Links for Keyword: Robotics

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 227

By R. Douglas Fields SAN DIEGO—A wireless device that decodes brain waves has enabled a woman paralyzed by locked-in syndrome to communicate from the comfort of her home, researchers announced this week at the annual meeting of the Society for Neuroscience. The 59-year-old patient, who prefers to remain anonymous but goes by the initials HB, is “trapped” inside her own body, with full mental acuity but completely paralyzed by a disease that struck in 2008 and attacked the neurons that make her muscles move. Unable to breathe on her own, a tube in her neck pumps air into her lungs and she requires round-the-clock assistance from caretakers. Thanks to the latest advance in brain–computer interfaces, however, HB has at least regained some ability to communicate. The new wireless device enables her to select letters on a computer screen using her mind alone, spelling out words at a rate of one letter every 56 seconds, to share her thoughts. “This is a significant achievement. Other attempts on such an advanced case have failed,” says neuroscientist Andrew Schwartz of the University of Pittsburgh, who was not involved in the study, published in The New England Journal of Medicine. HB’s mind is intact and the part of her brain that controls her bodily movements operates perfectly, but the signals from her brain no longer reach her muscles because the motor neurons that relay them have been damaged by amyotrophic lateral sclerosis (ALS), says neuroscientist Erick Aarnoutse, who designed the new device and was responsible for the technical aspects of the research. He is part of a team of physicians and scientists led by neuroscientist Nick Ramsey at Utrecht University in the Netherlands. Previously, the only way HB could communicate was via a system that uses an infrared camera to track her eye movements. But the device is awkward to set up and use for someone who cannot move, and it does not function well in many situations, such as in bright sunlight. © 2016 Scientific American,

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 14: Attention and Consciousness
Link ID: 22885 - Posted: 11.18.2016

By Jessica Hamzelou HB, who is paralysed by amyotrophic lateral sclerosis (ALS), has become the first woman to use a brain implant at home and in her daily life. She told New Scientist about her experiences using an eye-tracking device that takes about a minute to spell a word. What is your life like? All muscles are paralysed. I can only move my eyes. Why did you decide to try the implant? I want to contribute to possible improvements for people like me. What was the surgery like? The first surgery was no problem, but the second had a negative impact for my condition. Can you feel the implant at all? No. How easy is it to use? The hardware is easy to use. The software has been improved enormously by the UNP (Utrecht NeuroProsthesis) team. My part isn’t difficult anymore after these improvements. The most difficult part is timing the clicks. How has the implant changed your life? Now I can communicate outdoors when my eye track computer doesn’t work. I’m more confident and independent now outside. What are the best and worst things about it? The best is to go outside and be able to communicate. The worst were the false-positive clicks. But thanks to the UNP team that is fixed. Now that the study has been completed, would you like to keep the implant, or remove it? Of course I keep it. How do you feel about being the first person to have this implant? It’s special to be the first. Thinking ahead to the future, what else would you like to be able to do with the implant? I would like to change the television channel and my dream is to be able to drive my wheelchair. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22862 - Posted: 11.14.2016

By Helen Thomson IN THE 2009 Bruce Willis movie Surrogates, people live their lives by embodying themselves as robots. They meet people, go to work, even fall in love, all without leaving the comfort of their own home. Now, for the first time, three people with severe spinal injuries have taken the first steps towards that vision by controlling a robot thousands of kilometres away, using thought alone. The idea is that people with spinal injuries will be able to use robot bodies to interact with the world. It is part of the European Union-backed VERE project, which aims to dissolve the boundary between the human body and a surrogate, giving people the illusion that their surrogate is in fact their own body. In 2012, an international team went some way to achieving this by taking fMRI scans of the brains of volunteers while they thought about moving their hands or legs. The scanner measured changes in blood flow to the brain area responsible for such thoughts. An algorithm then passed these on as instructions to a robot. “The feeling of embodying the robot was good, although the sensation varied over time“ The volunteers could see what the robot was looking at via a head-mounted display. When they thought about moving their left or right hand, the robot moved 30 degrees to the left or right. Imagining moving their legs made the robot walk forward. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22795 - Posted: 10.27.2016

