Links Containing Search Words: “darpa”

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 25

By Benjamin Powers On the 10th floor of a nondescript building at Columbia University, test subjects with electrodes attached to their heads watch a driver’s view of a car going down a street through a virtual reality headset. All the while, images of pianos and sailboats pop up to the left and right of each test subject’s field of vision, drawing their attention. The experiment, headed by Paul Sajda, a biomedical engineer and the director of Columbia’s Laboratory for Intelligent Imaging and Neural Computing, monitors the subjects’ brain activity through electroencephalography technology (EEG), while the VR headset tracks their eye movement to see where they’re looking — a setup in which a computer interacts directly with brain waves, called a brain computer interface (BCI). In the Columbia experiment, the goal is to use the information from the brain to train artificial intelligence in self-driving cars, so they can monitor when, or if, drivers are paying attention. BCIs are popping up in a range of fields, from soldiers piloting a swarm of drones at the Defense Advanced Research Projects Agency (DARPA) to a Chinese school monitoring students’ attention. The devices are also used in medicine, including versions that let people who have been paralyzed operate a tablet with their mind or that give epileptic patients advance warning of a seizure. And in July 2019, Elon Musk, the CEO and founder of Tesla and other technology companies, showed off the work of his venture Neuralink, which could implant BCIs in people’s brains to achieve “a symbiosis with artificial intelligence.”

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 14: Attention and Higher Cognition
Keyword: Robotics; Brain imaging
Link ID: 27209 - Posted: 04.22.2020

By Sharon Begley Technologies to detect brain activity — fine, we’ll come right out and call it mind reading — as well as to change it are moving along so quickly that “a bit of a gold rush is happening, both on the academic side and the corporate side,” Michel Maharbiz of the University of California, Berkeley, told a recent conference at the Massachusetts Institute of Technology. Here are three fast-moving areas of neuroscience we’ll be watching in 2018: Neural dust/neurograins Whatever you call these electronics, they’re really, really tiny. We’re eagerly awaiting results from DARPA’s $65 million neural engineering program, which aims to develop a brain implant that can communicate digitally with the outside world. The first step is detecting neurons’ electrochemical signaling (DARPA, the Pentagon’s Defense Advanced Research Projects Agency, says 1 million neurons at a time would be nice). To do that, scientists at Brown University are developing salt-grain-sized “neurograins” containing an electrode to detect neural firing as well as to zap neurons to fire, all via a radio frequency antenna. Advertisement Maharbiz’s “neural dust” is already able to do the first part. The tiny wireless devices can detect what neurons are doing, he and his colleagues reported in a 2016 rat study. (The study’s lead scientist recently moved to Elon Musk’s startup Neuralink, one of a growing number of brain-tech companies.) Now Maharbiz and team are also working on making neural dust receive outside signals and cause neurons to fire in certain ways. Such “stimdust” would be “the smallest [nerve] stimulator ever built,” Maharbiz said. Eventually, scientists hope, they’ll know the neural code for, say, walking, letting them transmit the precise code needed to let a paralyzed patient walk. They’re also deciphering the neural code for understanding spoken language, which raises the specter of outside signals making people hear voices — raising ethical issues that, experts said, neurotech will generate in abundance. © 2017 Scientific American

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Keyword: Brain imaging; Robotics
Link ID: 24468 - Posted: 12.29.2017

