Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 23391

By Abby Olena Our brains quickly characterize everything we see as familiar or new, and scientists have been investigating this connection between vision and cognition for years. Now, research in Japanese macaques (Macaca fuscata) reveals that the activation of neurons in a part of the primate brain called the perirhinal cortex can cause monkeys to recognize new objects as familiar and vice versa. The study was published today (August 17) in Science. “There are a lot of really exciting aspects to this paper,” says neuroscientist David Sheinberg of Brown University, who did not participate in the work. “This group continues to make advances that are helping us understand how we convert visual impressions into things we know.” Primate brains process visual information through several brain structures that make up the ventral visual stream. The last stop in this stream is the perirhinal cortex, part of the medial temporal lobe. Scientists know that this brain structure plays roles in visual memory and object discrimination. But one open question is whether the perirhinal cortex represents objects’ physical traits or whether it might also communicate information about nonphysical attributes, such as whether an object has been seen before. “In the primate, the perirhinal cortex is the link between the visual pathway and the limbic memory system,” coauthor and University of Tokyo neuroscientist Yasushi Miyashita writes in an email to The Scientist. “Therefore, the perirhinal cortex is one of the most likely candidates in the brain where visual information is transformed to subjective semantic values by referring to one’s own memory.” © 1986-2017 The Scientist

Keyword: Attention
Link ID: 23979 - Posted: 08.19.2017

/ By Steven Lubet There is a memorable episode in the now-classic sitcom Scrubs in which the conniving Dr. Kelso unveils a plan to peddle useless “full body scans” as a new revenue stream for the perpetually cash-strapped Sacred Heart Hospital. The irascible but ultimately patient-protecting Dr. Cox objects loudly. “I think showing perfectly healthy people every harmless imperfection in their body just to scare them into taking invasive and often pointless tests is an unholy sin,” he says. Undeterred, Kelso launches an advertising campaign that promotes the scans in a tear-jerking television commercial and a billboard screaming “YOU may already be DYING.” Alarmist medical advertising is pretty funny on television, but it can be far more troubling in real life. Although I’ve never been alerted to impending death, I recently received an advertisement from my own trusted health care provider warning that I may have Alzheimer’s disease, although I have no known symptoms and no complaints. As long-time patients at NorthShore University Health System, which is affiliated with the University of Chicago, my wife and I received two solicitations from its Center for Brain Health touting the development of “ways to slow brain aging and even prevent the onset of Alzheimer’s.” According to the ads, which arrived in both postcard and email form, there is “new hope for delaying — even preventing — aging brain diseases” through “genetic testing, advanced diagnostics, and lifestyle factors.” Copyright 2017 Undark

Keyword: Alzheimers
Link ID: 23978 - Posted: 08.19.2017

By Denise D. Cummins Looking directly at the camera, NPR's Skunk Bear host Adam Cole laments, "It's pretty clear that I'll never be able to have a real human-style conversation with an ape.” In his short and very entertaining video, Cole summarizes decades of research aimed at teaching apes human language, all of which, we are to understand, came to naught. But what the video actually shows us is how little the average person (and many scientists) understands about language. At one point, Cole tells his dog to sit, and the dog sits. This, he tells us, is not evidence that the dog knows English. But actually, it is. The dog's behavior shows us that he is capable of understanding the simple concept of sitting, that he is capable of distinguishing the verbal signal "sit" from other verbal signals, and that he is capable of connecting the two. This isn't rocket science, it isn't magic, and it isn't anthropomorphizing. It is just the way word learning works. In studies conducted at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, a border collie named Rico was taught the meanings of 200 words. He could even use theprocess of elimination to figure out unfamiliar words: If he already knew the word "ball,” and his trainer showed him a ball and a stick and told him to get the "stick,” he would bring the stick. He could remember new words even after a month of not hearing them. © 2017 Scientific American,

