Links for Keyword: Movement Disorders

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 102

A Devon scientist is developing a test to diagnose and monitor brain disorders in children using eye movements. Professor Chris Harris, from the University of Plymouth, has been seeing youngsters with some of the country's rarest diseases. Damage in various parts of the brain often leads to eye movement disorders. He hopes to develop a standard test so that babies and the most seriously ill children - who are often the most uncooperative - can be diagnosed. The earlier some conditions are treated, especially those with diseases that are only going to get worse, the better the possible outcome for the children involved. A test would also mean new types of medication can be monitored for clinical trials. Prof Harris' research has been funded by a charity called Cerebra, for brain-injured children. He is particularly interested in diagnosing so-called neurometabolic diseases, which are very difficult to diagnose. They are a group of 1,500 often terminal diseases that can be caused by chemical imbalances in the body which ultimately cause brain cells to die. He uses a computer-controlled chair with electrodes attached to the patient's head to see how "flicks" of the eye are affected by various medical conditions. He said: "The way we control our eye movements depends on brain function. Damage in various parts of the brain often leads to eye movement disorders. So by looking at abnormal eye movements we can pick up on problems before they become too severe. (C)BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 7: Vision: From Eye to Brain
Link ID: 8199 - Posted: 11.21.2005

By JANE E. BRODY Paula Schneider was 38 when she developed what doctors first thought was carpal tunnel syndrome. But soon the trouble she had moving her right arm spread to her neck and back and then the whole body. She lost control of her limbs, head and torso, leaving her unable to walk, sit, eat or do much of anything. It was as if her entire body had been inhabited by jitterbugs that determined her every move. More Personal Health Columns "I couldn't eat like a normal person, brush my teeth or drink from a glass because it would break when I tried to put it down," Ms. Schneider recalled recently at a demonstration on movement disorders at Beth Israel Hospital in New York. The cause, she eventually learned, was a severe movement disorder called generalized dystonia. Various medications helped for a while. So did multiple localized injections of Botox to disrupt the flow of nerve impulses to muscles that were spastic or excessively contracted. But the benefits were limited and short-lived. She said she spent 12 years in excruciating pain. Copyright 2005 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 8134 - Posted: 11.08.2005

A brain area presumed to be involved only in co-ordinating movement also controls higher functions, such as vision, mounting evidence suggests. Traditionally, higher mental processing has been seen as the cerebrum's job - the evolutionary newest and largest part of the brain. The cerebellum or "little brain", which sits below the cerebrum, was thought to control balance and movement. A study of brain-injured infants shows this view is too simplistic. The research in Pediatrics looked at 74 babies born prematurely who had varying degrees of brain damage. The Harvard team from the Children's Hospital in Boston used magnetic resonance imaging (MRI) brain scans to look at the injuries in detail. When there was injury to the cerebrum, the cerebellum also failed to grow to a normal size. When the cerebral injury was confined to one side, it was the opposite half of the cerebellum that failed to grow normally. Similarly, when injury occurred in one cerebellar hemisphere, the opposite side of the cerebrum was smaller than normal, which the researchers said suggested there was an important developmental link between the two parts of the brain. Other work by Dr Catherine Limperopoulos and her colleagues suggests in addition to motor problems, children born with cerebellar injuries have problems with higher cognitive processes such as communication, social behaviour and visual perception. (C)BBC

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Link ID: 8016 - Posted: 10.10.2005

(Embargoed) CHAPEL HILL -- Scientists at the University of North Carolina at Chapel Hill may have identified the genetic basis underlying essential tremor disease, the most common human movement disorder. The discovery comes from studies involving a strain of genetically altered mice that show the same types of tremor and similar lack of coordination as people affected by essential tremor. This animal model of the disease might prove useful for screening potential treatments, said Dr. A. Leslie Morrow, associate director of UNC's Bowles Center for Alcohol Studies and professor of psychiatry and pharmacology in UNC's School of Medicine. "We believe that these mice could explain one etiology, or origin, of essential tremor disease in humans because of the marked similarities between the mouse model and the human disease," said Morrow, who led the study team. A report of the findings will appear in the March issue of the Journal of Clinical Investigation. An estimated 5 million Americans are affected by essential tremor, a neurological disease characterized by an uncontrollable shaking of the limbs, in particular the arms and head. Unlike resting tremor associated with Parkinson's disease, symptoms of essential tremor are noticeable during movement, such as lifting a cup of coffee.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 6954 - Posted: 03.02.2005

