Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2678

By KATIE THOMAS Nolan and Jack Willis, twins from upstate New York, and just 10 other boys took part in a clinical trial that led to the approval last fall of the very first drug to treat their rare, deadly muscle disease. Now the Willis boys are again test cases as a different type of medical question comes to the fore: whether insurers will cover the controversial drug, Exondys 51, which can cost more than $1 million a year even though it’s still unclear if it works. The boys’ insurer, Excellus BlueCross BlueShield, refused to cover the cost of the drug because the twins, who are 15, can no longer walk. Their disease, Duchenne muscular dystrophy, overwhelmingly affects boys and causes muscles to deteriorate, killing many of them by the end of their 20s. “I’m cycling between rage and just sadness,” their mother, Alison Willis Hoke, said recently, on the day she learned that an appeal for coverage had been denied. For now, the company that sells the drug, Sarepta Therapeutics, is covering the treatment’s costs, but Mrs. Hoke does not know how long that will last. The desperation in Mrs. Hoke’s voice reflects a sobering reality for families of boys with the disease since their elation last fall over the drug’s approval. Because the Food and Drug Administration overruled its own experts — who weren’t convinced the Exondys 51 had shown sufficiently good results — and gave the drug conditional approval, many insurers are now declining to cover it or are imposing severe restrictions that render patients ineligible. The story of Exondys 51 raises complex and emotionally charged questions about what happens when the F.D.A. approves an expensive drug based on a lower bar of proof. In practice, health insurers have taken over as gatekeeper in determining who will get the drug. © 2017 The New York Times Company

Keyword: Muscles; Movement Disorders
Link ID: 23768 - Posted: 06.23.2017

By Alice Klein EVIDENCE that Parkinson’s disease may be an autoimmune disorder could lead to new ways to treat the illness. Parkinson’s begins with abnormal clumping of a protein called synuclein in the brain. Neighbouring dopamine-producing neurons then die, causing tremors and difficulty moving. The prevailing wisdom has been that these neurons die from a toxic reaction to synuclein deposits. However, Parkinson’s has been linked to some gene variants that affect how the immune system works, leading to an alternative theory that synuclein causes Parkinson’s by triggering the immune system to attack the brain. An argument against this theory has been that brain cells are safe from immune system attack, because most neurons don’t have antigens – the markers immune cells use to recognise a target. But by studying postmortem brain tissue samples, David Sulzer at Columbia University and his team have discovered that dopamine-producing neurons do display antigens. The team has now conducted blood tests to reveal that people with Parkinson’s show an immune response to these antigens, while people who don’t have the condition do not (Nature, DOI: 10.1038/nature22815). These findings suggest Parkinson’s may be an autoimmune disorder, in which the immune system mistakenly attacks part of the body. There have been hints before that the immune system is involved in Parkinson’s, but this is the first evidence that it plays a major pathological role, says Roger Barker at the University of Cambridge. “It would be an attractive target for therapeutic intervention,” he says. However, it isn’t clear yet if the immune response directly causes neuron death, or if it is merely a side effect of the disease. Sulzer’s team plans to try blocking the autoimmune response in Parkinson’s, to see if this can stop the disease progressing. © Copyright New Scientist Ltd.

Keyword: Parkinsons; Neuroimmunology
Link ID: 23760 - Posted: 06.22.2017

Parkinson’s disease is commonly thought of as a movement disorder, but after years of living with the disease, approximately 25 percent of patients also experience deficits in cognition that impair function. A newly developed research tool may help predict a patient’s risk for developing dementia and could enable clinical trials aimed at finding treatments to prevent the cognitive effects of the disease. The research was published in Lancet Neurology and was partially funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. “This study includes both genetic and clinical assessments from multiple groups of patients, and it represents a significant step forward in our ability to effectively model one of the most troublesome non-motor aspects of Parkinson’s disease,” said Margaret Sutherland, Ph.D., program director at the NINDS. For the study, a team of researchers led by Clemens Scherzer, M.D., combined data from 3,200 people with Parkinson’s disease, representing more than 25,000 individual clinical assessments and evaluated seven known clinical and genetic risk factors associated with developing dementia. From this information, they built a computer-based risk calculator that may predict the chance that an individual with Parkinson’s will develop cognitive deficits. Dr. Scherzer is head of the Neurogenomics Lab and Parkinson Personalized Medicine Program at Harvard Medical School and a member of the Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital, Boston.