Keyword: Animal Communication; Language
Link ID: 23977 - Posted: 08.19.2017

Tina Hesman Saey Add a new ingredient to the sugar, spice and everything nice needed to make girls. A protein called COUP-TFII is necessary to eliminate male reproductive tissue from female mouse embryos, researchers report in the Aug. 18 Science. For decades, females have been considered the “default” sex in mammals. The new research overturns that idea, showing that making female reproductive organs is an active process that involves dismantling a primitive male tissue called the Wolffian duct. In males, the Wolffian duct develops into the parts needed to ejaculate sperm, including the epididymis, vas deferens and seminal vesicles. In females, a similar embryonic tissue called the Müllerian duct develops into the fallopian tubes, uterus and vagina. Both duct tissues are present in early embryos. A study by French endocrinologist Alfred Jost 70 years ago indicated that the testes make testosterone and an anti-Müllerian hormone to maintain the Wolffian duct and suppress female tissue development. If those hormones are missing, the Wolffian duct degrades and an embryo by default develops as female, Jost proposed. That’s the story written in textbooks, says Amanda Swain, a developmental biologist at the Institute of Cancer Research in London. But the new study “demonstrates that females also have a pathway to make sure you don’t get the wrong ducts,” says Swain, who wrote a commentary in the same issue of Science. |© Society for Science & the Public 2000 - 2017.

Keyword: Sexual Behavior
Link ID: 23976 - Posted: 08.19.2017

By NICHOLAS BAKALAR A handful of walnuts may be an effective weight loss tool. Walnuts are rich in omega-3 fatty acids and other substances and, in moderation, have been linked to reduced risk of obesity and diabetes. They may also efficiently reduce appetite. Researchers now may have found out why. They had nine hospitalized obese patients drink, on five consecutive days, either a smoothie containing 48 grams of walnuts (1.7 ounces, or about 14 walnut halves and 315 calories) or a placebo smoothie identical in taste and calorie content. Then, after a month on their regular diet, the patients returned for a second five-day trial, with placebo drinkers on the first trial receiving a walnut smoothie, and vice versa. The participants underwent M.R.I. brain exams while looking at pictures of high-fat food (cake, for example), low-fat food (vegetables) or neutral pictures of rocks and trees. The study, published in Diabetes, Obesity and Metabolism, found that when people looked at pictures of high-fat food, activation in the insula, a part of the brain involved in appetite and impulse control, increased among those who drank the walnut smoothie, but not among placebo drinkers. The study was funded in part by the California Walnut Commission. “Walnuts can alter the way our brains view food and impact our appetites,” said the lead author, Olivia M. Farr, of Beth Israel Deaconess Medical Center in Boston. “Our results confirm the current recommendations to include walnuts as part of a healthy diet.” © 2017 The New York Times Company

Keyword: Obesity
Link ID: 23975 - Posted: 08.19.2017

Nicola Davis The eternal sunshine of a spotless mind has come one step closer, say researchers working on methods to erase memories of fear. The latest study, carried out in mice, unpicks why certain sounds can stir alarming memories, and reveals a new approach to wiping such memories from the brain. The researchers say the findings could be used to either weaken or strengthen particular memories while leaving others unchanged. That, they say, could potentially be used to help those with cognitive decline or post-traumatic stress disorder by removing fearful memories while retaining useful ones, such as the sound of a dog’s bark. “We can use same approach to selectively manipulate only the pathological fear memory while preserving all other adaptive fear memories which are necessary for our daily lives,” said Jun-Hyeong Cho, co-author of the research from the University of California, Riverside. The research is the latest in a string of studies looking at ways to erase unpleasant memories, with previous work by scientists exploring techniques ranging from brain scans and AI to the use of drugs. Published in the journal Neuron by Cho and his colleague Woong Bin Kim, the research reveals how the team used genetically modified mice to examine the pathways between the area of the brain involved in processing a particular sound and the area involved in emotional memories, known as the amygdala. “These mice are special in that we can label or tag specific pathways that convey certain signals to the amygdala, so that we can identify which pathways are really modified as the mice learn to fear a particular sound,” said Cho. “It is like a bundle of phone lines,” he added. “Each phone line conveys certain auditory information to the amygdala.” © 2017 Guardian News and Media Limited