Sara Reardon Brain implants that deliver electrical pulses tuned to a person’s feelings and behaviour are being tested in people for the first time. Two teams funded by the US military’s research arm, the Defense Advanced Research Projects Agency (DARPA), have begun preliminary trials of ‘closed-loop’ brain implants that use algorithms to detect patterns associated with mood disorders. These devices can shock the brain back to a healthy state without input from a physician. The work, presented last week at the Society for Neuroscience (SfN) meeting in Washington DC, could eventually provide a way to treat severe mental illnesses that resist current therapies. It also raises thorny ethical concerns, not least because the technique could give researchers a degree of access to a person’s inner feelings in real time. The general approach — using a brain implant to deliver electric pulses that alter neural activity — is known as deep-brain stimulation. It is used to treat movement disorders such as Parkinson’s disease, but has been less successful when tested against mood disorders. Early evidence suggested that constant stimulation of certain brain regions could ease chronic depression, but a major study involving 90 people with depression found no improvement after a year of treatment.1 The scientists behind the DARPA-funded projects say that their work might succeed where earlier attempts failed, because they have designed their brain implants specifically to treat mental illness — and to switch on only when needed. “We’ve learned a lot about the limitations of our current technology,” says Edward Chang, a neuroscientist at the University of California, San Francisco (UCSF), who is leading one of the projects. © 2017 Macmillan Publishers Limited

Related chapters from BN: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Keyword: Depression; Robotics
Link ID: 24354 - Posted: 11.24.2017

By Gary Stix In April, DARPA announced contracts for a program to develop practical methods to help someone learn more quickly. In the ensuing press coverage, the endeavor drew immediate comparisons to the The Matrix—in which Neo, the Keanu Reeves character, has his brain reprogrammed so that he instantly masters Kung Fu. DARPA is known for setting ambitious goals for its technology development programs. But it is not requiring contractors for the $50 million, four-year effort to find a way to let a special forces soldier upload neural codes to instantaneously execute a flawless Wushu butterfly kick. The agency did award contracts, though, to find some means of zapping nerves in the peripheral nervous system outside the brain to speed the rate at which a foreign language can be learned by as much as 30 percent, a still not-too-shabby goal. Sending an electrical current into the vagus nerve in the neck from a surgically implanted device is already approved for treating epilepsy and depression. The DARPA program, in tacit acknowledgement that mandatory surgery might be unacceptable for students contemplating an accelerated Mandarin class, wants to develop a non-invasive device to stimulate a peripheral nerve, perhaps in the ear. The goal is to hasten, not just the learning of foreign languages, but also to facilitate pattern recognition tasks such as combing through surveillance imagery. © 2017 Scientific American,

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Keyword: Learning & Memory
Link ID: 23699 - Posted: 06.02.2017

By Alison Howell What could once only be imagined in science fiction is now increasingly coming to fruition: Drones can be flown by human brains' thoughts. Pharmaceuticals can help soldiers forget traumatic experiences or produce feelings of trust to encourage confession in interrogation. DARPA-funded research is working on everything from implanting brain chips to "neural dust" in an effort to alleviate the effects of traumatic experience in war. Invisible microwave beams produced by military contractors and tested on U.S. prisoners can produce the sensation of burning at a distance. What all these techniques and technologies have in common is that they're recent neuroscientific breakthroughs propelled by military research within a broader context of rapid neuroscientific development, driven by massive government-funded projects in both America and the European Union. Even while much about the brain remains mysterious, this research has contributed to the rapid and startling development of neuroscientific technology. And while we might marvel at these developments, it is also undeniably true that this state of affairs raises significant ethical questions. What is the proper role – if any – of neuroscience in national defense or war efforts? My research addresses these questions in the broader context of looking at how international relations, and specifically warfare, are shaped by scientific and medical expertise and technology. 2016 © U.S. News & World Report L.P.

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 10: Biological Rhythms and Sleep
Keyword: Attention; Sleep
Link ID: 22944 - Posted: 12.03.2016

By Larry Greenemeier Advanced prosthetics have for the past few years begun tapping into brain signals to provide amputees with impressive new levels of control. Patients think, and a limb moves. But getting a robotic arm or hand to sense what it’s touching, and send that feeling back to the brain, has been a harder task. The U.S. Defense Department’s research division last week claimed a breakthrough in this area, issuing a press release touting a 28-year-old paralyzed person’s ability to “feel” physical sensations through a prosthetic hand. Researchers have directly connected the artificial appendage to his brain, giving him the ability to even identify which mechanical finger is being gently touched, according to the Defense Advanced Research Projects Agency (DARPA). In 2013, other scientists at Case Western Reserve University also gave touch to amputees, giving patients precise-enough feeling of pressure in their fingertips to allow them to twist the stems off cherries. The government isn’t providing much detail at this time about its achievement other than to say that researchers ran wires from arrays connected to the volunteer’s sensory and motor cortices—which identify tactile sensations and control body movements, respectively—to a mechanical hand developed by the Applied Physics Laboratory (APL) at Johns Hopkins University. The APL hand’s torque sensors can convert pressure applied to any of its fingers into electrical signals routed back to the volunteer’s brain. © 2015 Scientific American

