Links for Keyword: Development of the Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 650

by Rowan Hooper BIOENGINEERS dream of growing spare parts for our worn-out or diseased bodies. They have already succeeded with some tissues, but one has always eluded them: the brain. Now a team in Sweden has taken the first step towards this ultimate goal. Growing artificial body parts in the lab starts with a scaffold. This acts as a template on which to grow cells from the patient's body. This has been successfully used to grow lymph nodes, heart cells and voice boxes from a person's stem cells. Bioengineers have even grown and transplanted an artificial kidney in a rat. Growing nerve tissue in the lab is much more difficult, though. In the brain, new neural cells grow in a complex and specialised matrix of proteins. This matrix is so important that damaged nerve cells don't regenerate without it. But its complexity is difficult to reproduce. To try to get round this problem, Paolo Macchiarini and Silvia Baiguera at the Karolinska Institute in Stockholm, Sweden, and colleagues combined a scaffold made from gelatin with a tiny amount of rat brain tissue that had already had its cells removed. This "decellularised" tissue, they hoped, would provide enough of the crucial biochemical cues to enable seeded cells to develop as they would in the brain. When the team added mesenchymal stem cells – taken from another rat's bone marrow – to the mix, they found evidence that the stem cells had started to develop into neural cells (Biomaterials, doi.org/qfh). The method has the advantage of combining the benefits of natural tissue with the mechanical properties of an artificial matrix, says Alex Seifalian, a regenerative medicine specialist at University College London, who wasn't involved in the study. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19029 - Posted: 12.12.2013

by Laura Sanders Last Sunday, the Giants battled the Redskins in our living room, and there was no bigger fan than 9-month-old Baby V. Unlike her father, she was not interested in RG3’s shortcomings. The tiny, colorful guys running around on a bright green field, the psychedelic special effects and the bursts of noise drew her in like a moth to a 42-inch high-definition flame. My friends with kids have noticed the same screen fascination in their little ones. Like adults, kids love colorful, shiny, moving screens. The problem, of course, is that watching TV probably isn’t the best way for little kids to spend their time. Long bouts in front of the tube have been linked to obesity, weaker attention spans and aggression in kids. Now, a new study of Japanese children has linked TV time with changes in the growing brains, effects that have been harder to spot. And the more television a kid watches, the more profound the brain differences, scientists report November 20 in Cerebral Cortex. Researchers studied kids between age 5 and 18 who watched between zero and four hours of television a day. On average, the kids watched TV for about two hours a day. Brain scans revealed that the more television a kid watched, the larger certain parts of the brain were. Gray matter volume was higher in regions toward the front and side of the head in kids who watched a lot of TV. Say that again? Watching television boosts brain volume? Before you rejoice and fire up Season 1 of Breaking Bad, keep in mind: Bigger isn’t always better. In this case, higher brain volume in these kids was associated with a lower verbal IQ. Study coauthor Hikaru Takeuchi Tohoku University in Japan says that these brain areas need to be pruned during childhood to operate efficiently. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18995 - Posted: 12.03.2013

By Tanya Lewis 20 hours ago To understand the human brain, scientists must start small, and what better place than the mind of a worm? The roundworm Caenorhabditis elegans is one of biology's most widely studied organisms, and it's the first to have the complete wiring diagram, or connectome, of its nervous system mapped out. Knowing the structure of the animal's connectome will help explain its behavior, and could lead to insights about the brains of other organisms, scientists say. "You can't understand the brain without understanding the connectome," Scott Emmons, a molecular geneticist at Albert Einstein College of Medicine of Yeshiva University in New York, said in a talk earlier this month at the annual meeting of the Society for Neuroscience in San Diego. In 1963, South African biologist Sydney Brenner of the University of Cambridge decided to use C. elegans as a model organism for developmental biology. He chose the roundworm because it has a simple nervous system, it's easy to grow in a lab and its genetics are relatively straightforward. C. elegans was the first multicellular organism to have its genome sequenced, in 1998. Brenner knew that to understand how genes affect behavior, "you would have to know the structure of the nervous system," Emmons told LiveScience.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18981 - Posted: 11.30.2013