Keyword: Emotions; Learning & Memory
Link ID: 23974 - Posted: 08.18.2017

By Ingfei Chen, Spectrum In October 2010, Lisa and Eugene Jeffers learned that their daughter Jade, then nearly 2 and a half years old, has autism. The diagnosis felt like a double whammy. The parents were soon engulfed by stress from juggling Jade’s new therapy appointments and wrangling with their health insurance provider, but they now had an infant son to worry about, too. Autism runs in families. Would Bradley follow in his big sister’s footsteps? "We were on high alert,” Lisa Jeffers says. “There were times I would call his name, and he wouldn't look.” She says she couldn’t help but think: Is it because he's busy playing or because he has autism? In search of guidance, the parents signed Bradley up for a three-year study at the University of California, Davis (UC Davis) MIND Institute, a half-hour drive from their home near Sacramento. Researchers there wanted answers to some of the same questions the couple had: What are the odds that infants like Bradley—younger brothers or sisters of a child with autism—will be on the spectrum too? Could experts detect autism in these babies early on, so that they might benefit from early intervention? The infant-sibling study at UC Davis is one of more than 20 similar long-running investigations across the United States, Canada and United Kingdom, the first of which began around 2000. These ‘baby sib’ studies, which collectively have followed thousands of children, are among the most ambitious and expensive projects in autism research. Many of the scientists who run them anticipated that by tracking this special population, they would be able to spot signs of autism before age 1, and ultimately create an infant screen for the condition. © 2017 Scientific American

Keyword: Autism; Development of the Brain
Link ID: 23973 - Posted: 08.18.2017

Laurel Hamers Scientists have traced the sensation of itch to a place you can’t scratch. The discomfort of a mosquito bite or an allergic reaction activates itch-sensitive nerve cells in the spinal cord. Those neurons talk to a structure near the base of the brain called the parabrachial nucleus, researchers report in the Aug. 18 Science. It’s a region that’s known to receive information about other sensations, such as pain and taste. The discovery gets researchers one step closer to finding out where itch signals ultimately end up. “The parabrachial nucleus is just the first relay center for [itch signals] going into the brain,” says study coauthor Yan-Gang Sun, a neuroscientist at the Chinese Academy of Sciences in Shanghai. Understanding the way these signals are processed by the brain could someday provide relief for people with chronic itch, Sun says. While the temporary itchiness of a bug bite is annoying, longer term, “uncontrollable scratching behavior can cause serious skin damage.” Previous studies have looked at the way an itch registers on the skin or how neurons convey those sensations to the spinal cord. But how those signals travel to the brain has been a trickier question, and this research is a “major step” toward answering it, says Zhou-Feng Chen, director of the Center for the Study of Itch at Washington University School of Medicine in St. Louis. |© Society for Science & the Public 2000 - 2017.

Keyword: Pain & Touch
Link ID: 23972 - Posted: 08.18.2017

By Aggie Mika | In a report published today (August 16) in Nature, researchers uncover the mechanisms by which the psychoactive and addictive drug fenethylline, trade name Captagon, exerts its potent stimulating effects. Essentially, one component of the drug, theophylline, boosts the effects of another, amphetamine. “This combination greatly enhances amphetamine’s properties,” says coauthor and Scripps Research Institute researcher Kim Janda in a press conference this week, Reuters reports. “So this now makes sense why it’s being so heavily abused.” In exploring fenethylline’s mode of action, the researchers came upon a method to vaccinate against the drug in mice using small, antibody-eliciting molecules called haptens that target the drug’s chemical components. Once antibodies for a specific chemical are prompted by a vaccine, they bind to and prevent it from interacting with its receptors in the body, thus preventing the effects of the drug driven by that chemical. Fenethylline’s use is mostly confined to the Middle East, where approximately 40 percent of young adult drug users in Saudi Arabia are addicted to the drug, the authors write in their report. According to Reuters, the drug initially sparked Janda’s interest because of its use by Islamic State jihadists. According to the San Diego Union-Tribune, “Syrian civil war combatants and Islamic State terrorists have reportedly used the drug to boost their fighting ability and to lessen fear.” © 1986-2017 The Scientist

