Links for Keyword: Movement Disorders

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 145

David Cyranoski For more than a decade, neuroscientist Grégoire Courtine has been flying every few months from his lab at the Swiss Federal Institute of Technology in Lausanne to another lab in Beijing, China, where he conducts research on monkeys with the aim of treating spinal-cord injuries. The commute is exhausting — on occasion he has even flown to Beijing, done experiments, and returned the same night. But it is worth it, says Courtine, because working with monkeys in China is less burdened by regulation than it is in Europe and the United States. And this week, he and his team report1 the results of experiments in Beijing, in which a wireless brain implant — that stimulates electrodes in the leg by recreating signals recorded from the brain — has enabled monkeys with spinal-cord injuries to walk. “They have demonstrated that the animals can regain not only coordinated but also weight-bearing function, which is important for locomotion. This is great work,” says Gaurav Sharma, a neuroscientist who has worked on restoring arm movement in paralysed patients, at the non-profit research organization Battelle Memorial Institute in Columbus, Ohio. The treatment is a potential boon for immobile patients: Courtine has already started a trial in Switzerland, using a pared-down version of the technology in two people with spinal-cord injury. © 2016 Macmillan Publishers Limited

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22858 - Posted: 11.12.2016

Ian Sample Science editor Partially-paralysed monkeys have learned to walk again with a brain implant that uses wireless signals to bypass broken nerves in the spinal cord and reanimate the useless limbs. The implant is the first to restore walking ability in paralysed primates and raises the prospect of radical new therapies for people with devastating spinal injuries. Scientists hope the technology will help people who have lost the use of their legs, by sending movement signals from their brains to electrodes in the spine that activate the leg muscles. One rhesus macaque that was fitted with the new implant regained the ability to walk only six days after it was partially paralysed in a surgical procedure that severed some of the nerves that controlled its right hind leg. “It was a big surprise for us,” said Grégoire Courtine, a neuroscientist who led the research at the Swiss Federal Institute of Technology. “The gait was not perfect, but it was almost like normal walking. The foot was not dragging and it was fully weight bearing.” A second animal in the study that received more serious damage to the nerves controlling its right hind leg recovered the ability to walk two weeks after having the device fitted, according to a report published in the journal, Nature. Both monkeys regained full mobility in three months. The “brain-spine interface” is the latest breakthrough to come from the rapidly-advancing area of neuroprosthetics. Scientists in the field aim to read intentions in the brain’s activity and use it to control computers, robotic arms and even paralysed limbs. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22854 - Posted: 11.10.2016

By Neuroskeptic A new paper could prompt a rethink of a basic tenet of neuroscience. It is widely believed that the motor cortex, a region of the cerebral cortex, is responsible for producing movements, by sending instructions to other brain regions and ultimately to the spinal cord. But according to neuroscientists Christian Laut Ebbesen and colleagues, the truth may be the opposite: the motor cortex may equally well suppress movements. Ebbesen et al. studied the vibrissa motor cortex (VMC) of the rat, an area which is known to be involved in the movement of the whiskers. First, they determined that neurons within the VMC are more active during periods when the rat’s whiskers are resting: for instance, like this: whiskerThe existence of cells whose firing negatively correlates with movement is interesting, but by itself it doesn’t prove that much. Maybe those cells are just doing something else than controlling movement? However, Ebbesen et al. went on to show that electrical stimulation of the VMC caused whiskers to stop moving, while applying a drug (lidocaine) to suppress VMC activity caused the rat’s whiskers to whisk harder. Ebbesen et al. go on to say that the inhibitory role of VMC may extend to other regions of the rat motor cortex, and to other movements beyond the whiskers: Rats can perform long sequences of skilled, learned motor behaviors after motor cortex ablation, but motor cortex is required for them to learn a task of behavioral inhibition (they must learn to postpone lever presses)35. When swimming, intact rats hold their forelimbs still and swim with only their hindlimbs. After forelimb motor cortex lesions, however, rats swim with their forelimbs also36.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22837 - Posted: 11.07.2016