Linda Geddes For the first time, a paralysed man has gained a limited sense of touch, thanks to an electric implant that stimulates his brain and allows him to feel pressure-like sensations in the fingers of a robotic arm. The advance raises the possibility of restoring limited sensation to various areas of the body, as well as giving people with spinal-cord injuries better control over prosthetic limbs. But restoring human-like feeling, such as sensations of heat or pain, will prove more challenging, the researchers say. Nathan Copeland had not been able to feel or move his legs and lower arms since a car accident snapped his neck and injured his spinal cord when he was 18. Now, some 12 years later, he can feel when a robotic arm has its fingers touched, because sensors on the fingers are linked to an implant in his brain. Brain implant restores paralysed man's sense of touch Rob Gaunt, a biomedical engineer at the University of Pittsburgh, performs a sensory test on a blindfolded Nathan Copeland. Nathan, who is paralysed, demonstrates his ability to feel by correctly identifying different fingers through a mind-controlled robotic arm. Video credit: UPMC/Pitt Health Sciences. “He says the sensations feel like they’re coming from his own hand,” says Robert Gaunt, a biomedical engineer at the University of Pittsburgh who led the study. © 2016 Macmillan Publishers Limited

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 22759 - Posted: 10.15.2016

By Edd Gent, A brain-inspired computing component provides the most faithful emulation yet of connections among neurons in the human brain, researchers say. The so-called memristor, an electrical component whose resistance relies on how much charge has passed through it in the past, mimics the way calcium ions behave at the junction between two neurons in the human brain, the study said. That junction is known as a synapse. The researchers said the new device could lead to significant advances in brain-inspired—or neuromorphic—computers, which could be much better at perceptual and learning tasks than traditional computers, as well as far more energy efficient. "In the past, people have used devices like transistors and capacitors to simulate synaptic dynamics, which can work, but those devices have very little resemblance to real biological systems. So it's not efficient to do it that way, and it results in a larger device area, larger energy consumption and less fidelity," said study leader Joshua Yang, a professor of electrical and computer engineering at the University of Massachusetts Amherst. [10 Things You Didn't Know About the Brain] Previous research has suggested that the human brain has about 100 billion neurons and approximately 1 quadrillion (1 million billion) synapses. A brain-inspired computer would ideally be designed to mimic the brain's enormous computing power and efficiency, scientists have said. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22705 - Posted: 09.28.2016

SINCE nobody really knows how brains work, those researching them must often resort to analogies. A common one is that a brain is a sort of squishy, imprecise, biological version of a digital computer. But analogies work both ways, and computer scientists have a long history of trying to improve their creations by taking ideas from biology. The trendy and rapidly developing branch of artificial intelligence known as “deep learning”, for instance, takes much of its inspiration from the way biological brains are put together. The general idea of building computers to resemble brains is called neuromorphic computing, a term coined by Carver Mead, a pioneering computer scientist, in the late 1980s. There are many attractions. Brains may be slow and error-prone, but they are also robust, adaptable and frugal. They excel at processing the sort of noisy, uncertain data that are common in the real world but which tend to give conventional electronic computers, with their prescriptive arithmetical approach, indigestion. The latest development in this area came on August 3rd, when a group of researchers led by Evangelos Eleftheriou at IBM’s research laboratory in Zurich announced, in a paper published in Nature Nanotechnology, that they had built a working, artificial version of a neuron. Neurons are the spindly, highly interconnected cells that do most of the heavy lifting in real brains. The idea of making artificial versions of them is not new. Dr Mead himself has experimented with using specially tuned transistors, the tiny electronic switches that form the basis of computers, to mimic some of their behaviour. © The Economist Newspaper Limited 2016.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22573 - Posted: 08.18.2016

Nisha Gaind Most people in the United States are more worried than enthusiastic about the prospect of scientific advances such as gene editing and brain-chip implants, a survey of thousands suggests. The Pew Research Center in Washington DC asked 4,726 US people about the potential uses of three biomedical technologies that it classified as ‘potential human enhancement’: gene editing to reduce disease risk in babies; brain implants to enhance concentration and brain processes, and transfusions of synthetic blood to improve strength and stamina. (None of these procedures are a reality, but the underlying technologies are being researched.) Those who took the survey were overwhelmingly wary about all of the ideas. In each case, more than 60% said that they would be worried about the technologies, and fewer than half expressed enthusiasm about them — with the prospect of brain implants prompting the most concern and least excitement. More than 70% thought that the procedures would become available before they were well understood or officially deemed safe. Around one-third thought the technologies were morally unacceptable, and about 70% were concerned that such enhancements would widen social divides — for instance, because initially only wealthy people would be able to afford them. © 2016 Macmillan Publishers Limited