by Jessica Griggs, San Diego Pregnant women may pass on the effects of stress to their fetus by way of bacterial changes in their vagina, suggests a study in mice. It may affect how well their baby's brain is equipped to deal with stress in adulthood. The bacteria in our body outnumber our own cells by about 10 to 1, with most of them found in our gut. Over the last few years, it has become clear that the bacterial ecosystem in our body – our microbiome – is essential for developing and maintaining a healthy immune system. Our gut bugs also help to prevent germs from invading our bodies, and help to absorb nutrients from food. A baby gets its first major dose of bacteria in life as it passes through its mother's birth canal. En route, the baby ingests the mother's vaginal microbes, which begin to colonise the newborn's gut. Chris Howerton, then at the University of Pennsylvania in Philadelphia, and his colleagues wanted to know if this initial population of bacteria is important in shaping a baby's neurological development, and whether that population is influenced by stress during pregnancy. The first step was to figure out what features of the mother's vaginal microbiome might be altered by stress, and then see if any of those changes were transmitted to the offspring's gut. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 18934 - Posted: 11.16.2013

by Laura Sanders SAN DIEGO — Teenagers’ brains are wired to confront a threat instead of retreating, research presented November 10 at the annual Society for Neuroscience meeting suggests. The results may help explain why criminal activity peaks during adolescence. Kristina Caudle of Weill Cornell Medical College in New York City and colleagues tested the impulse control of 83 people between ages 6 and 29. In the experiment, participants were asked to press a button when a photo of a happy face quickly flashed before them. They were told not to press the button when a face had a threatening expression. When confronted with the threatening faces, people between the ages of 13 and 17 were more likely to impulsively push the button than children and adults were, the team found. Brain scans revealed that activity in an area called the orbital frontal cortex peaked in teens when they successfully avoided pushing the button, suggesting that this region curbs the impulse to react, Caudle said. It’s not clear why children don’t have the same impulsive reaction to threatening faces. More studies could determine how the relevant brain systems grow and change, Caudle said. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18933 - Posted: 11.16.2013

SAN DIEGO, CALIFORNIA—Why do teens—especially adolescent males—commit crimes more frequently than adults? One explanation may be that as a group, teenagers react more impulsively to threatening situations than do children or adults, likely because their brains have to work harder to reign in their behavior, a research team reported here yesterday at the Society for Neuroscience meeting. Whether it's driving too fast on a slick road or experimenting with drugs, teenagers have a reputation for courting danger that is often attributed to immaturity or poor decision-making. If immaturity or lack of judgment were the only problem, however, one would expect that children, whose brains are at an even earlier stage of development, would have an equal or greater penchant for risk-taking, says Kristina Caudle, a neuroscientist at the Weill Cornell Medical College in New York City who led the study. But younger children tend to be more cautious than teenagers, suggesting that there is something unique about adolescent brain development that lures them to danger, she says. It's hard to generalize about teenage impulsivity, because some adolescents clearly have more self-control than many adults, says principal investigator B. J. Casey, a neuroscientist. Still, a growing body of evidence suggests that, in general, teens specifically struggle to keep their cool in social situations, she says. Because many crimes committed during adolescence involve emotionally fraught social situations, such as conflict, Caudle and colleagues decided to test whether teens perform badly on a common impulsivity task when faced with social cues of threat. They recruited 83 people, ranging in age from 6 to 29, to perform a simple "Go/No-Go" task, in which they watched a series of faces making neutral or threatening facial expressions flicker past on a computer screen. Each time the participants saw a neutral face, they were instructed to hit a button. They were also told to hold back from pressing the button when they saw a threatening face. As the participants performed the task, the researchers monitored their brain activity with functional magnetic resonance imaging. © 2013 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18917 - Posted: 11.12.2013