Related chapters from BN: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Keyword: Pain & Touch; Robotics
Link ID: 21411 - Posted: 09.15.2015

By Ariana Eunjung Cha The Defense Advanced Research Projects Agency funds a lot of weird stuff, and in recent years more and more of it has been about the brain. Its signature work in this field is in brain-computer interfaces and goes back several decades to its Biocybernetics program, which sought to enable direct communication between humans and machines. In 2013, DARPA made headlines when it announced that it intended to spend more than $70 million over five years to take its research to the next level by developing an implant that could help restore function or memory in people with neuropsychiatric issues. Less known is DARPA's Narrative Networks (or N2) project which aims to better understand how stories — or narratives — influence human behavior and to develop a set of tools that can help facilitate faster and better communication of information. "Narratives exert a powerful influence on human thoughts, emotions and behavior and can be particularly important in security contexts," DARPA researchers explained in a paper published in the Journal of Neuroscience Methods in April. They added that "in conflict resolution and counterterrorism scenarios, detecting the neural response underlying empathy induced by stories is of critical importance." This is where the work on the Hitchcock movies comes in. Researchers at the Georgia Institute of Technology recruited undergraduates to be hooked up to MRI machines and watch movie clips that were roughly three minutes long. The excerpts all featured a character facing a potential negative outcome and were taken from suspenseful movies, including three Alfred Hitchcock flicks as well as "Alien," "Misery," "Munich" and "Cliffhanger," among others.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Higher Cognition
Keyword: Emotions; Attention
Link ID: 21231 - Posted: 07.29.2015

By Abby Phillip Jan Scheuermann, who has quadriplegia, brings a chocolate bar to her mouth using a robot arm guided by her thoughts. Research assistant Elke Brown watches in the background. (University of Pittsburgh Medical Center) Over at the Defense Advanced Research Projects Agency, also known as DARPA, there are some pretty amazing (and often top-secret) things going on. But one notable component of a DARPA project was revealed by a Defense Department official at a recent forum, and it is the stuff of science fiction movies. According to DARPA Director Arati Prabhakar, a paralyzed woman was successfully able use her thoughts to control an F-35 and a single-engine Cessna in a flight simulator. It's just the latest advance for one woman, 55-year-old Jan Scheuermann, who has been the subject of two years of groundbreaking neurosignaling research. First, Scheuermann began by controlling a robotic arm and accomplishing tasks such as feeding herself a bar of chocolate and giving high fives and thumbs ups. Then, researchers learned that -- surprisingly -- Scheuermann was able to control both right-hand and left-hand prosthetic arms with just the left motor cortex, which is typically responsible for controlling the right-hand side. After that, Scheuermann decided she was up for a new challenge, according to Prabhakar.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Keyword: Robotics
Link ID: 20647 - Posted: 03.04.2015