Keyword: Drug Abuse; Neuroimmunology
Link ID: 23971 - Posted: 08.18.2017

Researchers from the National Institutes of Health have identified a class of sensory neurons (nerve cells that electrically send and receive messages between the body and brain) that can be activated by stimuli as precise as the pulling of a single hair. Understanding basic mechanisms underlying these different types of responses will be an important step toward the rational design of new approaches to pain therapy. The findings were published in the journal Neuron. “Scientists know that distinct types of neurons detect different types of sensations, such as touch, heat, cold, pain, pressure, and vibration,” noted Alexander Chesler, Ph.D., lead author of the study and principal investigator with the National Center for Complementary and Integrative Health’s (NCCIH) Division of Intramural Research (DIR). “But they know more about neurons involved with temperature and touch than those underlying mechanical pain, like anatomical pain related to specific postures or activities.” In this study, Chesler and his colleagues used a novel strategy that combined functional imaging (which measures neuronal activity), recordings of electrical activity in the brain, and genetics to see how neurons respond to various stimuli. The scientists focused on a class of sensory neurons that express a gene called Calca, as these neurons have a long history in pain research. The scientists applied various stimuli to the hairy skin of mice cheeks, including gentle mechanical stimuli (air puff, stroking, and brushing), “high-threshold” mechanical stimuli (hair pulling and skin pinching), and temperature stimulation. They found that the target neurons belong to two broad categories, both of which were insensitive to gentle stimulation. The first was a well-known type of pain fiber—a polymodal nociceptor—that responds to a host of high intensity stimuli such as heat and pinching. The second was a unique and previously unknown type of neuron that responded robustly to hair pulling. They called this previously undescribed class of high-threshold mechanoreceptors (HTMRs) “circ-HTMRs,” due to the unusual nerve terminals these neurons made in skin. They observed that the endings of the fibers made lasso-like structures around the base of each hair follicle.

Keyword: Pain & Touch
Link ID: 23970 - Posted: 08.17.2017

By Catherine Offord | On August 21, the moon will pass between the Earth and the sun, resulting in a total solar eclipse visible across a large strip of the United States. Self-proclaimed eclipse-chaser Ralph Chou, an emeritus professor of optometry at the University of Waterloo, has been working to spread awareness about eye-safety during eclipses for around 30 years. Last year, he put together the American Astronomical Society’s technical guide to eye safety, aimed at everyone from astronomers to educators to medical professionals. The Scientist spoke to Chou to find out what happens to the eye when exposed to too much sunlight, and how to watch next week’s solar eclipse safely. Ralph Chou: Light comes into the eye and goes through all the various layers of cells until it reaches the photoreceptors—essentially, the bottom of a stack of cells. The photoreceptors themselves guide the light towards a specialized structure [of the cells] called the outer segment, where there is a stack of discs that contain the visual pigment. Under normal circumstances, the light would interact with the pigment, which generates an electrical signal that then starts the process of sending an impulse through the optic nerve to the brain. In looking at the sun, you have a very large volume of photons—light energy—coming in and hitting these pigment discs, and it’s more than they can really handle. In addition to generating the electrical signal, [the cell] also starts generating photo-oxidative compounds. So you’re getting oxidative species like hydroxyl radicals and peroxides that will go on to attack the cell’s organelles. © 1986-2017 The Scientist