Babies born to women who exercised during pregnancy have enhanced brain development compared with babies born to moms who didn’t exercise while they were pregnant, a new Canadian study suggests. The babies of 10 women who did as little as 20 minutes of moderate exercise three times a week during pregnancy showed more advanced brain activity when they were tested at eight to 12 days old than the babies of eight women who did not exercise during pregnancy, reported University of Montreal researcher David Ellemberg and his colleagues at the Neuroscience 2013 conference in San Diego on Sunday. “We are optimistic that this will encourage women to change their health habits, given that the simple act of exercising during pregnancy could make a difference for their child's future,” Ellemberg said in a statement. The women in the study were randomly assigned to an exercise group or a sedentary group at the beginning of their second trimester. Those in the exercise group had to spend at least 20 minutes three times a week doing exercise intense enough to lead to at least a slight shortness of breath. After their babies were born, the researchers tested them by placing a cap of electrodes on the babies' heads and then playing novel sounds while they slept. They measured the electrical response of the babies' brains to see how well they could distinguish between different sounds. The researchers found that the babies in the exercise group produced signals associated with more mature brains. The researchers said they plan to test the children’s cognitive, motor and language development at age one to see if there are lasting effects. © CBC 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 18916 - Posted: 11.12.2013

A mother's level of education has strong implications for a child's development. Northwestern University researchers show in a new study that low maternal education is linked to a noisier nervous system in children, which could affect their learning. "You really can think of it as static on your radio that then will get in the way of hearing the announcer’s voice," says Nina Kraus, senior author of the study and researcher at the Auditory Neuroscience Laboratory at Northwestern University. The study, published in the Journal of Neuroscience, is part of a larger initiative working with children in public high schools in inner-city Chicago. The adolescents are tracked from ninth to 12th grade. An additional group of children in the gang-reduction zones of Los Angeles are also being tracked. Kraus and colleagues are more broadly looking at how music experience, through classroom group-based musical experience, could offset certain negative effects of poverty. But first, they wanted to see what biological effects poverty may have on the adolescents' brain. In this particular study, 66 children - a small sample - in Chicago participated. Those whose mothers had a "lower education" tended to have not graduated from high school. Kraus's study did not directly track income of families, but most children in the study qualified for free lunch (to be eligible, a family of four must have income of about $29,000 or less). Researchers found "children from lower-SES (socioeconomic status) backgrounds are exposed to less complex and linguistically rich input in addition to hearing fewer words per hour from their caregivers," according to the study. © 2012 Cable News Network

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18856 - Posted: 10.30.2013

Early childhood poverty has been linked to smaller brain size by U.S. researchers who are pointing to the importance of nurturing from caregivers as a protective factor. Children exposed to poverty tend to have poorer cognitive outcomes and school performance. To learn more about the biology of how, researchers started tracking the emotional and brain development of 145 preschoolers in metropolitan St. Louis for 10 years. Household poverty was measured by the income-to-needs ratio. Children were assessed each year for thee to six years before they received an MRI and questionnaires. A parent and child were also observed during a lab task that required the child (age four to seven) to wait for eight minutes before opening a brightly wrapped gift within arm's reach while the parent filled in questionnaires. "These study findings demonstrated that exposure to poverty during early childhood is associated with smaller white matter, cortical grey matter, and hippocampal and amygdala volumes," Dr. Joan Luby of the psychiatry department at Washington University School of Medicine in St. Louis and her co-authors concluded in Monday's issue of the journal JAMA Pediatrics. The findings were consistent with an earlier study by the same team that suggested supportive parenting also plays an important role in the development of the hippocampus in childhood independent of income. The brain's hippocampus is important for learning and memory and how we respond to stress. In the study, the effects of poverty on hippocampal volume was influenced by caregiving support or hospitality in the brain's light and right hemispheres and stressful life events on the left. Caregiver education was not a significant mediator. © CBC 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18847 - Posted: 10.29.2013