By S. Matthew Liao As many as 20 percent of war veterans return from combat in Afghanistan and Iraq with post-traumatic stress disorder (PTSD) or major depression, according to a 2008 report from the RAND Corporation. Many experience constant nightmares and flashbacks and many can’t live normal lives. For significant number of veterans, available medications do not seem to help. In 2010, at least 22 veterans committed suicide each day, according to the Department of Veterans Affairs. In her book, Demon Camp, the author Jen Percy describes damaged veterans who have even resorted to exorcism to alleviate their PTSD symptoms. As part of President Obama’s BRAIN Initiative, the federal Defense Advanced Research Projects Agency (DARPA) plans to spend more than $70 million over five years to develop novel devices that would address neurological disorders such as PTSD. DARPA is particularly interested in a technology called Deep Brain Stimulation (DBS). DBS involves inserting a thin electrode through a small opening in the skull into a specific area in the brain; the electrode is then connected by an insulated wire to a battery pack underneath the skin; the battery pack then sends electrical pulses via the wire to the brain. About 100,000 people around the world today have a DBS implant to ameliorate the effects of Parkinson’s disease, epilepsy and major depression. There is evidence that DBS can also help with PTSD. Functional neuroimaging studies indicate that amygdala hyperactivity is responsible for the symptoms of PTSD and that DBS can functionally reduce the activity of the amygdala. In animal PTSD models, DBS has been found to be more effective than current treatment using selective serotonin reuptake inhibitors. © 2014 Scientific American

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Keyword: Stress
Link ID: 20039 - Posted: 09.06.2014

Helen Shen As US science agencies firm up plans for a national ten-year neuroscience initiative, California is launching an ambitious project of its own. On 20 June, governor Jerry Brown signed into law a state budget that allocates US$2 million to establish the California Blueprint for Research to Advance Innovations in Neuroscience (Cal-BRAIN) project. Cal-BRAIN is the first state-wide programme to piggyback on the national Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative announced by US President Barack Obama in April 2013 (see Nature 503, 26–28; 2013). The national project is backed this year by $110 million in public funding from the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF). California researchers and lawmakers hope that the state’s relatively modest one-time outlay will pave the way for a larger multiyear endeavour that gives its scientists an edge in securing grants from the national initiative. “It’s a drop in the bucket, but it’s an important start,” says Zack Lynch, executive director of the Neurotechnology Industry Organization, an advocacy group in San Francisco, California. Cal-BRAIN sets itself apart from the national effort by explicitly seeking industry involvement. The proposal emphasizes the potential economic benefits of neuroscience research and calls for the formation of a programme to facilitate the translation of any discoveries into commercial applications. © 2014 Nature Publishing Group,

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Keyword: Brain imaging
Link ID: 19768 - Posted: 06.25.2014

By Lara Salahi A team of researchers at Massachusetts General Hospital have embarked on a new project to create an implantable device in the brain that would read and alter the emotions of someone with a mental illness. The team is working in collaboration with researchers at the University of California, San Francisco, on a new program funded by the Department of Defense’s Defense Advanced Research Projects Agency (DARPA). The researchers are working to create an implantable device that can sense abnormal activity in the brain using algorithms, and then deliver electrical impulses to certain parts of the brain that would suppress the abnormal signals. “Imagine if I have an addiction to alcohol and I have a craving,” Jose Carmena, a researcher at the University of California, Berkeley, who is involved in the project, told MIT Technology Review. “We could detect that feeling and then stimulate inside the brain to stop it from happening.” Mental illness and suicide rates among the US military have spiked over the past decade, the National Institute of Mental Healthreports. The current research is part of DARPA’s emerging neurotechnology therapy program which investigates new approaches to treat neuropsychological illnesses among military servicemembers and veterans. Their goal is to treat at least seven psychiatric conditions, including depression, post-traumatic stress disorder, addiction, and fibromyalgia.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Keyword: Emotions; Stress
Link ID: 19683 - Posted: 06.03.2014