Keyword: Parkinsons
Link ID: 23759 - Posted: 06.22.2017

By Neuroskeptic A high-profile paper in Cell reports on a new brain stimulation method that’s got many neuroscientists excited. The new technique, called temporal interference (TI) stimulation, is said to be able to reach structures deep inside the brain, using nothing more than scalp electrodes. Currently, the only way to stimulate deep brain structures is by implanting electrodes (wires) into the brain – which is an expensive and potentially dangerous surgical procedure. TI promises to make deep brain stimulation an everyday, non-invasive tool. But will it really work? The paper comes from Nir Grossman et al. from the lab of Edward S. Boyden at MIT. Their technique is based around applying two electrical fields to the subject’s head. Each field is applied using two scalp electrodes. It is the interaction between the two fields that creates brain stimulation. Both fields oscillate at slightly different frequencies, for instance 2 kHz and 2.01 kHz. Where these fields overlap, a pattern of interference is created which oscillates with an ‘envelope’ at a much lower frequency, say 10 Hz. The frequency of the two fields is too high to have any effect on neural activity, but the interference pattern does have an effect. Crucially, while the electric fields are strongest close to the electrodes, the interference pattern is most intense at a remote point – which could be deep in the brain.

Keyword: Brain imaging; Parkinsons
Link ID: 23740 - Posted: 06.14.2017

Jon Hamilton Researchers are working to revive a radical treatment for Parkinson's disease. The treatment involves transplanting healthy brain cells to replace cells killed off by the disease. It's an approach that was tried decades ago and then set aside after disappointing results. Now, groups in Europe, the U.S. and Asia are preparing to try again, using cells they believe are safer and more effective. "There have been massive advances," says Claire Henchcliffe, a neurologist at Weill Cornell Medicine in New York. "I'm optimistic." "We are very optimistic about ability of [the new] cells to improve patients' symptoms," says Viviane Tabar, a neurosurgeon and stem cell biologist at Memorial Sloan Kettering Cancer Center in New York. Henchcliffe and Tabar joined several other prominent scientists to describe plans to revive brain cell transplants during a session Tuesday at the International Society for Stem Cell Research meeting in Boston. Their upbeat message marks a dramatic turnaround for the approach. During the 1980s and 1990s, researchers used cells taken directly from the brains of aborted fetuses to treat hundreds of Parkinson's patients. The goal was to halt the disease. © 2017 npr

Keyword: Parkinsons; Stem Cells
Link ID: 23738 - Posted: 06.14.2017

By Edd Gent There’s been a lot of hype coming out of Silicon Valley about technology that can meld the human brain with machines. But how will this help society, and which companies are leading the charge? Elon Musk, chief executive of Tesla and SpaceX, made waves in March when he announced his latest venture, Neuralink, which would design what are called brain-computer interfaces. Initially, BCIs would be used for medical research, but the ultimate goal would be to prevent humans from becoming obsolete by enabling people to merge with artificial intelligence. Musk is not the only one who’s trying to bring humans closer to machines. Here are five organizations working hard on hacking the brain. According to Musk, the main barrier to human-machine co­operation is communication bandwidth. Because using a touch screen or a keyboard is a slow way to communicate with a computer, Musk’s new venture aims to create a “high-bandwidth” link between the brain and machines. What that system would look like is not entirely clear. Words such as “neural lace” and “neural dust” have been bandied about, but all that has really been revealed is a business model. Neuralink has been registered as a medical research company, and Musk said the firm will produce a product to help people with severe brain injuries within four years. This will lay the groundwork for developing BCIs for healthy people, enabling them to communicate by “consensual telepathy,” possibly within five years, Musk said. Some scientists, particularly those in neuroscience, are skeptical of Musk’s ambitious plans. © 1996-2017 The Washington Post