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 22505 - Posted: 08.02.2016

A bionic body is closer than you think By Dwayne Godwin, Jorge Cham Dwayne Godwin is a neuroscientist at the Wake Forest University School of Medicine. Jorge Cham draws the comic strip Piled Higher and Deeper at www.phdcomics.com. © 2016 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22222 - Posted: 05.17.2016

By BENEDICT CAREY Five years ago, a college freshman named Ian Burkhart dived into a wave at a beach off the Outer Banks in North Carolina and, in a freakish accident, broke his neck on the sandy floor, permanently losing the feeling in his hands and legs. On Wednesday, doctors reported that Mr. Burkhart, 24, had regained control over his right hand and fingers, using technology that transmits his thoughts directly to his hand muscles and bypasses his spinal injury. The doctors’ study, published by the journal Nature, is the first account of limb reanimation, as it is known, in a person with quadriplegia. Doctors implanted a chip in Mr. Burkhart’s brain two years ago. Seated in a lab with the implant connected through a computer to a sleeve on his arm, he was able to learn by repetition and arduous practice to focus his thoughts to make his hand pour from a bottle, and to pick up a straw and stir. He was even able to play a guitar video game. “It’s crazy because I had lost sensation in my hands, and I had to watch my hand to know whether I was squeezing or extending the fingers,” Mr. Burkhart, a business student who lives in Dublin, Ohio, said in an interview. His injury had left him paralyzed from the chest down; he still has some movement in his shoulders and biceps. The new technology is not a cure for paralysis. Mr. Burkhart could use his hand only when connected to computers in the lab, and the researchers said there was much work to do before the system could provide significant mobile independence. But the field of neural engineering is advancing quickly. Using brain implants, scientists can decode brain signals and match them to specific movements. Previously, people have learned to guide a cursor on a screen with their thoughts, monkeys have learned to skillfully use a robotic arm through neural signals and scientists have taught monkeys who were partly paralyzed to use an arm with a bypass system. This new study demonstrates that the bypass approach can restore critical skills to limbs no longer directly connected to the brain. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22106 - Posted: 04.14.2016

BRAINS get data about the world through senses – sight, hearing, taste, smell and touch. In a lab in North Carolina, a group of rats is getting an extra one. Thanks to implants in their brains, they have learned to sense and react to infrared light. The rats show the brain’s ability to process unfamiliar data– an early step towards augmenting the human brain. Miguel Nicolelis of Duke University School of Medicine is leading the experiment. His team implanted four clusters of electrodes in the rats’ barrel cortex – the part of the brain that handles whisker sensation (doi.org/bdb6). Each cluster is connected to a sensor that converts infrared light into an electrical signal. Feeding stations placed at the four corners of the rats’ cage take turns emitting infrared signals that guide the rats to them, releasing a reward only when the rats press a button on the feeding station that is emiting the infrared signal. In an older, single sensor version of the experiment, it took the rats one month to adapt. With four sensors, it took them just three days. “This is a truly remarkable demonstration of the plasticity of the mammalian brain,” says Christopher James of the University of Warwick, UK. All the extra data that goes into making the rats’ new sense doesn’t appear to diminish their original senses. “The results show that nature has apparently designed the adult mammalian brain with the possibility of upgrades, and Nicolelis’ team is leading the way showing how to do it,” says Andrea Stocco of the University of Washington in Seattle. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 7: Vision: From Eye to Brain
Link ID: 21999 - Posted: 03.17.2016