By Gary Stix The Obama administration’s neuroscience initiative highlights new technologies to better understand the workings of brain circuits on both a small and large scale. Various creatures, from roundworms to mice, will be centerpieces of that program because the human brain is too complex—and the ethical issues too intricate—to start analyzing the actual human organ in any meaningful way. But what if there were already a means to figure out how the brain wires itself up and, in turn, to use this knowledge to study what happens in various neurological disorders of early life? Reports in scientific journals have started to trickle in on the way stem cells can spontaneously organize themselves into complex brain tissue—what some researchers have dubbed mini-brains. Christopher A. Walsh, Bullard Professor of pediatrics and neurology at Harvard Medical School, talked to Scientific American about the importance of just such work for understanding brain development and neurological disease. (Also, check out the Perspective Walsh did for Science on this topic, along with Byoung-il Bae.) In order to be able to understand the way the brain solves this tremendously complex problem of wiring itself up, we need to be able to study it rigorously in the laboratory. We need some sort of model. We can’t just take humans and put them under the microscope, so we have to find some way of modeling the brain. The mouse has been tremendously useful for understanding brain wiring and how cells in the brain form. And the mouse will continue to be very useful. The mouse is particularly useful in studying cellular effects of particular genes, but, as we get smarter and smarter about what the problems are, we’re increasingly able to think, not about things that we share with mice, but the differences that distinguish us from mice. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18827 - Posted: 10.24.2013

Research indicates that indeed Americans girls and boys are going through puberty earlier than ever, though the reasons are unclear. Many believe our widespread exposure to synthetic chemicals is at least partly to blame, but it’s hard to pinpoint exactly why our bodies react in certain ways to various environmental stimuli. Researchers first noticed the earlier onset of puberty in the late 1990s, and recent studies confirm the mysterious public health trend. A 2012 analysis by the U.S. Centers for Disease Control and Prevention (CDC) found that American girls exposed to high levels of common household chemicals had their first periods seven months earlier than those with lower exposures. “This study adds to the growing body of scientific research that exposure to environmental chemicals may be associated with early puberty,” says Danielle Buttke, a researcher at CDC and lead author on the study. Buttke found that the age when a girl has her first period (menarche) has fallen over the past century from an average of age 16-17 to age 12-13. Earlier puberty isn’t just for girls. In 2012 researchers from the American Academy of Pediatrics (AAP) surveyed data on 4,100 boys from 144 pediatric practices in 41 states and found a similar trend: American boys are reaching puberty six months to two years earlier than just a few decades ago. African-American boys are starting the earliest, at around age nine, while Caucasian and Hispanics start on average at age 10. One culprit could be rising obesity rates. Researchers believe that puberty (at least for girls) may be triggered in part by the body building up sufficient reserves of fat tissue, signaling fitness for reproductive capabilities. Clinical pediatrician Robert Lustig of Benioff Children’s Hospital in San Francisco reports that obese girls have higher levels of the hormone leptin which in and of itself can lead to early puberty while setting off a domino effect of more weight gain and faster overall physical maturation. © 2013 Scientific American,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18814 - Posted: 10.21.2013

By SINDYA N. BHANOO Hungry babies instinctively open their mouths as their mother’s breast or a bottle draws near. Now, researchers from England and France report that this instinct — the anticipation of touch — is a skill fetuses teach themselves in the womb. Studying scans at monthly intervals between 24 and 36 weeks of pregnancy, the scientists found that the youngest fetuses were more likely to touch their heads and that as they matured, they began to touch their mouths more. And by 36 weeks, the fetuses began to open their mouths before they touched them. The anticipation of touch is a skill a baby uses during feeding, said Nadja Reissland, a psychologist at Durham University in England, who reports the findings along with colleagues in the journal Developmental Psychobiology. “We can’t say it’s a precursor to feeding, but it’s one element of feeding,” she said. “You actually need to open your mouth in order to feed.” Premature babies may not have fully grasped this skill, Dr. Reissland said. The study could provide more information about what premature babies can do and what special care they need. “The fetus might actually be learning the limits of its body, the texture of the body and what it feels like to be a person in the womb,” she said. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18786 - Posted: 10.15.2013