Keyword: Vision
Link ID: 23969 - Posted: 08.17.2017

Marci O'Connor, a mother of two teenagers, struggles with her confident, independent self and recurring loneliness — feelings that psychologists say are increasingly posing public health challenges. O'Connor, 46, of Mont-Saint-Hilaire, 30 kilometres east of Montreal, said loneliness snuck up on her after she moved away from her family to a predominantly French-speaking area. She now works from home. O'Connor lost the camaraderie of her community of stay-at-home moms as her children, now 15 and 17, grew and families' circumstances changed. "I found that I constantly check in with myself and my motives for doing things," O'Connor said. "If I go hiking alone, is it to avoid other people or is that the day I really want to be on my own?" Taken too far, a sense of independence and self-sufficiency can be a detriment. Psychologists say it's important to recognize loneliness and prioritize the meaningful relationships we all need. Demographics are another challenge. Earlier this month, Statistics Canada released new information from the 2016 census suggesting a record number of households, 28.2 per cent, have only one person living in them. In an upcoming issue of American Psychologist, Julianne Holt-Lunstad, a professor of psychology at Brigham Young University in Provo, Utah, says social connection should be a public health priority. Holt-Lunstad says social connection is associated with a 50 per cent reduced risk of early death, and loneliness exacts a grave toll. ©2017 CBC/Radio-Canada.

Keyword: Depression
Link ID: 23968 - Posted: 08.17.2017

By Katie Moritz If you’re like a lot of people all over the world, you have a hard time sleeping. Maybe you’ve tried apps that promote sleep, or going without electronics for the hours leading up to bedtime, or supplements like melatonin or magnesium. But have you tried thinking differently about your waking life? Research suggests that having a purpose in life leads to a better night’s sleep. Picture in your mind your biggest interests and your loftiest goals. Pursuing those could help you get better shut-eye. A research team at the Northwestern University Feinberg School of Medicine looked at the sleep habits of more than 800 older adults—though they said the results are likely applicable to everyone—and found that the ones who reported having a purpose in life have fewer sleep disturbances like sleep apnea and restless leg syndrome and sleep better over a long period. Purpose pbs rewire“Helping people cultivate a purpose in life could be an effective drug-free strategy to improve sleep quality, particularly for a population that is facing more insomnia,” said Jason Ong, one of the study’s authors and an associate professor of neurology at the Feinberg School of Medicine, to the university. “Purpose in life is something that can be cultivated and enhanced through mindfulness therapies.” In the Northwestern study, the people who felt their lives had meaning were 63 percent less likely to have sleep apnea, 52 percent less likely to have restless leg syndrome and had better sleep quality. Poor sleep quality is defined by having trouble falling and staying asleep and feeling tired during the day.

Keyword: Sleep; Depression
Link ID: 23967 - Posted: 08.17.2017

By WILLIAM GRIMES Marian C. Diamond, a neuroscientist who overturned long-held beliefs by showing that environmental factors can change the structure of the brain and that the brain continues to develop throughout one’s life, died on July 25 at her home in Oakland, Calif. She was 90. Her son Richard Diamond confirmed the death. Dr. Diamond’s most celebrated study was of the preserved brain of Albert Einstein, in the 1980s, but it was her work two decades earlier, at the University of California, Berkeley, that had the most lasting impact. Dr. Diamond was an instructor at Cornell University in the late 1950s when she read a paper in Science magazine showing that rats who navigated mazes quickly had a different brain chemistry than slower rats. They showed much higher levels of acetylcholinesterase, an enzyme that accelerates the transmission of neural signals. “What a thrill I had when my mind jumped immediately to the question, ‘I wonder if the anatomy of these brains would also show a difference in learning ability?’ ” Dr. Diamond wrote in an autobiographical essay for the Society for Neuroscience. She was able to test her theory after joining a team at Berkeley led by Mark R. Rosenzweig, one of the authors of the Science paper. To gauge the effects of environment on performance, Dr. Rosenzweig and his colleagues had begun raising rats in so-called enriched cages, outfitted with ladders and wheels, in the company of other rats. The rats in a control group were raised alone in bare cages. © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 23966 - Posted: 08.17.2017