By Dan Hurley The Centers for Disease Control and Prevention has confirmed 89 cases of the paralyzing disease in the United States through September. A 6-year-old boy suspected of having AFM died in Seattle on Sunday, the first death believed to be caused by the disease. One of the drugs in development, pocapavir, was used briefly on a few patients during a 2014 outbreak of AFM under a compassionate-use exception that allows extremely sick patients to be given unapproved drugs without the usual kinds of placebo-controlled trials required by the Food and Drug Administration. “There were a couple of kids who got pocapavir in the Colorado outbreaks,” said Benjamin Greenberg, a neurologist who has treated children with AFM at the University of Texas Southwestern in Dallas. “It had relatively weak but measurable impact on viral replication. A larger study would definitely be warranted. We'll take anything we can get.” Although the CDC says no cause has been conclusively linked to AFM, many researchers suspect a family of viruses known as enteroviruses. “I have been studying enteroviruses for 40 years now,” said John Modlin, deputy director of the polio eradication program at the Bill and Melinda Gates Foundation. “If I had a child with acute flaccid myelitis, I would be on the phone in a second to the companies making these drugs.” © 1996-2016 The Washington Post

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22830 - Posted: 11.04.2016

By Carl Luepker For the past 35 years, a relentless neurological disorder has taken over my body, causing often painful muscle spasms that make it hard for me to walk and write and that cause my speech to be garbled enough that people often can’t understand me I can live with my bad luck in getting this condition, which showed up when I was 10; what’s harder to accept is that I have passed on this disorder, carried in my genes, to my 11-year-old son, Liam. As a parent, you hope that your child’s life will follow an upward trend, one of emotional and physical growth toward an adulthood of wide-open possibilities where they can explore the world, challenge themselves emotionally and physically, and perhaps play on a sports team. And you hope that you can pass down to your child at least some of what was passed down to you. Yet my generalized dystonia, as my progressive condition is called, was one thing I had hoped would end with me. Liam poses for a photograph just months before his diagnosis with dystonia. He “has just moved into middle school,” his father writes, where “he will have to both advocate for himself and educate his new teachers and peers about this genetic disorder.” When my wife and I started thinking of having kids, the statistics were fairly reassuring: There was a 1-in-2 chance that our child would inherit the gene that causes the disorder, but most people who have the gene don’t go on to manifest dystonia. We wanted a family and rolled the dice — twice. Our daughter does not have the gene. © 1996-2016 The Washington Post

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22720 - Posted: 10.02.2016

By Alison F. Takemura Bodies like to keep their pH close to 7.4, whether that means hyperventilating to make the blood alkaline, or burning energy, shifting to anaerobic metabolism, and producing lactate to make the blood acidic. The lungs and kidneys can regulate pH changes systemically, but they may not act quickly on a local scale. Because even small pH changes can dramatically affect the nervous system, a study led by Sten Grillner of Karolinska Institute in Sweden looked for a mechanism for pH homeostasis in the spinal cord. Using the lamprey as a model system, the researchers observed that a type of spinal canal neuron, called CSF-c, fired more rapidly when they bathed it with high pH (7.7) or low pH (7.1) media. They could suspend the elevated activity by blocking two ion channels: PKD2L1 channels, which stimulate neurons in alkaline conditions, or ASIC3 channels, which, the team showed previously, do the same in acidic states. As the neurons fired, they released the hormone somatostatin, which inhibited the lamprey’s locomotor network. These results suggest that, whichever direction pH deviates, “the response of the system is just to reduce activity as much as possible,” Grillner says. The pH-regulating role of CSF-c neurons is likely conserved among animals, the authors suspect, given the presence of these neurons across vertebrate taxa. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 22688 - Posted: 09.24.2016