By SANDRA BLAKESLEE Cheryl Schiltz vividly recalls the morning she became a wobbler. Seven years ago, recovering from an infection after surgery with the aid of a common antibiotic, she climbed out of bed feeling pretty good. "Then I literally fell to the floor," she said recently. "The whole world started wobbling. When I turned my head, the room tilted. My vision blurred. Even the air felt heavy." The antibiotic, Ms. Schiltz learned, had damaged her vestibular system, the part of the brain that provides visual and gravitational stability. She was forced to quit her job and stay home, clinging to the walls to keep from toppling over. But three years ago, Ms. Schiltz volunteered for an experimental treatment - a fat strip of tape, placed on her tongue, with an array of 144 microelectrodes about the size of a postage stamp. The strip was wired to a kind of carpenter's level, which was mounted on a hard hat that she placed on her head. The level determined her spatial coordinates and sent the information as tiny pulses to her tongue. The apparatus, called a BrainPort, worked beautifully. By "buzzing" her tongue once a day for 20 minutes, keeping the pulses centered, she regained normal vestibular function and was able to balance. Ms. Schiltz and other patients like her are the beneficiaries of an astonishing new technology that allows one set of sensory information to substitute for another in the brain. Copyright 2004 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 6466 - Posted: 11.23.2004

Method may help halt A-T, cancer, other genetic diseases UCLA scientists have devised a novel way to repair one of the genetic mutations that cause ataxia-telangiectasia, (A-T), a life-shortening disorder that devastates the neurological and immune systems of one in 40,000 young children. Reported Oct. 18 in the Proceedings of the National Academy of Sciences, the findings could hold far-reaching implications for treating A-T, cancer and other genetic diseases. Often misdiagnosed as cerebral palsy, A-T usually strikes children before age 2 and confines them to a wheelchair by age 10. Many lose their ability to speak and die in childhood. One in three children also develop lymphoma or leukemia. Adults who carry the mutated A-T gene (ATM), including up to 15 percent of breast-cancer patients, are eight times more likely to develop cancer than the general population. Dr. Richard Gatti, professor of pathology and laboratory medicine, and Chih-Hung Lai, Ph.D., a postdoctoral researcher at the David Geffen School of Medicine at UCLA, created a new strategy for tricking the ATM gene into overlooking certain types of mutations called premature termination codons (PTCs). "PTCs are like irregular stop signs located in the middle of the block," explained Gatti. "They stop traffic before it reaches the intersection. We made these stop signs invisible, so traffic continues until it sees the proper stop sign at the end of the corner."

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 6275 - Posted: 10.19.2004

Few have heard of the degenerative, deadly disease called Ataxia-telangiectasia (A-T) but a University of Alberta researcher is hoping to provide clues to this mysterious disorder. Dr. Shelagh Campbell, from the U of A's Department of Biological Sciences, is a basic researcher who studies how normal cell cycles are regulated, by analyzing genes that are responsible for repairing DNA damage that offer insights into human diseases like cancer and A-T. A-T is a progressive, degenerative disease that affects a startling number of body systems. Children with A-T appear normal at birth but at around the age of two, some of the first signs--walking and balance is wobbly caused by ataxia or lack of muscle control--start appearing. "Kids are often misdiagnosed with cerebral palsy but what distinguishes A-T is it gets worse," said Campbell. "Sadly, many of the people with A-T end up in wheelchairs and most die young (I think there is a fair range).

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 6152 - Posted: 09.25.2004

A new genetic model for a motor disorder that confines an estimated 10,000 people in the United States to walkers and wheelchairs indicates that instability in the microscopic scaffolding within a key set of nerve cells is the cause of this devastating disability. The study, which is published in the July 13 issue of the journal Current Biology, provides a provocative new insight into the molecular basis of the disease called hereditary spastic paraplegia (HSP) and suggests a new way to treat the inherited genetic disorder. HSP--also known as familial spastic paraparesis and Strumpell-Lorrain syndrome--causes the ends of the nerves that control muscle activity to deteriorate. These nerve cells run from the brain's cerebral cortex to the spinal cord where they connect to "downstream" nerve cells that excite muscles throughout the body to control coordinated movement. HSP causes weakness, spasms and loss of function in the muscles in the lower extremities. More than 20 genes have been linked to HSP. However, more than 40 percent of all cases have been traced to a single gene (SPG4) that produces an enzyme called spastin. Previous studies have shown that this enzyme interacts with microtubules, the tiny protein tubes that provide structural support and transport avenues within most cells. Microtubules are dynamic structures, continually growing and shrinking, and their stability is closely regulated by a number of associated proteins. In nerve cells, microtubules carry cellular components to distant regions of the cell, regulate the growth of cellular branches and provide a substrate for important protein interactions. All of these functions are critically dependent on dynamic changes in microtubule stability.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 5820 - Posted: 07.16.2004