By JANE E. BRODY Fifty years ago, a revolution began in neonatal care that has preserved the physical and mental health, and often the lives, of thousands of babies: screening of newborns for inherited and congenital disorders. On Oct. 15, 1963, the first law requiring that all newborns be screened for phenylketonuria, or PKU, took effect in Massachusetts. PKU, an inherited metabolic disorder, afflicts one in 20,000 of the four million babies born each year in the United States. Children with PKU are missing an enzyme that converts the amino acid phenylalanine to tyrosine, and unless they remain on a special protein-restricted diet, the resulting buildup of phenylketone damages the brain and causes mental retardation and physical disabilities. Today every state tests babies at birth for PKU — and not just that. There are now more than 50 disorders that can be picked up through screening, 31 of which comprise the “core conditions” of the government’s Recommended Uniform Screening Panel. Other conditions are likely to be added to the panel in the future. All but two of them — hearing loss and critical congenital heart disease — can be detected by automated analysis of a few drops of dried blood from a heel stick done within a few days of birth. Giana Swift, a fifth grader in Sherman Oaks, Calif., was one of more than 12,500 babies who benefit from newborn screening each year. The story of her birth in October 2002 was recounted in The Times. Through a pilot screening program, Giana was found to have an inherited metabolic disorder called 3-MCC (3-methylcrotonyl-CoA carboxylase deficiency). It afflicts about 100 babies a year, rendering them unable to process the amino acid leucine. As with PKU, toxic byproducts of the unprocessed amino acid build up in the blood and damage the brain. Because she was tested at birth, Giana thrived, first on a special leucine-free baby formula, then on a diet nearly free of protein. Her grateful father, David Swift, 44, recently described Giana as “very bright, precocious, happy and a top athlete.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18784 - Posted: 10.14.2013

Figuring out the next 99,999,999,900 neurons “We have a hundred billion neurons in each human brain,” said Nicholas Spitzer, a neurobiologist and co-director of the Kavli Institute for Brain and Mind at the University of California-San Diego (which is partnering with The Atlantic on this event). “Right now, the best we can do is to record the electrical activity of maybe a few hundred of those neurons. Gee, that’s not very impressive.” Spitzer and his team are trying to figure out what’s going on in the rest of those neurons, or brain cells – specifically, what "jobs" they have in the body. But first, a bit of Neuroscience 101: “As your readers may know, the nerve cells or neurons in the brain communicate with each other through the release of chemicals, called neurotransmitters,” Spitzer said. “This allows a motor neuron that makes a muscle contract signal to the muscle to say, ‘time to contract.’ It seems like kind of a clumsy way to organize a signaling system.” But sometimes, those neurons change "jobs" – a motor neuron might start signaling another function in the body, for example. "These issues have their origins in the Greek and Roman and Chinese philosophers." “We thought for a long time that the wiring of the brain was a little bit like the wiring of some sort of electronic device in that the connection of the wires in the ‘device,’ the brain, are fairly fixed. What we’re finding is that the wires can remain in place, but the function of the circuit and the connection of the wires can change,” Spitzer said. “This is something of a heresy.” © 2013 by The Atlantic Monthly Group