By Sheena Goodyear, A brain implant the size of a paper-clip might one day help paralyzed people regain the ability to use their arms and legs via a wireless connection that will transmit their thoughts to an exoskeleton. It's not the first technology to allow paralyzed people to operate mechanical limbs with signals from their brain, but it has the potential to revolutionize the field because it's minimally invasive and totally wireless. It's made possible because of a matchstick-sized implant called a stentrode, crafted from nitinol, an alloy that is commonly used in brassiere underwires and eyeglass frames, according to a study published in the journal Nature Biotechnology. ​"It's really a new method for getting brain data out of the brain without performing brain surgery," Thomas Oxley, a neurologist at the University of Melbourne who designed the device, told CBC News. "Part of the reason that brain-machine interfaces have not been successful to this point is because they get rejected by the body, and the reason they get rejected is because they all require direct implantation into the brain. And to do that you have to take off the skull — you have to perform a craniotomy." ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21886 - Posted: 02.11.2016

By Emily Underwood Researchers have found a way to increase how fast, and for how long, four paralyzed people can type using just their thoughts. The advance has to do with brain-machine interfaces (BCI), which are implanted in brain tissue and record hundreds of neurons firing as people imagine moving a computer cursor. The devices then use a computer algorithm to decode those signals and direct a real cursor toward words and letters on a computer screen. One of the biggest problems with BCIs is the brain itself: When the soft, squishy organ shifts in the skull, as it frequently does, it can displace the electrode implants. As a result, the movement signal extracted from neuronal firing is constantly being distorted, making it impossible for a patient to keep the cursor from drifting off course without a researcher recalibrating the instrument every 10 minutes or so. In the new study, part of a clinical trial of BCIs called BrainGate, researchers performed several software tweaks that allow the devices to self-correct in real time by calculating the writer’s intention based on the words they’ve already written. The devices can now also correct for neuronal background noise whenever a person stops typing. These improvements, demonstrated in the video above, allow BCI users to type faster and for longer periods of time, up to hours or days, the team reports today in Science Translational Medicine. Though the technology still needs to be miniaturized and wireless before it can be used outside of the lab, the new work is a big step towards BCIs that paralyzed people can use on their own at home, the scientists say. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21626 - Posted: 11.12.2015

By KENNETH D. MILLER SOME hominid along the evolutionary path to humans was probably the first animal with the cognitive ability to understand that it would someday die. To be human is to cope with this knowledge. Many have been consoled by the religious promise of life beyond this world, but some have been seduced by the hope that they can escape death in this world. Such hopes, from Ponce de León’s quest to find a fountain of youth to the present vogue for cryogenic preservation, inevitably prove false. In recent times it has become appealing to believe that your dead brain might be preserved sufficiently by freezing so that some future civilization could bring your mind back to life. Assuming that no future scientists will reverse death, the hope is that they could analyze your brain’s structure and use this to recreate a functioning mind, whether in engineered living tissue or in a computer with a robotic body. By functioning, I mean thinking, feeling, talking, seeing, hearing, learning, remembering, acting. Your mind would wake up, much as it wakes up after a night’s sleep, with your own memories, feelings and patterns of thought, and continue on into the world. I am a theoretical neuroscientist. I study models of brain circuits, precisely the sort of models that would be needed to try to reconstruct or emulate a functioning brain from a detailed knowledge of its structure. I don’t in principle see any reason that what I’ve described could not someday, in the very far future, be achieved (though it’s an active field of philosophical debate). But to accomplish this, these future scientists would need to know details of staggering complexity about the brain’s structure, details quite likely far beyond what any method today could preserve in a dead brain. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21499 - Posted: 10.12.2015

A 26-year-old man who is paralysed in both legs has walked for the first time in five years – just by thinking about it. He is the first person to have his brain activity recorded and used to control a muscle-stimulating device in his legs. Every year, 250,000 to 500,000 people worldwide suffer spinal cord injuries, which can leave them partially or completely paralysed below the site of damage. Many rehabilitation clinics already offer functional electric stimulation (FES) devices, which activate the nerves that innervate leg muscles at the push of a button. But people with upper-body paralysis are not always able to operate the FES in this way. The new system bypasses the button and returns control to the brain. “We want to re-establish the connection between the brain and the leg muscles, to bring back the function that was once present,” says Zoran Nenadic at the University of California Irvine. To do that, Nenadic and his colleagues combined an FES system with a brain-computer interface. The team developed an electrode cap that picks up the brainwaves created when a person thinks specifically about walking or standing still. They tailored the device to pick up brain signals from their volunteer – a man who has had little sensation below his shoulder blades for five years. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21437 - Posted: 09.24.2015