Keyword: Robotics
Link ID: 23733 - Posted: 06.12.2017

By Clare Wilson Would you have pig cells implanted in your brain? Some people with Parkinson’s disease have, in the hope it will stop their disease progressing. The approach is still in the early stages of testing, but initial results from four people look promising, with all showing some improvement 18 months after surgery. People with Parkinson’s disease, which causes tremors and difficulty moving, usually get worse over time. The disease is caused by the gradual loss of brain cells that make dopamine, a compound that helps control our movements. Current medicines replace the missing dopamine, but their effectiveness wears off over the years. So Living Cell Technologies, based in Auckland, New Zealand, has been developing a treatment that uses cells from the choroid plexus in pigs. This brain structure makes a cocktail of growth factors and signalling molecules known to help keep nerve cells healthy. Last month, surgery was completed on a further 18 people in a placebo-controlled trial, using the choroid plexus cell implants. The hope is that compounds made by these cells will nourish the remaining dopamine-producing cells in the patients’ brains, slowing further loss. © Copyright New Scientist Ltd.

Keyword: Parkinsons; Stem Cells
Link ID: 23731 - Posted: 06.12.2017

By STEPH YIN European eels are born and die in the North Atlantic Ocean, but spend most of their lives in rivers or estuaries across Europe and North Africa. In between, they traverse thousands of miles of ocean, where it’s often unclear which way is up or down. Scientists have therefore long suspected that these critically endangered fish use magnetism to help guide them. A study published Friday in Science Advances shows, for the first time, that European eels might link magnetic cues with the tides to navigate. Studying juveniles during the crucial stage when they move toward land from open ocean, the authors found that eels faced different directions based on whether the tide was flowing in (flood tide) or out (ebb tide). Changing orientation might help eels take advantage of tides to travel from the ocean to the coast, and into fresh water, more efficiently, said Alessandro Cresci, a graduate student at the University of Miami and lead author of the study. Previous studies have shown that eels can detect magnetic fields, but how they use this sixth sense “has remained a matter of speculation” until now, said Michael J. Miller, an eel biologist at Nihon University in Japan who was not involved in the study. When transitioning from sea to coast, European eels are in a stage of their lives where they are about the size of a finger and transparent along their bodies, thus the name “glass eels.” Mr. Cresci’s group studied glass eels from the coast of Norway, observing the animals in the field by putting 54 slippery, see-through eels, one by one, in a drifting chamber equipped with cameras and compasses. When the tide ebbed, these animals generally faced south, but when it flowed in, they showed no consistent orientation. The researchers then studied 49 of the same eels in laboratory tanks. They subjected some of the eels to reoriented magnetic fields, rotating magnetic north to the east, south or west. © 2017 The New York Times Company

Keyword: Animal Migration
Link ID: 23728 - Posted: 06.12.2017

Rob Stein The Food and Drug Administration requested Thursday that the drugmaker Endo Pharmaceuticals stop selling Opana ER — its extended-release version of Opana. The FDA says the move marks the first time the agency has taken steps to remove an opioid from the market because of "public health consequences of abuse." An increasing number of people, the FDA says, are abusing the powerful prescription pills by crushing, dissolving and injecting them. The sharing of needles by these drug users has fueled an outbreak of associated infectious diseases — HIV, hepatitis C and another serious blood disorder. "We are facing an opioid epidemic — a public health crisis, and we must take all necessary steps to reduce the scope of opioid misuse and abuse," says Dr. Scott Gottlieb, the FDA's commissioner, in announcing the move. "We will continue to take regulatory steps when we see situations where an opioid product's risks outweigh its benefits, not only for its intended patient population but also in regard to its potential for misuse and abuse," Gottlieb says. Dangers Of Opana Opioid Painkiller Outweigh Benefits, FDA Panel Says In a written statement, Endo says the company is "reviewing the request and is evaluating the full range of potential options as we determine the appropriate path forward." The company defended its drug, a version of the medicine oxymorphone hydrochloride, citing the opioid's effectiveness in alleviating pain and Endo's efforts to prevent abuse. © 2017 npr