By Michael Price A soft brush that feels like prickly thorns. A vibrating tuning fork that produces no vibration. Not being able to tell which direction body joints are moving without looking at them. Those are some of the bizarre sensations reported by a 9-year-old girl and 19-year-old woman in a new study. The duo, researchers say, shares an extremely rare genetic mutation that may shed light on a so-called “sixth sense” in humans: proprioception, or the body’s awareness of where it is in space. The new work may even explain why some of us are klutzier than others. The patients’ affliction doesn’t have a name. It was discovered by one of the study’s lead authors, pediatric neurologist Carsten Bönnemann at the National Institutes of Health (NIH) in Bethesda, Maryland, who specializes in diagnosing unknown genetic illnesses in young people. He noticed that the girl and the woman shared a suite of physical symptoms, including hips, fingers, and feet that bent at unusual angles. They also had scoliosis, an unusual curvature of the spine. And, significantly, they had difficulty walking, showed an extreme lack of coordination, and couldn’t physically feel objects against their skin. Bönnemann screened their genomes and looked for mutations that they might have in common. One in particular stood out: a catastrophic mutation in PIEZO2, a gene that has been linked to the body’s sense of touch and its ability to perform coordinated movements. At about the same time, in a “very lucky accident,” Bönnemann attended a lecture by Alexander Chesler, a neurologist also at NIH, on PIEZO2. Bönnemann invited Chesler to help study his newly identified patients. © 2016 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 22683 - Posted: 09.22.2016

By SABRINA TAVERNISE WASHINGTON — The Food and Drug Administration approved the first drug to treat patients with the most common childhood form of muscular dystrophy, a vivid example of the growing power that patients and their advocates wield over the federal government’s evaluation of drugs. The agency’s approval went against the recommendation of its experts. The main clinical trial of the drug was small, involving only 12 boys with the disease known as Duchenne muscular dystrophy, and did not have an adequate control group of boys who had the disease but did not take the drug. A group of independent experts convened by the agency this spring said there was not enough evidence that it was effective. But the vote was close. Large and impassioned groups of patients, including boys in wheelchairs, and their advocates, weighed in. The muscular dystrophy community is well organized and has lobbied for years to win approval for the drug, getting members of Congress to write letters to the agency. A decision on the drug had been delayed for months. The approval was so controversial that F.D.A. employees fought over it, a dispute that was taken to the agency’s commissioner, Dr. Robert M. Califf, who ultimately decided that it would stand. The approval delighted the drug’s advocates and sent the share price of the drug’s maker, Sarepta Therapeutics, soaring. But it was taken as a deeply troubling sign among drug policy experts who believe the F.D.A. has been far too influenced by patient advocates and drug companies, and has allowed the delicate balance in drug approvals to tilt toward speedy decisions based on preliminary data and away from more conclusive evidence of effectiveness and safety. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22671 - Posted: 09.20.2016

By CATHERINE SAINT LOUIS In seven countries that recently experienced Zika outbreaks, there were also sharp increases in the numbers of people suffering from a form of temporary paralysis, researchers reported Wednesday. The analysis, published online in The New England Journal of Medicine, adds to substantial evidence that Zika infections — even asymptomatic ones — may bring on a paralysis called Guillain-Barré syndrome. The syndrome can be caused by a number of other factors, including infection with other viruses. Researchers studying the Zika epidemic in French Polynesia had estimated that roughly 1 in 4,000 people infected with the virus could develop the syndrome. The Centers for Disease Control and Prevention has said that the Zika virus is “strongly associated” with Guillain-Barré, but has stopped short of declaring it a cause of the condition. The new data suggest a telling pattern: Each country in the study saw unusual increases in Guillain-Barré that coincided with peaks in Zika infections, the researchers concluded. “It’s pretty obvious that in all seven sites there is a clear relationship,” said Dr. Marcos A. Espinal, the study’s lead author and the director of communicable diseases at the Pan American Health Organization, which collected data on confirmed and suspected cases of Zika infection and on the incidence of Guillain-Barré. “Something is going on.” In Venezuela, officials expected roughly 70 cases of Guillain-Barré from December 2015 to the end of March 2016, as mosquitoes were spreading the virus. Instead, there were 684 cases. Similarly, during five months in which the Zika virus was circulating in Colombia, officials recorded 320 cases of Guillain-Barré when there should have been about 100. From September 2015 to March 2016, while Zika infections peaked in El Salvador, cases of Guillain-Barré doubled to 184 from 92. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22618 - Posted: 09.01.2016