By Pat Hagan Hearing a skilled musician play a piece note-perfect is one of the joys of life. But do some professional musicians pay a terrible price for their talent? A team of British researchers has recently embarked on a study that they hope will shed light on a mysterious condition that can affect the brains of up to one in ten musical artists. Aided by a grant of over 92,000 from the charity Action Medical Research, experts from the Institute of Neurology and the National Hospital for Neurology and Neurosurgery in London hope to come up with a treatment for a condition called occupational dystonia - which leaves many experienced players with involuntary muscle spasms of the hand. The disorder can affect people in many occupations that involve high levels of skill in performing certain types of movement. But it appears to be particularly striking in musicians and for some, the consequences for their performing career can be catastrophic. Experts believe the root cause of occupational dystonia is that the brain somehow becomes "overspecialised" in carrying out very specific movements. In short, part of the brain becomes permanently "rewired" so that it is highly adept at the skills it has been using for years but unable to learn new, more flexible movements. (C)BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 5437 - Posted: 05.09.2004

MADISON - With a slight tweak of temperature, geneticist Barry Ganetzky's flies drop like, well, flies. For 25 years, Ganetzky has been identifying, breeding and studying a raft of fly mutants that, when exposed to minor temperature change, become completely paralyzed. The flies, which quickly recover when returned to room temperature, are now finding many uses in studies of human neurological disorders, drug discovery and insecticide development. Ganetzky, a University of Wisconsin-Madison professor of genetics, and his colleagues have become the undisputed champions of finding such mutants, raising the tally to upward of 100 such strains over the years.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4647 - Posted: 12.05.2003

ST. PAUL, MN ? A 33-year study of all births by women in Norway with Myasthenia Gravis (MG) confirms that MG is associated with an increased risk for complications during pregnancy, including a threefold higher incidence of preterm rupture of the amniotic membranes, and twice the occurrence of delivery by cesarean section. The study is reported in the November 25 issue of Neurology, the scientific journal of the American Academy of Neurology. Data for the study was collected from the Medical Birth Registry of Norway, based on compulsory notification of all births in the country. The study included 127 births by women with MG and the 1.9 million births by women without MG. Women with MG had twice the rate of cesarean section (17.3 percent) when compared to the control group (8.6 percent). Preterm rupture of amniotic membranes occurred three times more often ? or 5.5 percent ? compared to 1.7 percent of the general population.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 4594 - Posted: 11.25.2003

By HARRIET McBRYDE JOHNSON My father died when I was 2, and I lost my mother when I was 5.'' Throughout my childhood, that's what Grandmother says. She's a fine storyteller with rare gifts for gross delicacy and folksy pomposity, but she doesn't give the details, and we don't ask. To me, it's enough knowing that she's an orphan, like Heidi -- like Tarzan even! What else is worth knowing? Eventually our cousins tell us. When Grandmother was 5, her mother didn't die. She was placed in an asylum. There she lived until Grandmother was in her 20's. There she died. The news seems to answer some questions about Grandmother. Why does an independent thinker set such store on conventional behavior? Why did she marry a ridiculously steady Presbyterian? Copyright 2003 The New York Times Company

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 5: The Sensorimotor System
Link ID: 4584 - Posted: 11.23.2003

By ANAHAD O'CONNOR When Ellen Goldstein of Brooklyn gave birth last November to her only child, Owen, medical tests offered no clues that five months later he would be crippled by a deadly and irreversible genetic disease. Tests shortly before Owen was born revealed no abnormalities, and a physical evaluation right after his birth showed he was in perfect health. So when Owen, once a lively and playful baby, began showing signs of low muscle tone and lost the ability to move his left arm only two months into his life, doctors were mystified. Copyright 2003 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4441 - Posted: 10.29.2003

La Jolla, CA. -A team of scientists at The Scripps Research Institute (TSRI) has identified more than 50 previously unknown proteins and associates several of them with rare human muscle and nerve degeneration diseases. The team is publishing their findings this week in the journal Science. Led by TSRI Professors Larry Gerace and John R. Yates III, the team used a technique called subtractive proteomics to identify 62 new proteins in the inner nuclear membrane of the human cell. The team demonstrated that 23 of these proteins are linked with strong probability to 14 rare muscle-wasting diseases such as congenital muscular dystrophy, Limb-Girdle muscular dystrophy, and spinal muscular atrophy, and several forms of the neurodegenerative Charcot-Marie-Tooth disease. Knowing the proteins that may cause or contribute to these diseases is a first step in the long process of looking for ways to detect, prevent, or treat them.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4212 - Posted: 09.05.2003