Keyword: Drug Abuse; Pain & Touch
Link ID: 23725 - Posted: 06.09.2017

By NICHOLAS BAKALAR Chronic pain may be linked to an increasing risk for dementia. Researchers interviewed 10,065 people over 62 in 1998 and 2000, asking whether they suffered “persistent pain,” defined as being often troubled with moderate or severe pain. Then they tracked their health through 2012. After adjusting for many variables, they found that compared with those who reported no pain problems, people who reported persistent pain in both 1998 and 2000 had a 9 percent more rapid decline in memory performance. Moreover, the probability of dementia increased 7.7 percent faster in those with persistent pain compared with those without. The study, in JAMA Internal Medicine, does not prove cause and effect. But chronic pain may divert attention from other mental activity, leading to poor memory, and some studies have found that allaying pain with opioids can lead to cognitive improvements. Still, the lead author, Dr. Elizabeth L. Whitlock, an anesthesiologist at the University of California at San Francisco, acknowledged that treatment with opioids is problematic, and that safely controlling chronic pain is a problem that so far has no satisfactory solution. “I’d encourage clinicians to be aware of the cognitive implications of a simple report of pain,” she said. “It’s a simple question to ask, and the answer can be used to identify a population at high risk of functional and cognitive problems.” © 2017 The New York Times Company

Keyword: Alzheimers; Pain & Touch
Link ID: 23719 - Posted: 06.08.2017

By Nicholette Zeliadt, For 6-year-old Macey, lunchtime at school is not so much a break from reading and math as it is an hour rife with frustration. Here’s how Macey’s mother, Victoria, describes Macey’s typical lunch break: In her special-education classroom an hour north of San Francisco, Macey’s classmates gather at a big square table, chattering away and snatching one another’s food. Macey, meanwhile, is sequestered away at a small white table in a corner, facing a bookshelf. She grabs the handle of a spoon using the palm of her right hand, awkwardly scoops up rice and spills it onto her lap. She wants to be at the big table with her peers, but she sits with an aide away from the other children to minimize distractions while she eats. (Victoria requested that we use her and Macey’s first names only, to protect their privacy.) After lunch, the children spill out onto the playground. Macey, wearing a helmet, trails behind, holding her aide’s hand. She can walk, but she often trips on uneven surfaces and falls over. She tends to misjudge heights, and once pulled a muscle while climbing on playground equipment. When she was 3, she tripped and fell headfirst out of a sandbox, scraping her face, chipping one tooth and dislodging another. Macey has little trouble moving around the house because it has few stairs and her mother never changes the layout of the rooms. Victoria’s biggest concern is that Macey’s movement troubles interfere with her social life. © 2017 Scientific American,

Keyword: Autism; Movement Disorders
Link ID: 23713 - Posted: 06.06.2017

Mo Costandi Since 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as a ‘brain pacemaker’, delivers electrical pulses to a structure called the subthalamic nucleus, located near the centre of the brain, and effectively alleviates many of the physical symptoms of the disease, such as tremor, muscle rigidity, and slowed movements. DBS is generally safe but, like any surgical procedure, comes with some risks. First and foremost, it is highly invasive, requiring small holes to be drilled in the patient’s skull, through which the electrodes are inserted. Potential complications of this include infection, stroke, and bleeding on the brain. The electrodes, which are implanted for long periods of time, sometimes move out of place; they can also cause swelling at the implantation site; and the wire connecting them to the battery, typically placed under the skin of the chest, can erode, all of which require additional surgical procedures. Now, researchers at the Massachusetts Institute of Technology have a developed a new method that can stimulate cells deep inside the brain non-invasively, using multiple electric fields applied from outside the organ. In a study published today in the journal Neuron, they show that the method can selectively stimulate deep brain structures in live mice, without affecting the activity of cells in the overlying regions, and also that it can be easily adjusted to evoke movements by stimulation of the motor cortex. © 2017 Guardian News and Media Limited o