At the Society for Neuroscience meeting earlier this month in San Diego, California, Science sat down with Geoffrey Ling, deputy director of the Defense Sciences Office at the Defense Advanced Research Projects Agency (DARPA), to discuss the agency’s plans for the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a neuroscience research effort put forth by President Barack Obama earlier this year. So far, DARPA has released two calls for grant applications, with at least one more likely: The first, called SUBNETS (Systems-Based Neurotechnology for Emerging Therapies), asks researchers to develop novel, wireless devices, such as deep brain stimulators, that can cure neurological disorders such as posttraumatic stress (PTS), major depression, and chronic pain. The second, RAM (Restoring Active Memory), calls for a separate wireless device that repairs brain damage and restores memory loss. Below is an extended version of a Q&A that appears in the 29 November issue of Science. Q: Why did DARPA get involved in the BRAIN project? G.L.: It’s really focused on our injured warfighters, but it has a use for civilians who have stress disorders and civilians who also have memory disorders from dementia and the like. But at the end of the day, it is still meeting [President Obama’s] directive. Of all the things he could have chosen—global warming, alternative fuels—he chose this, so in my mind the neuroscience community should be as excited as all get-up. Q: Why does SUBNETS focus on deep brain stimulation (DBS)? G.L.: We’ve opened the possibility of using DBS but we haven’t exclusively said that. We’re challenging people to go after neuropsychiatric disorders like PTS [and] depression. We’re challenging the community to come up with something in 5 years that’s clinically feasible. DBS is an area that has really been traditionally underfunded, so we thought what the heck, let’s give it a go—in this new BRAIN Initiative the whole idea is to go after the things that there aren’t 400 R01 grants for—and let’s be bold, and boy, if it works, fabulous. © 2013 American Association for the Advancement of Science

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Keyword: Brain imaging; Robotics
Link ID: 18982 - Posted: 11.30.2013

When President Obama announced his plan to explore the mysteries of the human brain seven months ago, it was long on ambition and short on details. Now some of the details are being sketched in. They will include efforts to restore lost memories in war veterans, create tools that let scientists study individual brain circuits and map the nervous system of the fruit fly. The Defense Advanced Projects Agency, or DARPA, which has committed more than $50 million to the effort, offered the clearest plan. The agency wants to focus on treatments for the sort of brain disorders affecting soldiers who served in Iraq and Afghanistan, according to , deputy director of . "That is our constituency," Ling said at a news conference at the Society for Neuroscience meeting in San Diego. A colored 3-D MRI scan of the brain's white matter pathways traces connections between cells in the cerebrum and the brainstem. So DARPA will be working on problems including PTSD and traumatic brain injuries, Ling says. In particular, the agency wants to help the soldier who has "a terribly damaged brain and has lost a significant amount of declarative memory," Ling said. "We would like to restore that memory." DARPA hopes to do that with an implanted device that will take over some functions of the brain's hippocampus, an area that's important to memory. The agency has already used a device that does this in rodents, Ling said, and the goal is to move on to people quickly. The agency plans to use the same approach that created a better in record time, Ling said. "We went from idea to prototype in 18 months," he says. This undated X-ray image from the Cleveland Clinic shows electrodes implanted in a patient's brain. The method, known as deep brain stimulation, has traditionally been used to treat diseases such as Parkinson's, but new research indicates it could be helpful for patients with obsessive-compulsive disorder. ©2013 NPR

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 11: Emotions, Aggression, and Stress
Keyword: Stress; Learning & Memory
Link ID: 18935 - Posted: 11.16.2013

Helen Shen Long used to treat movement disorders, deep-brain stimulation (DBS) is rapidly emerging as an experimental therapy for neuropsychiatric conditions including depression, Tourette’s syndrome, obsessive–compulsive disorder and even Alzheimer’s disease. But despite some encouraging results in patients, it remains largely unknown how the electrical pulses delivered by implants deep within the brain affect neural circuits and change behaviour. Now there is a prototype DBS device that could provide some answers, researchers reported on 10 November at the Society for Neuroscience’s annual meeting in San Diego, California. Called Harmoni, the device is the first DBS implant to monitor electrical and chemical responses in the brain while delivering electrical stimulation. “That’s new data that we haven’t really had access to in humans before,” says Cameron McIntyre, a biomedical engineer at Case Western Reserve University in Cleveland, Ohio, who is not involved in the work. Researchers hope that the device will identify the electrical and chemical signals in the brain that correlate in real time with the presence and severity of symptoms, including the tremors experienced by people with Parkinson’s disease. This information could help to uncover where and how DBS exerts its therapeutic effects on the brain, and why it sometimes fails, says Kendall Lee, a neurosurgeon at the Mayo Clinic in Rochester, Minnesota, who is leading the project. The results come at a time of great excitement in the DBS field. Last month, the US government's Defense Advanced Research Projects Agency (DARPA) announced a 5-year, US$70-million initiative to support development of the next generation of therapeutic brain-stimulating technologies. © 2013 Nature Publishing Group,