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18740 - Posted: 10.03.2013

By DENISE GELLENE Dr. David Hubel, who was half of an enduring scientific team that won a Nobel Prize for explaining how the brain assembles information from the eye’s retina to produce detailed visual images of the world, died on Sunday in Lincoln, Mass. He was 87. The cause was kidney failure, his son Carl said. Dr. Hubel (pronounced HUGH-bull) and his collaborator, Dr. Torsten Wiesel, shared the 1981 Nobel in Physiology or Medicine with Roger Sperry for discovering ways that the brain processes information. Dr. Hubel and Dr. Wiesel concentrated on visual perception, initially experimenting on cats; Dr. Sperry described the functions of the brain’s left and right hemispheres. Dr. Hubel’s and Dr. Wiesel’s work further showed that sensory deprivation early in life can permanently alter the brain’s ability to process images. Their findings led to a better understanding of how to treat certain visual birth defects. Dr. Hubel and Dr. Wiesel collaborated for more than two decades, becoming, as they made their discoveries, one of the best-known partnerships in science. “Their names became such a brand name that H&W rolled off the tongue as easily in the lab as A&W root beer did at lunch,” Robert H. Wurtz, a neuroscientist, wrote in a review article about their work. Before Dr. Hubel and Dr. Wiesel started their research in the 1950s, scientists had long believed that the brain functioned like a movie screen — projecting images exactly as they were received from the eye. Dr. Hubel and Dr. Wiesel showed that the brain behaves more like a microprocessor, deconstructing and then reassembling details of an image to create a visual scene. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 7: Vision: From Eye to Brain
Link ID: 18703 - Posted: 09.25.2013

by Douglas Heaven Why rely on mouse brains to help us understand our most complex organ when you can grow a model of a human one? Tiny "brains" that include parts of the cortex, hippocampus and even retinas, have been made for the first time using stem cells. The 3D tissue structures will let researchers study the early stages of human brain development in unprecedented detail. Because human brains are so different from those of most animals, looking at how animal brains develop only gives us a crude understanding of the process in humans. "Mouse models don't cut it," says Juergen Knoblich at the Institute of Molecular Biology (IMB) in Vienna, Austria. To grow their miniature brains, Knoblich and colleagues took induced pluripotent stem (iPS) cells – adult cells reprogrammed to behave like embryonic stem cells – and gave them a mix of nutrients thought to be essential for brain development. The stem cells first differentiated into neuroectoderm tissue, the layer of cells that would eventually become an embryo's nervous system. The tissue was suspended in a gel scaffold to help it develop a 3D structure. Right food, right structure In less than a month, the stem cells grew into brain-like "organoids" 3 to 4 millimetres across and containing structures that corresponded to most of the regions of the brain. For example, all the organoids they made appeared to contain parts of the cortex, about 70 per cent contained a choroid plexus – which produces spinal fluid – and about 10 per cent contained retinal tissue. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18581 - Posted: 08.29.2013

By Laura Sanders Seeing people of different races early in life may sculpt the developing brain, a new study suggests. Children who spent infancy in Chinese or Russian orphanages with little contact from outsiders had difficulty perceiving emotions on faces of people of unfamiliar races. These children also showed heightened brain responses to faces of unfamiliar races. “This new study is unique in that it for the first time tells us that early exposure to faces of different races is important,” says psychologist Kang Lee of the University of Toronto. “The lack of such exposure can have long-lasting effects.” Although the results, published in the Aug. 14 Journal of Neuroscience, suggest that race shapes the brain during infancy, the study can’t say what such a brain change might mean, says study coauthor Eva Telzer of the University of Illinois at Urbana-Champaign. “Our findings do not say anything about children’s behavior in their daily life.” Telzer and her colleagues studied one of the few populations that could help reveal these effects: orphans who the researchers believe lived amid a single race of people early in life. Most of these 36 children spent time in Russian or Chinese orphanages and were later adopted by American families of European descent. On average, the kids were adopted when they were 2 to 3 years old and were between 6 and 16 years old at the time of the study. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18507 - Posted: 08.14.2013

