artificial-intelligence company, has revealed how it created a single computer algorithm that can learn how to play 49 different arcade games, including the 1970s classics Pong and Space Invaders. In more than half of those games, the computer became skilled enough to beat a professional human player. The algorithm — which has generated a buzz since publication of a preliminary version in 2013 (V. Mnih et al. Preprint at http://arxiv.org/abs/1312.5602; 2013) — is the first artificial-intelligence (AI) system that can learn a variety of tasks from scratch given only the same, minimal starting information. “The fact that you have one system that can learn several games, without any tweaking from game to game, is surprising and pretty impressive,” says Nathan Sprague, a machine-learning scientist at James Madison University in Harrisonburg, Virginia. DeepMind, which is based in London, says that the brain-inspired system could also provide insights into human intelligence. “Neuroscientists are studying intelligence and decision-making, and here’s a very clean test bed for those ideas,” says Demis Hassabis, co-founder of DeepMind. He and his colleagues describe the gaming algorithm in a paper published this week (V. Mnih et al. Nature 518, 529–533; 2015. Games are to AI researchers what fruit flies are to biology — a stripped-back system in which to test theories, says Richard Sutton, a computer scientist who studies reinforcement learning at the University of Alberta in Edmonton, Canada. “Understanding the mind is an incredibly difficult problem, but games allow you to break it down into parts that you can study,” he says. But so far, most human-beating computers — such as IBM’s Deep Blue, which beat chess world champion Garry Kasparov in 1997, and the recently unveiled algorithm that plays Texas Hold ’Em poker essentially perfectly (see Nature http://doi.org/2dw; 2015)—excel at only one game. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20626 - Posted: 02.27.2015

by Hal Hodson Video: Bionic arm trumps flesh after elective amputation Bionic hands are go. Three men with serious nerve damage had their hands amputated and replaced by prosthetic ones that they can control with their minds. The procedure, dubbed "bionic reconstruction", was carried out by Oskar Aszmann at the Medical University of Vienna, Austria. The men had all suffered accidents which damaged the brachial plexus – the bundle of nerve fibres that runs from the spine to the hand. Despite attempted repairs to those nerves, the arm and hand remained paralysed. "But still there are some nerve fibres present," says Aszmann. "The injury is so massive that there are only a few. This is just not enough to make the hand alive. They will never drive a hand, but they might drive a prosthetic hand." This approach works because the prosthetic hands come with their own power source. Aszmann's patients plug their hands in to charge every night. Relying on electricity from the grid to power the hand means all the muscles and nerves need do is send the right signals to a prosthetic. Before the operation, Aszmann's patients had to prepare their bodies and brains. First he transplanted leg muscle into their arms to boost the signal from the remaining nerve fibres. Three months later, after the nerves had grown into the new muscle, the men started training their brains. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20617 - Posted: 02.26.2015