Keyword: Parkinsons
Link ID: 23700 - Posted: 06.02.2017

By Matthew Hutson The life of a sheep is not as cushy as it looks. They suffer injury and infection, and can’t tell their human handlers when they’re in pain. Recently, veterinarians have developed a protocol for estimating the pain a sheep is in from its facial expressions, but humans apply it inconsistently, and manual ratings are time-consuming. Computer scientists at the University of Cambridge in the United Kingdom have stepped in to automate the task. They started by listing several “facial action units” (AUs) associated with different levels of pain, drawing on the Sheep Pain Facial Expression Scale. They manually labeled these AUs—nostril deformation, rotation of each ear, and narrowing of each eye—in 480 photos of sheep. Then they trained a machine-learning algorithm by feeding it 90% of the photos and their labels, and tested the algorithm on the remaining 10%. The program’s average accuracy at identifying the AUs was 67%, about as accurate as the average human, the researchers will report today at the IEEE International Conference on Automatic Face and Gesture Recognition in Washington, D.C. Ears were the most telling cue. Refining the training procedure further boosted accuracy. Given additional labeled images, the scientists expect their method would also work with other animals. Better diagnosis of pain could lead to quicker treatment. © 2017 American Association for the Advancement of Science. A

Keyword: Pain & Touch
Link ID: 23694 - Posted: 06.02.2017

By Bob Grant Prosthetic limbs are rejected by amputees’ bodies at a rate of about 20 percent. Researchers at MIT are seeking to reduce that number, using an amputation procedure that encourages increased feedback between muscles, tendons, and the nervous system so that an artificial limb might stimulate them in a more natural way—giving patients a better sense of proprioception, or where their limb is in space. The key to the surgical technique, demonstrated in rats so far, is to emulate the normal agonist-antagonist pairing of muscles (think biceps and triceps) at the amputation site so that the muscles and nerves surrounding a prosthetic can sense and transmit proprioceptive information about the artificial limb and how much force is being applied to it. The researchers published their work today (May 31) in Science Robotics. “We’re talking about a dramatic improvement in patient care,” Hugh Herr, an MIT professor of media arts and sciences and a coauthor of the study, said in a statement. “Right now there’s no robust neural method for a person with limb amputation to feel proprioceptive positions and forces applied to the prosthesis. Imagine how that would completely hinder one’s ability to move, to successfully balance, or to manipulate objects.” Herr, himself a double-amputee, and his team operated on seven rats, cutting through muscles and nerves in their hind legs. The researchers then grafted on paired muscles, wiring them up to severed nerves. After healing for four months, the rats’ new muscles were contracting and relaxing in tandem, as in naturally paired muscles, and sending electrical signals that reflected the amplitude of the artificial stimulation Herr and his colleagues applied. © 1986-2017 The Scientist

Keyword: Movement Disorders
Link ID: 23693 - Posted: 06.02.2017

Laurel Hamers Last year, Joan Peay slipped on her garage steps and smashed her knee on the welcome mat. Peay, 77, is no stranger to pain. The Tennessee retiree has had 17 surgeries in the last 35 years — knee replacements, hip replacements, back surgery. She even survived a 2012 fungal meningitis outbreak that sickened her and hundreds of others, and killed 64. This knee injury, though, “hurt like the dickens.” When she asked her longtime doctor for something stronger than ibuprofen to manage the pain, he treated her like a criminal, Peay says. His response was frustrating: “He’s known me for nine years, and I’ve never asked him for pain medicine other than what’s needed after surgery,” she says. She received nothing stronger than over-the-counter remedies. A year after the fall, she still lives in constant pain. Just five years ago, Peay might have been handed a bottle of opioid painkillers for her knee. After all, opioids — including codeine, morphine and oxycodone — are some of the most powerful tools available to stop pain. Hitting opioid receptors in the peripheral nervous system keeps pain messages from reaching the brain. But opioids can cause problems by overstimulating the brain’s reward system and binding to receptors in the brain stem and gut. But an opioid addiction epidemic spreading across the United States has soured some doctors on the drugs. Many are justifiably concerned that patients will get hooked or share their pain pills with friends and family. And even short-term users risk dangerous side effects: The drugs slow breathing and can cause constipation, nausea and vomiting. |© Society for Science & the Public 2000 - 2017