By Kas Roussy, In a room at Sunnybrook Health Sciences Centre in Toronto, Brian Smith gives one last hug to his wife, Noreen. "You're doing really well, sweetheart," he says to her. Doctors have finished prepping the 76-year-old patient. She's clad in a blue hospital gown, her head has been shaved and metallic headgear is attached to her skull. Google's latest a spoon that steadies tremors New technology could help seniors stay independent longer She's ready to be wheeled into an MRI room, where she'll undergo a procedure that her doctors believe will revolutionize the way brain diseases are treated. Before that happens, Noreen leans into her husband for a kiss. "Best buddy," she whispers. Noreen Smith is among the three per cent of the Canadian population who suffer from a nervous system disorder called essential tremor. It causes uncontrollable shaking, most often in a person's hands. Smith noticed the first signs when she was 33. "It started developing in my dominant hand, which is my right hand," she said the day before her medical procedure from her home in Bobcaygeon, Ont. She went to a specialist who delivered the diagnosis: essential tremor. Media placeholder Smith ‘really, really excited’ about treatment’s potential0:48 Just as shocking was what he said next, alluding to a high-profile actor who had the condition. "This particular person wasn't terribly helpful because he said: 'Do you happen to know Katharine Hepburn? I'm going to give you some medication, and you can go home and get used to the idea that eventually you're going to end up looking like Katharine Hepburn.' I was devastated," says Smith. Medication helped for the first few years. But Smith's tremor was still severe and like others who suffer from this disorder, the shaking worsened with simple movements or everyday tasks like applying makeup or pouring a glass of water. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22603 - Posted: 08.25.2016

In a global study of myasthenia gravis, an autoimmune disease that causes muscle weakness and fatigue, researchers found that surgical removal of an organ called the thymus reduced patients’ weakness, and their need for immunosuppressive drugs. The study, published in the New England Journal of Medicine, was partially funded by the National Institutes of Health. “Our results support the idea that thymectomy is a valid treatment option for a major form of myasthenia gravis,” said Gil Wolfe, M.D., Professor and Irvin and Rosemary Smith Chair of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, New York, and a leader of the study. The Thymectomy Trial in Non-Thymomatous Myasthenia Gravis Patients Receiving Prednisone (MGTX) was a randomized, controlled study conducted on 126 patients aged 18-65 between 2006 and 2012. The researchers compared the combination of surgery and immunosuppression with the drug prednisone with prednisone treatment alone. They performed extended transternal thymectomies on 57 patients. This major surgical procedure aims to remove most of the thymus, which requires opening of a patient’s chest. On average the researchers found that the combination of surgery and prednisone treatment reduced overall muscle weakness more than prednisone treatment alone. After 36 months of prednisone treatment, both groups of patients had better QMG scores, a measure of muscle strength. Scores for the patients who had thymectomies and prednisone were 2.84 points better than patients who were on prednisone alone.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22547 - Posted: 08.12.2016

Rae Ellen Bichell For Tim Goliver and Luther Glenn, the worst illness of their lives started in the same way — probably after having a stomach bug. Tim was 21 and a college student at the University of Michigan. He was majoring in English and biology and active in the Lutheran church. "I was a literature geek," says Tim. "I was really looking forward to my senior year and wherever life would take me." Luther was in his 50s. He'd spent most of his career as a U.S. military policeman and was working in security in Washington, D.C. He'd recently separated from his wife and had just moved into a new house with his two daughters, who were in their 20s. Both men recovered from their stomach bugs, but a few days later they started to feel sluggish. "Here we are trying to unpack, prepare ourselves for new life together and I'm flat out, dead tired," says Luther. He fell asleep in the car one morning and never made it out of the garage. Then he fell in the bathroom. For Tim, it started to feel like running a marathon just to lift a spoonful of soup. One morning, he tried to comb his hair and realized he couldn't lift his arm above his shoulder. "At that moment I started to freak out," he says. Both men got so weak that their families had to wheel them into the emergency room in wheelchairs. They got the same diagnosis: Guillain-Barre syndrome, a neurological disorder which can leave people paralyzed for weeks. © 2016 npr