Scientists have found strong evidence that botox injections can help children with cerebral palsy. Botox is more commonly used by cosmetic surgeons to smooth out wrinkles. The botulinum toxin can be deadly, paralysing muscles needed for breathing, but only very small doses are given in medical or cosmetic treatments. US researchers have shown children who received the treatment demonstrated a significant improvement in their symptoms. In the UK, experts have long called for the treatment using the botulinum toxin to be universally available. They welcomed the new findings, and said they provided even more support for their call. It is estimated one in 400 people in the UK have cerebral palsy, where a part of the brain, usually the part that controls the muscles and movement, is affected. (C) BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 3657 - Posted: 04.05.2003

Researchers have proven that gene therapy can reverse the pathological features of muscular dystrophy in an animal model. Before, gene therapy had only been able to prevent further muscle-wasting in mice. "We expect to build on these results in the continuing search for a way to treat a horrible disease. Our results indicate that gene therapy could be used not only to halt or prevent this disease, but also to restore normal muscle function in older patients," says Dr. Jeffrey S. Chamberlain, professor of neurology at the University of Washington School of Medicine in Seattle. Chamberlain is the senior author of the paper describing the results, which will be published in the Proceedings of the National Academy of Sciences online Early Edition the week of Sept. 16 to 20. Duchenne muscular dystrophy is an X-linked genetic disorder that strikes one of every 3,500 newborn boys. The genetic disorder means the body does not produce the dystrophin protein, which is necessary for the structural support of muscle. Without this protein, muscles weaken to the point where the victim cannot survive.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 2658 - Posted: 09.17.2002

Some of the secrets behind the development of one of the most common forms of muscular dystrophy have been unlocked by scientists. Facioscapulohumeral muscular dystrophy (FSHD) mainly affects the face, shoulders and arms, but can progress to the lower limbs as well. The muscles deteriorate in these areas, weakening them and making movement difficult. It is the third most common form of the condition, but scientists still do not fully understand its genetic roots. Scientists had previously located a section on one of the cell chromosomes which appeared to be different in many sufferers. (C) BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 2449 - Posted: 08.09.2002

British doctors believe they may have found a way of helping patients with conditions which seriously damage their nervous system. Doctors at St George's Hospital Medical School in South London have identified a gene which they believe plays a key role in certain neuro-degenerative disorders. These include patients with hereditary spastic paraplegia (HSP), which can cause people to lose the use of their legs and suffer from muscle spasms. There is currently no cure for this disorder. However, the London doctors believe their discovery could help in the development of future treatments. Dr Andrew Crosby and colleagues examined the genetic make-up of a particular form of HSP called Troyer syndrome. (C) BBC

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 2389 - Posted: 07.27.2002

Research on a tiny worm is yielding clues about dystonia, a disabling neurological disease of humans. University of California, Davis, researchers have found a gene in the nematode worm Caenorhabditis elegans that matches a gene altered in one form of dystonia. By studying the worm gene, they hope to find out more about how the human dystonia gene works. People with dystonia have sudden muscle contractions that force the body into abnormal and painful postures. It is the second most common neurological movement disorder, after Parkinson's Disease, affecting about half a million people in the U.S. and Canada. Scientists think that defects in parts of the brain that control movement cause the disease, but the exact causes are not known. Some milder types of dystonia can be treated with botulinum toxin injections, but there is no cure. Lesilee Rose, an assistant professor of molecular and cell biology at UC Davis, discovered the gene, called OOC-5, while looking for genes that control cell division in Caenorhabditis embryos.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 2127 - Posted: 05.24.2002

By C. CLAIBORNE RAY Q. What goes wrong in progressive supranuclear palsy, the disease that led to the death of the comedian Dudley Moore? A. Progressive supranuclear palsy, or P.S.P., which affects about 20,000 Americans, is of unknown cause. It destroys cells in many areas of the brain, leading to poor coordination, stiffness, weakness of certain muscle groups and slowed thought, explained Dr. Lawrence I. Golbe, professor of neurology at Robert Wood Johnson Medical School in New Brunswick, N.J. P.S.P. typically begins with loss of balance. Nearly all sufferers eventually develop the characteristic difficulty in moving the eyes up and down, the sign that often arouses a doctor's suspicion of the correct diagnosis. Copyright 2002 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 1817 - Posted: 04.07.2002