David Cyranoski Neuroscientists who painstakingly map the twists and turns of neural circuitry through the brain are about to see their field expand to an industrial scale. A huge facility set to open in Suzhou, China, next month should transform high-resolution brain mapping, its developers say. Where typical laboratories might use one or two brain-imaging systems, the new facility boasts 50 automated machines that can rapidly slice up a mouse brain, snap high-definition pictures of each slice and reconstruct those into a 3D picture. This factory-like scale will “dramatically accelerate progress”, says Hongkui Zeng, a molecular biologist at the Allen Institute for Brain Science in Seattle, Washington, which is partnering with the centre. “Large-scale, standardized data generation in an industrial manner will change the way neuroscience is done,” she says. The institute, which will also image human brains, aims to be an international hub that will help researchers to map neural connectivity for everything from studies of Alzheimer’s disease to brain-inspired artificial-intelligence projects, says Qingming Luo, a researcher in biomedical imaging at the Huazhong University of Science and Technology (HUST) in Wuhan, China. Luo leads the new facility, called the HUST-Suzhou Institute for Brainsmatics, which has a 5-year budget of 450 million yuan (US$67 million) and will employ some 120 scientists and technicians. Luo, who calls himself a “brainsmatician”, also built the institute’s high-speed brain-imaging systems. “There will be large demand, for sure,” says Josh Huang, a neuroscientist at Cold Spring Harbor Laboratory in New York, which is also partnering with the Chinese institute. Access to high-throughput, rapid brain mapping could transform neuro-scientists’ understanding of how neurons are connected in the brain, he says — just as high-throughput sequencing helped geneticists to untangle the human genome in the 2000s. “This will have a major impact on building cell-resolution brain atlases in multiple species,” he says. © 2017 Macmillan Publishers Limited

Keyword: Brain imaging
Link ID: 23965 - Posted: 08.16.2017

By Jenna Gallegos Pathogens are real jerks. As if infecting and killing plants and animals isn’t bad enough, they can also turn their hosts into zombies that spread the pathogens to their next victim. Now scientists report that bacteria make some victims summon other victims as their dying act. The bacteria hijack the chemical signaling pathway of insects, making them release a burst of hormones that serve as a beacon to attract friends and potential mates right before the bacteria kill off the host. Like malware marauding as an enticing link, the bacteria attract and then infect. Fruit flies are generally pretty good at avoiding hazards. They can detect when food is infected with a dangerous mold or when a parasitic wasp is nearby, said Markus Knaden, a researcher at the Max Planck Institute for Chemical Ecology in Jena, Germany, who was involved in the study. In both cases, the flies won’t lay their eggs near the infectious agent. That’s why Knaden and colleagues at Cornell University were so surprised when they found that flies were actually attracted to other insects with a certain bacterial infection. “If you’re sitting in a theater and someone next to you is coughing, you move to another chair,” said Bill Hansson, one of the Max Planck authors of the study, published Wednesday in the journal Nature Communications. They expected flies to behave the same way, but instead, healthy flies found their sick friends to be extremely attractive. © 1996-2017 The Washington Post

Keyword: Sexual Behavior; Chemical Senses (Smell & Taste)
Link ID: 23964 - Posted: 08.16.2017

Alice H. Eagly It’s no secret that Silicon Valley employs many more men than women in tech jobs. What’s much harder to agree on is why. The recent anti-diversity memo by a now former Google engineer has pushed this topic into the spotlight. The writer argued there are ways to explain the gender gap in tech that don’t rely on bias and discrimination – specifically, biological sex differences. Setting aside how this assertion would affect questions about how to move toward greater equity in tech fields, how well does his wrap-up represent what researchers know about the science of sex and gender? As a social scientist who’s been conducting psychological research about sex and gender for almost 50 years, I agree that biological differences between the sexes likely are part of the reason we see fewer women than men in the ranks of Silicon Valley’s tech workers. But the road between biology and employment is long and bumpy, and any causal connection does not rule out the relevance of nonbiological causes. Here’s what the research actually says. There is no direct causal evidence that biology causes the lack of women in tech jobs. But many, if not most, psychologists do give credence to the general idea that prenatal and early postnatal exposure to hormones such as testosterone and other androgens affect human psychology. In humans, testosterone is ordinarily elevated in males from about weeks eight to 24 of gestation and also during early postnatal development. © 2010–2017, The Conversation US, Inc.