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22217 - Posted: 05.16.2016

Sara Reardon Elite ski jumpers rely on extreme balance and power to descend the steep slopes that allow them to reach up to 100 kilometres per hour. But the US Ski and Snowboard Association (USSA) is seeking to give its elite athletes an edge by training a different muscle: the mind. Working with Halo Neuroscience in San Francisco, California, the sports group is testing whether stimulating the brain with electricity can improve the performance of ski jumpers by making it easier for them to hone their skills. Other research suggests that targeted brain stimulation can reduce an athlete’s ability to perceive fatigue1. Such technologies could aid recovery from injury or let athletes try 'brain doping' to gain a competitive advantage. Yet many scientists question whether brain stimulation is as effective as its proponents claim, pointing out that studies have looked at only small groups of people. “They’re cool findings, but who knows what they mean,” says cognitive psychologist Jared Horvath at the University of Melbourne in Australia. The USSA is working with Halo to judge the efficacy of a device that delivers electricity to the motor cortex, an area of the brain that controls physical skills. The company claims that the stimulation helps the brain build new connections as it learns a skill. It tested its device in an unpublished study of seven elite Nordic ski jumpers, including Olympic athletes. © 2016 Nature Publishing Group,

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21979 - Posted: 03.12.2016

Laura Sanders For some adults, Zika virus is a rashy, flulike nuisance. But in a handful of people, the virus may trigger a severe neurological disease. About one in 4,000 people infected by Zika in French Polynesia in 2013 and 2014 got a rare autoimmune disease called Guillain-Barré syndrome, researchers estimate in a study published online February 29 in the Lancet. Of 42 people diagnosed with Guillain-Barré in that outbreak, all had antibodies that signaled a Zika infection. Most also had recent symptoms of the infection. In a control group of hospital patients who did not have Guillain-Barré, researchers saw signs of Zika less frequently: Just 54 out of 98 patients tested showed signs of the virus. The message from this earlier Zika outbreak is that countries in the throes of Zika today “need to be prepared to have adequate intensive care beds capacity to manage patients with Guillain-Barré syndrome,” writes study coauthor Arnaud Fontanet of the Pasteur Institute in Paris and colleagues, some of whom are from French Polynesia. The study, says public health researcher Ernesto Marques of the University of Pittsburgh, “tells us what I think a lot of people already thought: that Zika can cause Guillain-Barré syndrome.” As with Zika and the birth defect microcephaly (SN: 2/20/16, p. 16), though, more work needs to be done to definitively prove the link. Several countries currently hard-hit by Zika have reported upticks in Guillain-Barré syndrome. Colombia, for instance, usually sees about 220 cases of the syndrome a year. But in just five weeks between mid-December 2015 to late January 2016, doctors diagnosed 86 cases, the World Health Organization reports. Other Zika-affected countries, including Brazil, El Salvador and Venezuela, have also reported unusually high numbers of cases. © Society for Science & the Public 2000 - 2016. All rights reserved.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21939 - Posted: 03.01.2016

Colombia says three people have died after contracting the Zika virus and developing a rare nerve disorder. Health Minister Alejandro Gaviria said there was a "causal connection" between Zika, the Guillain-Barre disorder and the three deaths. Earlier, Brazilian scientists said they had detected for the first time active samples of Zika in urine and saliva. However, it is not clear whether the virus can be transmitted through bodily fluids. Zika, a mosquito-borne disease, has been linked to cases of babies born in Brazil with microcephaly - underdeveloped brains. "We have confirmed and attributed three deaths to Zika," said the head of Colombia's National Health Institute, Martha Lucia Ospina. "In this case, the three deaths were preceded by Guillain-Barre syndrome." Guillain-Barre is a rare disorder in which the body's immune system attacks part of the nervous system. It isn't normally fatal. Ms Ospina said another six deaths were being investigated for possible links to Zika. "Other cases (of deaths linked to Zika) are going to emerge," she said. "The world is realising that Zika can be deadly. The mortality rate is not very high, but it can be deadly." Mr Gaviria said one of the fatalities took place in San Andres and the other two in Turbo, in Antioquia department. UK virologist Prof Jonathan Ball, of the University of Nottingham, told the BBC: "We have been saying Zika has been associated with Guillain-Barre. One of the complications of that could be respiratory failure. But it is still probably a very rare event." Although Zika usually causes mild, flu-like symptoms, it has been linked to thousands of suspected birth defects. However, it has not yet been proved that Zika causes either microcephaly or Guillain-Barre. © 2016 BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21865 - Posted: 02.06.2016