Five men with complete motor paralysis were able to voluntarily generate step-like movements thanks to a new strategy that non-invasively delivers electrical stimulation to their spinal cords, according to a new study funded in part by the National Institutes of Health. The strategy, called transcutaneous stimulation, delivers electrical current to the spinal cord by way of electrodes strategically placed on the skin of the lower back. This expands to nine the number of completely paralyzed individuals who have achieved voluntary movement while receiving spinal stimulation, though this is the first time the stimulation was delivered non-invasively. Previously it was delivered via an electrical stimulation device surgically implanted on the spinal cord. In the study, the men’s movements occurred while their legs were suspended in braces that hung from the ceiling, allowing them to move freely without resistance from gravity. Movement in this environment is not comparable to walking; nevertheless, the results signal significant progress towards the eventual goal of developing a therapy for a wide range of individuals with spinal cord injury. “These encouraging results provide continued evidence that spinal cord injury may no longer mean a life-long sentence of paralysis and support the need for more research,” said Roderic Pettigrew, Ph.D., M.D., director of the National Institute of Biomedical Imaging and Bioengineering at NIH. “The potential to offer a life-changing therapy to patients without requiring surgery would be a major advance; it could greatly expand the number of individuals who might benefit from spinal stimulation. It’s a wonderful example of the power that comes from combining advances in basic biological research with technological innovation.”

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21242 - Posted: 08.01.2015

Carl Zimmer A single neuron can’t do much on its own, but link billions of them together into a network and you’ve got a brain. But why stop there? In recent years, scientists have wondered what brains could do if they were linked together into even bigger networks. Miguel A. Nicolelis, director of the Center for Neuroengineering at Duke University, and his colleagues have now made the idea a bit more tangible by linking together animal brains with electrodes. In a pair of studies published on Thursday in the journal Scientific Reports, the researchers report that rats and monkeys can coordinate their brains to carry out such tasks as moving a simulated arm or recognizing simple patterns. In many of the trials, the networked animals performed better than individuals. “At least some times, more brains are better than one,” said Karen S. Rommelfanger, director of the Neuroethics Program at the Center for Ethics at Emory University, who was not involved in the study. Brain-networking research might someday allow people to join together in useful ways, Dr. Rommelfanger noted. Police officers might be able to make collective decisions on search-and-rescue missions. Surgeons might collectively operate on a single patient. But she also warned that brain networks could create a host of exotic ethical quandaries involving privacy and legal responsibility. If a brain network were to commit a crime, for example, who exactly would be guilty? © 2015 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21160 - Posted: 07.11.2015

Computers built to mimic the brain can now recognise images, speech and even create art, and it’s all because they are learning from data we churn out online Do androids dream of electric squid? (Image: Reservoir Lab at Ghent University) I AM watching it have a very odd dream – psychedelic visions of brain tissue folds, interspersed with chunks of coral reef. The dreamer in question is an artificial intelligence, one that live-streams from a computer on the ground floor of the Technicum building in Ghent University, Belgium. This vision has been conjured up after a viewer in the chat sidebar suggests "brain coral" as a topic. It's a fun distraction – and thousands of people have logged on to watch. But beyond that, the bot is a visual demonstration of a technology that is finally coming of age: neural networks. The bot is called 317070, a name it shares with the Twitter handle of its creator, Ghent graduate student Jonas Degrave. It is based on a neural network that can recognise objects in images, except that Degrave runs it in reverse. Given static noise, it tweaks its output until it creates images that tally with what viewers are requesting online. The bot's live-stream page says it is "hallucinating", although Degrave says "imagining" is a little more accurate. Degrave's experiment plays off recent Google research which aimed to tackle one of the core issues with neural networks: that no one knows how neural networks come up with their answers. The images the network creates to satisfy simple instructions can give us some insights. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 14: Attention and Consciousness
Link ID: 21149 - Posted: 07.09.2015