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Keyword: Parkinsons
Link ID: 18922 - Posted: 11.13.2013

By JAMES GORMAN Worldwide, 100,000 people have electrical implants in their brains to treat the involuntary movements associated with Parkinson’s disease, and scientists are experimenting with the technique for depression and other disorders. But today’s so-called deep brain stimulation only treats — it does not monitor its own effectiveness, partly because complex ailments like depression do not have defined biological signatures. The federal Defense Advanced Research Projects Agency, known as Darpa, announced Thursday that it intended to spend more than $70 million over five years to jump to the next level of brain implants, either by improving deep brain stimulation or by developing new technology. Justin Sanchez, Darpa program manager, said that for scientists now, “there is no technology that can acquire signals that can tell them precisely what is going on with the brain.” And so, he said, Darpa is “trying to change the game on how we approach these kinds of problems.” The new program, called Systems-Based Neurotechnology and Understanding for the Treatment of Neuropsychological Illnesses, is part of an Obama administration brain initiative, announced earlier this year, intended to promote innovative basic neuroscience. Participants in the initiative include Darpa, as well as the National Institutes of Health and the National Science Foundation. The announcement of Darpa’s goal is the first indication of how that research agency will participate in the initiative. The money is expected to be divided among different teams, and research proposals are now being sought. Darpa’s project is partly inspired by the needs of combat veterans who suffer from mental and physical conditions, and is the first to invest directly in researching human illness as part of the brain initiative. © 2013 The New York Times Company

Related chapters from BN: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 12: Psychopathology: The Biology of Behavioral Disorders; Chapter 5: The Sensorimotor System
Keyword: Depression; Parkinsons
Link ID: 18835 - Posted: 10.26.2013

Posted by Helen Shen More than 150 neuroscientists descended on Arlington, Virginia this week to begin planning the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative—an ambitious but still hazy proposal to understand how the brain works by recording activity from an unprecedented numbers of neurons at once. President Barack Obama announced the initiative on 2 April, which will be carried out by three federal agencies—the National Institutes of Health (NIH), the National Science Foundation (NSF), and the Defense Advanced Research Projects Agency (DARPA)—alongside a handful of private foundations. Most neuroscientists have relished the attention on their field, but have also been left wondering what it means in scientific terms to “understand” the brain, what it will take to get there, and how much will be feasible in the programme’s projected 10-year lifespan. They gathered at an inaugural NSF planning meeting taking place from 5-6 May to discuss their ideas and concerns. “The belief is we’re ready for a leap forward,” says Van Wedeen, a neurobiologist at Harvard Medical School in Boston, Massachusetts, and one of the NSF meeting organizers. “Which leap and in which direction is still being debated.” The NSF group invited researchers representing neuroscience, computer science, and engineering — as many as would fit in the hotel conference room. Another estimated 200 or so followed the meeting by live webcast on Monday. Roughly 75 participants accepted NSF’s open invitation to submit one-page documents outlining the major © 2013 Nature Publishing Group,

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Keyword: Brain imaging
Link ID: 18126 - Posted: 05.07.2013