By Ralph G. Neas In mid-February of 1979, I started experiencing tingling sensations in my feet and fingers. I told myself I was only feeling some residual effects from a bout with the flu several weeks before, and I caught the afternoon plane to Minneapolis to join my new boss, U.S. Sen. David Durenberger (R-Minn.), for several days of political meetings. That was on Sunday. On Tuesday, midway through a presentation, I began slurring my words and I found it hard to swallow. A local doctor, on hearing I’d had the flu, told me to go to my hotel room, take a couple of aspirin and call him in the morning. I spent the night moving from the bed to the couch to the chair to the floor, seeking relief from pain that was affecting more and more of my body. Just before dawn, I noticed that the right side of my face was paralyzed. On my way to the ER, the left side became paralyzed. I wasn’t having a recurrence of the flu. A spinal tap confirmed doctors’ suspicions that I’d come down with Guillain-Barré syndrome, or GBS, a rare neurological disorder that can cause total paralysis. Within 10 days I was so weakened by the spreading paralysis in my legs and arms that I could not get out of my bed at St. Mary’s, the Minneapolis hospital where I was being treated. Within three weeks, doctors performed a tracheostomy — connecting a mechanical respirator to my windpipe — because my ability to breathe was getting so poor.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21777 - Posted: 01.12.2016

By NICHOLAS WADE After decades of disappointingly slow progress, researchers have taken a substantial step toward a possible treatment for Duchenne muscular dystrophy with the help of a powerful new gene-editing technique. Duchenne muscular dystrophy is a progressive muscle-wasting disease that affects boys, putting them in wheelchairs by age 10, followed by an early death from heart failure or breathing difficulties. The disease is caused by defects in a gene that encodes a protein called dystrophin, which is essential for proper muscle function. Because the disease is devastating and incurable, and common for a hereditary illness, it has long been a target for gene therapy, though without success. An alternative treatment, drugs based on chemicals known as antisense oligonucleotides, is in clinical trials. But gene therapy — the idea of curing a genetic disease by inserting the correct gene into damaged cells — is making a comeback. A new technique, known as Crispr-Cas9, lets researchers cut the DNA of chromosomes at selected sites to remove or insert segments. Three research groups, working independently of one another, reported in the journal Science on Thursday that they had used the Crispr-Cas9 technique to treat mice with a defective dystrophin gene. Each group loaded the DNA-cutting system onto a virus that infected the mice’s muscle cells, and excised from the gene a defective stretch of DNA known as an exon. Without the defective exon, the muscle cells made a shortened dystrophin protein that was nonetheless functional, giving all of the mice more strength. The teams were led by Charles A. Gersbach of Duke University, Eric N. Olson of the University of Texas Southwestern Medical Center and Amy J. Wagers of Harvard University. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 21745 - Posted: 01.02.2016