Keyword: Sexual Behavior; Development of the Brain
Link ID: 23963 - Posted: 08.16.2017

Paul Martin Sir Patrick Bateson, who has died aged 79, was a scientist whose work advanced the understanding of the biological origins of behaviour. He will also be remembered as a man of immense warmth and kindness, whose success as a leader, teacher and administrator of science owed much to his collaborative spirit, generosity and good humour. He was a key figure in ethology – the biological study of animal behaviour. As well as being a conceptual thinker who revelled in painting the big theoretical picture, he was an accomplished experimental scientist. He published extensively, with more than 300 journal papers and several books to his name. His early research was on imprinting – a specialised form of early learning in which young animals rapidly learn about key features of their environment, such as the distinguishing characteristics of their parent or a desirable mate. He later worked with Gabriel Horn on unravelling the neurobiological mechanisms that underpin this learning. A related interest was the biology of mate choice, where he revealed how young animals could strike an optimal balance between outbreeding and inbreeding. His research achievements led to his election as fellow of the Royal Society in 1983. Another scientific focus was the role of play behaviour in the development of the individual. Studies with monkeys, cats and other species showed how experiences that are actively acquired through playing in early life help to build the physical, cognitive and social skills that are vital in later life. © 2017 Guardian News and Media Limited

Keyword: Development of the Brain
Link ID: 23962 - Posted: 08.16.2017

Allison Aubrey What we eat can influence more than our waistlines. It turns out, our diets also help determine what we smell like. A recent study found that women preferred the body odor of men who ate a lot of fruits and vegetables, whereas men who ate a lot of refined carbohydrates (think bread, pasta) gave off a smell that was less appealing. Skeptical? At first, I was, too. I thought this line of inquiry must have been dreamed up by the produce industry. (Makes a good marketing campaign, right?) But it's legit. "We've known for a while that odor is an important component of attractiveness, especially for women," says Ian Stephen of Macquarie University in Australia. He studies evolution, genetics and psychology and is an author of the study. From an evolutionary perspective, scientists say our sweat can help signal our health status and could possibly play a role in helping to attract a mate. How did scientists evaluate the link between diet and the attractiveness of body odor? They began by recruiting a bunch of healthy, young men. They assessed the men's skin using an instrument called a spectrophotometer. When people eat a lot of colorful veggies, their skin takes on the hue of carotenoids, the plant pigments that are responsible for bright red, yellow and orange foods. "The carotenoids get deposited in our skin," explains Stephen. © 2017 npr

Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 23961 - Posted: 08.15.2017

By Kerry Grens The rare, severe effects of Zika infection in adults may go beyond Guillain-Barre syndrome. Doctors in Brazil report today in JAMA Neurology that among a group of hospitalized patients, those with the virus sometimes presented with other neurological problems—namely, an inflamed nervous system. The physicians tracked 40 patients who came to a hospital in Rio de Janeiro between December 2015 and May 2016 for acute neuroinflammation. Among them, 35 turned out to have been infected with Zika, and within this group, 27 had Guillain-Barre syndrome, which causes debilitating paralysis. Five patients had encephalitis, or inflammation of the brain, two had inflamed spinal cords, and one had nerve inflammation. Such symptoms are thought to indicate “post-infectious syndromes, where you have a viral infection, you clear the infection by mounting an antibody response, and the antibodies actually attack parts of the central and peripheral nervous system, causing these neurological symptoms,” Richard Temes, director of the Center for Neurocritical Care at North Shore University Hospital in Manhasset, New York, tells HealthDay. He was not involved in this study. Zika infection in adults is typically not dangerous, and many people won’t develop symptoms at all. Doctors have noticed an uptick in Guillain-Barre syndrome among those who have caught the virus. The authors note in their study that admissions to their hospital for both Guillain-Barre syndrome and encephalitis rose after May 2014, when the Zika outbreak hit Brazil.

Keyword: Movement Disorders
Link ID: 23960 - Posted: 08.15.2017