Keyword: Pain & Touch; Drug Abuse
Link ID: 23686 - Posted: 05.31.2017

By JANE E. BRODY A neighbor of mine was recently told he has a devastating neurological disorder that is usually fatal within a few years of diagnosis. Though a new drug was recently approved for the illness, treatments may only slow progression of the disease for a time or extend life for maybe two or three months. He is a man of about 60 I’ve long considered the quintessential Mr. Fix-it, able to repair everything from bicycles to bathtubs. Now he is facing amyotrophic lateral sclerosis, or Lou Gehrig’s disease — a disease that no one yet knows how to fix. I can only imagine what he is going through because he does not want to talk about it. However, many others similarly afflicted have openly addressed the challenges they faced, though it is usually up to friends and family to express them and advocate for more and better research and public understanding. A.L.S. attacks the nerve cells in the brain and spinal cord that control voluntary muscle movements, like chewing, walking, breathing, swallowing and talking. It is invariably progressive. Lacking nervous system stimulation, the muscles soon begin to weaken, twitch and waste away until individuals can no longer speak, eat, move or even breathe on their own. Last year, the Centers for Disease Control and Prevention estimated that between 14,000 and 15,000 Americans have A.L.S., which makes it sound like a rare disease, but only because life expectancy is so short. A.L.S. occurs throughout the world, and it is probably far more common than generally thought. Over the course of a lifetime, one person in about 400 is likely to develop it, a risk not unlike that of multiple sclerosis. But with the rare exception of an outlier like the brilliant physicist Stephen Hawking, who has had A.L.S. for more than 50 years, it usually kills so quickly that many people do not know anyone living with this disease. Only one person in 10 with A.L.S. is likely to live for a decade or longer. © 2017 The New York Times Company

Keyword: ALS-Lou Gehrig's Disease
Link ID: 23675 - Posted: 05.29.2017

Patients who are told their medication can have certain side-effects may report these symptoms more often than patients who aren't aware their treatment carries these risks, a study of popular cholesterol pills suggests. Researchers focused on what they dubbed the "nocebo" effect, or the potential for people to complain of treatment-related side-effects when they think they're taking a specific drug but are actually given a placebo, or dummy pill, without any active ingredients. "It has been recognized for many years that when patients are warned about possible adverse reactions to a drug, they are much more likely to complain of these side effects than when they are unaware of the possibility that such side-effects might occur," said senior study author Dr. Peter Sever, a researcher at Imperial College London. To test this "nocebo" effect, researchers first randomly assigned about 10,000 trial participants in the UK, Ireland and Scandinavia to take either a statin pill to lower cholesterol or a placebo, then followed people for around three years to see how often they complained of four known statin side-effects: Patients on statins and on placebo pills reported similar rates of muscle aches and erectile dysfunction, the study found. People taking placebo also reported higher rates of sleep difficulties than patients on statins. ©2017 CBC/Radio-Canada.

Keyword: Pain & Touch
Link ID: 23665 - Posted: 05.27.2017

Susan Milius A question flamingo researchers get asked all the time — why the birds stand on one leg — may need rethinking. The bigger puzzle may be why flamingos bother standing on two. Balance aids built into the birds’ basic anatomy allow for a one-legged stance that demands little muscular effort, tests find. This stance is so exquisitely stable that a bird sways less to keep itself upright when it appears to be dozing than when it’s alert with eyes open, two Atlanta neuromechanists report May 24 in Biology Letters. “Most of us aren’t aware that we’re moving around all the time,” says Lena Ting of Emory University, who measures what’s called postural sway in standing people as well as in animals. Just keeping the human body vertical demands constant sensing and muscular correction for wavering. Even standing robots “are expending quite a bit of energy,” she says. That could have been the case for flamingos, she points out, since effort isn’t always visible. Translate that improbably long flamingo leg into human terms, and the visible part of the leg would be just the shin down. A flamingo’s hip and knee lie inside the bird’s body. Ting and Young-Hui Chang of the Georgia Institute of Technology tested balance in fluffy young Chilean flamingos coaxed onto a platform attached to an instrument that measures how much they sway. Keepers at Zoo Atlanta hand-rearing the test subjects let researchers visit after feeding time in hopes of catching youngsters inclined toward a nap — on one leg on a machine. “Patience,” Ting says, was the key to any success in this experiment. |© Society for Science & the Public 2000 - 2017