The clock is ticking for Ronald Cohn. He wants to use CRISPR gene editing to correct the genes of his friend’s 13-year-old son. The boy, Gavriel, has Duchenne muscular dystrophy, a genetic disease in which muscles degenerate. Breathing and heart problems often start by the time people with the condition are in their early twenties. Life expectancy is about 25 years. By the standards of science, the field of CRISPR gene editing is moving at a lightning fast pace. Although the technique was only invented a few years ago, it is already being used for research by thousands of labs worldwide to make extremely precise changes to DNA. A handful of people have already been treated using therapies enabled by the technology, and last week an international summit effectively endorsed the idea of gene editing embryos. It is too soon to try the technique out, but the summit concluded that basic research on embryos should be permitted, alongside a debate on how we should use the technology. But for people like Cohn, progress can’t come fast enough. Gavriel was diagnosed at age 4. He has already lost the use of his legs but still has some movement in his upper body, and uses a manual wheelchair. Cohn, a clinician at the Hospital for Sick Children in Toronto, estimates that he has three years to develop and test a CRISPR-based treatment if he is to help Gavriel. Muscular dystrophy is caused by a faulty gene for the protein dystrophin, which holds our muscles together. Gavriel has a duplicated version of the gene. This week, Cohn’s team published a paper describing how they grew Gavriel’s cells in a dish and used CRISPR gene-editing techniques to snip out the duplication. With the duplication removed, his cells produced normal dystrophin protein. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 21698 - Posted: 12.14.2015

By Karen Weintraub Essential tremor is involuntary shaking – usually of the hands, but sometimes also of the neck, jaw, voice or legs. “Any fine tasks with the hands can be very difficult when the tremor is pronounced,” said Dr. Albert Hung, center director of the Massachusetts General Hospital National Parkinson Foundation Center of Excellence. Essential tremor can affect balance, walking, hearing and cognition, and can get worse over time, said Dr. Elan Louis, chief of the division of movement disorders at Yale School of Medicine. People with essential tremor run almost twice the risk of developing Alzheimer’s as the general population. Essential tremor appears with movement; if people let their hands sit still, they don’t tremble. That is the big difference between an essential tremor and the tremor of Parkinson’s disease, which can occur while at rest, Dr. Louis said. Essential tremor also tends to strike both hands while Parkinson’s is more one-sided at first, said Dr. Hung. The cause of essential tremor remains a mystery, though it seems to run in families. People of any age or sex can have the condition, though it is more common as people grow older. Roughly 4 percent of 40-year-olds have essential tremor, compared with about 20 percent of 90-year-olds, Dr. Louis said. Available treatments “aren’t great,” Dr. Louis said. Two medications – the beta blocker propranolol and the epilepsy drug primidone, sold under the brand name Mysoline – can reduce tremors by 10 to 30 percent, he said, but they work only in about half of patients. Deep brain stimulation – implanting electrodes into the brain to override faulty electrical signals – has been shown to markedly reduce hand tremor severity, he said. But the treatment can worsen cognitive and balance problems and “doesn’t cure the underlying disease. It merely and temporarily lessons a single symptom, which is the tremor.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21653 - Posted: 11.24.2015

Ewen Callaway Ringo, a golden retriever born in 2003 in a Brazilian kennel, was never expected to live long. Researchers bred him and his littermates to inherit a gene mutation that causes severe muscular dystrophy. They hoped that the puppies would provide insight into Duchenne muscular dystrophy (DMD), an untreatable and ultimately fatal human disease caused by inactivation of the same gene. But Ringo’s muscles didn't waste away like his littermates', and researchers have now determined why: he was born with another mutation that seems to have protected him from the disease, according to a paper published in Cell1. Scientists hope that by studying Ringo’s mutation — which has never before been linked to muscular dystrophy — they can find new treatments for the disease. As many as 1 in 3,500 boys inherit mutations that produce a broken version of a protein called dystrophin, causing DMD. (The disease appears in boys because the dystrophin gene sits on the X chromosome, so girls must inherit two copies of the mutated gene to develop DMD.) The protein helps to hold muscle fibres together, and its absence disrupts the regenerative cycle that rebuilds muscle tissue. Eventually, fat and connective tissue replace muscle, and people with DMD often become reliant on a wheelchair before their teens. Few survive past their thirties. Some golden retriever females carry dystrophin mutations that cause a similar disease when passed onto male puppies. Dog breeders can prevent this through genetic screening. But Mayana Zatz, a geneticist at the University of São Paulo in Brazil, and her colleagues set out to breed puppies with the mutation to model the human disease. © 2015 Nature Publishing Group,

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21632 - Posted: 11.14.2015