CONCORD, N.H. — Can an algorithm pass for an author? Can a robot rock the house? A series of contests at Dartmouth College is about to find out. Dartmouth is seeking artificial intelligence algorithms that create "human-quality" short stories, sonnets and dance music sets that will be pitted against human-produced literature, poetry and music selections. The judges won't know which is which. The goal is to determine whether people can distinguish between the two, and whether they might even prefer the computer-generated creativity. "Historically, often when we have advances in artificial intelligence, people will always say, 'Well, a computer couldn't paint a sunset,' or 'a computer couldn't write a beautiful love sonnet,' but could they? That's the question," said Dan Rockmore, director of the Neukom Institute for Computational Science at Dartmouth. Rockmore, a mathematics and computer science professor, spun off the idea for the contests from his experience riding a stationary bike. He started thinking about how the music being played during his spin class helped him pedal at the right the pace, and he was surprised when the instructor told him he selected the songs without the help of computer software. "I left there thinking, 'I wonder if I could write a program that did that, or somebody could?'" he said. "Because that is a creative act — a good spin instructor is a total artist. It sort of opened my mind to thinking about whether a computer or algorithm could produce something that was indistinguishable from or even perhaps preferred over what the human does." The competitions are variations of the "Turing Test," named for British computer scientist Alan Turing, who in 1950 proposed an experiment to determine if a computer could have humanlike intelligence. The classic Turing test involves intelligent computer programs that can fool a person carrying on a conversation with it, and there have been many competitions over the years, said Manuela Veloso, professor of computer science and robotics at Carnegie Mellon University and past president of the Association for the Advancement of Artificial Intelligence. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 21135 - Posted: 07.06.2015

by Helen Thomson A brain implant that can decode what someone wants to do has allowed a man paralysed from the neck down to control a robotic arm with unprecedented fluidity – and enjoy a beer at his own pace. Erik Sorto was left unable to move any of his limbs after an accident severed his spinal cord 12 years ago. People with similar injuries have previously controlled prosthetic limbs using implants placed in their motor cortex – an area of the brain responsible for the mechanics of movement. This is far from ideal because it results in delayed, jerky motions as the person thinks about all the individual aspects of the movement. When reaching for a drink, for example, they would have to think about moving their arm forward, then left, then opening their hand, then closing their hand around the cup and so on. Richard Andersen at the California Institute of Technology in Pasadena and his colleagues hoped they could achieve a more fluid movement by placing an implant in the posterior parietal cortex – a part of the brain involved in planning motor movements. "We thought this would allow us to decode brain activity associated with the overall goal of a movement – for example, 'I want to pick up that cup', rather than the individual components," said Anderson at the NeuroGaming Conference in San Francisco, California, where he presented the work this month. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20972 - Posted: 05.23.2015

I’m fairly new to San Francisco, so I’m still building my mental database of restaurants I like. But this weekend, I know exactly where I’m heading to for dinner: Nick’s Crispy Tacos. Then, when I get home, I’m kicking back to a documentary I’ve never heard of, a Mongolian drama called The Cave of the Yellow Dog. An artificially intelligent algorithm told me I’d enjoy both these things. I’d like the restaurant, the machine told me, because I prefer Mexican food and wine bars “with a casual atmosphere,” and the movie because “drama movies are in my digital DNA.” Besides, the title shows up around the web next to Boyhood, another film I like. Nara Logics, the company behind this algorithm, is the brainchild (pun intended) of its CTO and cofounder, Nathan Wilson, a former research scientist at MIT who holds a doctorate in brain and cognitive science. Wilson spent his academic career and early professional life immersed in studying neural networks—software that mimics how a human mind thinks and makes connections. Nara Logics’ brain-like platform, under development for the past five years, is the product of all that thinking.. The Cambridge, Massachusetts-based company includes on its board such bigwig neuroscientists as Sebastian Seung from Princeton, Mriganka Sur from MIT, and Emily Hueske of Harvard’s Center for Brain and Science. So what does all that neuroscience brain power have to offer the tech world, when so many Internet giants—from Google and Facebook to Microsoft and Baidu—already have specialized internal teams looking to push the boundaries of artificial intelligence? These behemoths use AI to bolster their online services, everything from on-the-fly translations to image recognition services. But to hear Wilson tell it, all that in-house work still leaves a large gap—namely, all the businesses and people who could benefit from access to an artificial brain but can’t build it themselves. “We’re building a pipeline, and taking insights out of the lab to intelligent, applied use cases,” Wilson tells WIRED. “Nara is AI for the people.”

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 20967 - Posted: 05.23.2015