By Laura Sanders Pregnant mice buzzed on caffeine gave birth to pups with brain changes and lasting memory deficits, a new study shows. The results, published Aug. 7 in Science Translational Medicine, leave unclear whether caffeine causes a similar effect in people. The study convincingly shows that caffeine changes the brains of exposed pups, says child neurologist Barry Kosofsky of Weill Cornell Medical College in New York. But he cautions that mouse and human brains develop very differently, so direct comparisons are impossible. The study has no immediate message for pregnant women, Kosofsky says. “We are totally at a loss about what to say for caffeine.” For a mouse mother, though, the experiment’s story is clearer: Moderate caffeine intake during pregnancy changes baby brains, and not for the better. While pregnant and later lactating, mice drank water laced with caffeine — an amount comparable to that in three to four cups of coffee a day. In offspring, cells in a memory center in the brain called the hippocampus fired off too many messages, an abnormal behavior that could lead to seizures, Carla Silva, of the French National Institute of Health and Medical Research and the University of Coimbra in Portugal, and colleagues found. As adults, the caffeine-exposed mice performed worse than nonexposed mice on memory tests. Usually, mice ignore familiar objects and spend lots of time investigating something new. But mice exposed to caffeine while developing weren’t keen on exploring new objects, suggesting that they couldn’t remember which object was new. What’s more, these mice had fewer neurons in parts of the hippocampus than normal mice. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory, Learning, and Development
Link ID: 18478 - Posted: 08.08.2013

Beth Mole The insertion of one gene can muzzle the extra copy of chromosome 21 that causes Down’s syndrome, according to a study published today in Nature1. The method could help researchers to identify the cellular pathways behind the disorder's symptoms, and to design targeted treatments. “It’s a strategy that can be applied in multiple ways, and I think can be useful right now,” says Jeanne Lawrence, a cell biologist at the University of Massachusetts Medical School in Worcester, and the lead author of the study. Lawrence and her team devised an approach to mimic the natural process that silences one of the two X chromosomes carried by all female mammals. Both chromosomes contain a gene called XIST (the X-inactivation gene), which, when activated, produces an RNA molecule that coats the surface of a chromosome like a blanket, blocking other genes from being expressed. In female mammals, one copy of the XIST gene is activated — silencing the X chromosome on which it resides. Lawrence’s team spliced the XIST gene into one of the three copies of chromosome 21 in cells from a person with Down’s syndrome. The team also inserted a genetic 'switch' that allowed them to turn on XIST by dosing the cells with the antibiotic doxycycline. Doing so dampened expression of individual genes along chromosome 21 that are thought to contribute to the pervasive developmental problems that comprise Down's syndrome. © 2013 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18390 - Posted: 07.18.2013

Heidi Ledford The growth of new nerves in and around prostate cancers spurs tumours to grow and invade other tissues, studies in mice have shown. The results, published today in Science1, could steer researchers towards novel approaches to treating cancer. Although it is not yet clear whether the mechanism occurs in humans — or in cancers affecting other organs — an analysis of samples from 43 patients with prostate cancer found that nerve density was high in patients who fared poorly in the clinic. “It’s a catalytic paper,” says John Isaacs, a cancer researcher at the Johns Hopkins Medical Institutions in Baltimore, Maryland, who was not affiliated with the study. “People may now focus on trying to tackle these unanswered questions.” Previous work had shown that cancer cells sometimes migrate along nerves, and that this process can be associated with poor responses to therapy2. To learn more, Claire Magnon and Paul Frenette of the Albert Einstein College of Medicine in New York and their colleagues studied tumour development in mice injected with human prostate cancer cells. The resulting tumours, they saw, were infiltrated with certain types of nerve fibres. Chemically destroying those nerves prevented the development of tumours in the prostate. Furthermore, the team found that another class of nerves was associated with tumour spread, and that blocking certain receptors on those nerves prevented the cancer from invading nearby lymph nodes. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18369 - Posted: 07.13.2013