by Anil Ananthaswamy GOVERNMENT spooks want cyborg insects to snoop on their enemies. Biologists want to tap into the nervous systems of insects to understand how they fly. A probe that can be implanted into moths to control their flight could help satisfy both parties. One day, it could even help rehabilitate people who have had strokes. The US Defense Advanced Research Projects Agency (DARPA) has been running a programme to develop machine-insect interfaces for years but electrodes implanted to stimulate the brains or wing muscles of insects were not precise enough. Now Joel Voldman of the Massachusetts Institute of Technology and colleagues have designed a unique, flexible neural probe that can be attached directly to an insect's ventral nerve cord (VNC), which, along with the brain, makes up the central nervous system in insects. Another reason previous attempts have not been entirely successful was because the impedance of the electrodes did not match that of the insect's tissue. This probe is made of a polyimide polymer coated with gold and carbon nanotubes, and its impedance is much closer to that of nerve tissue. One end of the probe is a ring that clamps around the VNC. The inside of the ring has five electrodes which stimulate distinct nerve bundles within the VNC. Attached to the probe is a wireless stimulator, which contains a radio receiver, as well as a battery and a device to generate electrical pulses. The team implanted the device in the abdomen of a tobacco hawkmoth (Manduca sexta). As it weighs less than half a gram, it is easy for the moth to carry. "Their wingspan is the width of your hand," says Voldman. "These are big guys." © Copyright Reed Business Information Ltd

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Keyword: Robotics
Link ID: 16359 - Posted: 02.09.2012

By Emily Singer Most of the robotic arms now in use by some amputees are of limited practicality; they have only two to three degrees of freedom, allowing the user to make a single movement at a time. And they are controlled with conscious effort, meaning the user can do little else while moving the limb. A new generation of much more sophisticated and lifelike prosthetic arms, sponsored by the Department of Defense's Defense Advanced Research Projects Agency (DARPA), may be available within the next five to 10 years. Two different prototypes that move with the dexterity of a natural limb and can theoretically be controlled just as intuitively--with electrical signals recorded directly from the brain--are now beginning human tests. Initial results of one of these studies--the first tests of a paralyzed human controlling a robotic arm with multiple degrees of freedom--will be presented at the Society for Neuroscience conference in November. The new designs have about 20 degrees of independent motion, a significant leap over existing prostheses, and they can be operated via a variety of interfaces. One device, developed by DEKA Research and Development, can be consciously controlled using a system of levers in a shoe. © 2010 MIT Technology Review

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Keyword: Robotics
Link ID: 14639 - Posted: 11.08.2010

LINTHICUM, Md. — Military binoculars may soon get information directly from the brains of the soldiers using them. With the idea that that the brain absorbs and assesses more visual information than it lets on — and that it could make more sense out of what's visible through high-power binoculars if it stopped filtering that information — the Pentagon has awarded contracts to two defense firms to develop brainwave-aided binoculars. The Defense Advanced Research Projects Agency, better known as DARPA, is betting that intelligent binoculars can tap into the brain's ability to spot patterns and movement and help soldiers detect threats from miles farther away than they can with traditional binoculars. Electrodes on the scalp inside a helmet will record the user's brain activity as it processes information about high-resolution images produced by wide-angle military binoculars. Those responses will train the binoculars over time to recognize threats. "You need to present the soldier with many images and then use the person's brain to figure out what is of interest," said Yuval Boger, CEO of Sensics, a Baltimore-based maker of panoramic head-mounted displays. Copyright 2008 The Associated Press.

Related chapters from BN: Chapter 10: Vision: From Eye to Brain; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Keyword: Vision; Brain imaging
Link ID: 11780 - Posted: 06.24.2010

By NICHOLAS WADE Hot on the scent of a suspected terrorist? Darpa — the Defense Advanced Research Projects Agency — hopes to give literal meaning to the phrase. It wants someone to develop a sniffing machine that can detect individuals by their body odor. The idea is not as rank as it may seem. Dogs are said, at least by dog handlers, to recognize the scents of individual people. Researchers have found that mice can detect from body odor and urine how closely they are related to one another, a useful way to avoid inbreeding. So Darpa, the grand patron of exotic military arts (not everything it does works, but it did have a hand in creating the precursor of the Internet), is soliciting "innovative proposals to (1) determine whether genetically-determined odortypes can be used to identify specific individuals, and if so (2) to develop the science and enabling technology for detecting and identifying specific individuals by such odortypes." Copyright 2003 The New York Times Company

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Keyword: Chemical Senses (Smell & Taste)
Link ID: 3260 - Posted: 06.24.2010