Keyword: Sleep
Link ID: 23656 - Posted: 05.24.2017

By LISA SANDERS, M.D. The woman woke to the sound of her 57-year-old husband sobbing. They’d been married for 30 years, and she had never heard him cry before. “I hurt so much,” he wailed. “I have to go back to the hospital.” The symptoms started two weeks earlier. One afternoon, coming home from his job as a carpenter, he felt hot and tired. He shook with shivers even though the day was warm. He drank a cup of tea and went to bed. The next day he felt fine, until the end of the day, when he felt overwhelmed by the heat and chills again. The day after that was the same. When he woke one morning and saw that his body was covered with pale pink dots — his arms, his face, his chest and thighs — he started to worry. His wife took him to the Griffin Hospital emergency room in Derby, Conn. The first doctor who saw him thought he probably had Lyme disease. Summer had just started, and he’d already seen a lot of cases. He sent the patient home with an antibiotic and steroid pills for the rash. The man took the medications but didn’t get any better. Soon everything started to hurt. His muscles, his joints and his back felt as if he’d been beaten. He dragged himself back to the E.R. He was given pain pills. A few days later, he went to the E.R. a third time and was given more pain meds. After waking up crying, he went yet again, and this time, the doctors admitted him. By then the patient had had several blood tests, which showed no sign of Lyme or other tick-borne diseases. A CT scan was equally uninformative. The next day, the man was walking to the bathroom when his legs gave out and he fell down. The doctor in charge of his care came and examined him once again. The man looked fit and healthy, despite the now-bright-red rash, but his legs were extremely weak. If the doctor applied even light pressure to the raised leg, it sagged back down to the bed. And his feet felt numb. He had a sensation of tingling in his hands, as if they had gone to sleep. That was how the weakness and numbness in his legs started, he told the doctor. And the next day, his hands were so weak he had to use both just to drink a cup of water. © 2017 The New York Times Company

Keyword: Movement Disorders; Neuroimmunology
Link ID: 23644 - Posted: 05.22.2017

Laura Beil Even though a sprained ankle rarely needs an opioid, a new study of emergency room patients found that about 7 percent of patients got sent home with a prescription for the potentially addictive painkiller anyway. And the more pills prescribed, the greater the chance the prescription would be refilled, raising concerns about continued use. The research adds to evidence that it’s hard for some people to stop taking the pills even after a brief use. State officials in New Jersey recently enacted a law limiting first-time prescriptions to a five-day supply, and other states should consider similar restrictions, says Kit Delgado, an assistant professor of Emergency Medicine and Epidemiology at the University of Pennsylvania. “The bottom line is that we need to do our best not to expose people to opioids,” Delgado says. “And if we do, start with the smallest quantity possible.” The research was presented May 17 at the Society for Academic Emergency Medicine’s annual meeting in Orlando. Previous research has found that the more opioids such as hydrocodone and oxycodone are prescribed, the more likely patients are to keep taking them. But previous studies have been too broad to account for differences in diagnoses — for instance, whether people who received refills kept taking the drug simply because they still were in pain, Delgado says. He and colleagues limited their study to prescriptions written after ankle sprains to people who had not used an opioid in the previous six months. Usually, those injuries aren’t serious and don’t require opioids. |© Society for Science & the Public 2000 - 2017

Keyword: Drug Abuse; Pain & Touch
Link ID: 23638 - Posted: 05.20.2017