Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Claudia López Lloreda Mouse pups, like other infants across the animal kingdom, cry to get their mother’s attention. The oxytocin system drives this communication and shapes how baby mice interact when reunited with their mothers, according to a study out today in Science. Oxytocin, known colloquially as the “love” or “cuddle” hormone, stimulates milk release during nursing and promotes maternal care behaviors. But most oxytocin research thus far has focused solely on the mother, overlooking the neuropeptide’s potential effects on an infant’s brain and behavior. This new study shows “the other half of the equation to what we already knew,” says Zoe Donaldson, associate professor of behavioral neuroscience at the University of Colorado Boulder, who was not involved with the study. Oxytocin is “this social signal that ultimately reinforces relationships,” she says. The work employed a novel optogenetic tool that enabled the team to turn off neurons deep in the hypothalamus of mouse pups. After being separated from their mothers for three hours, the pups vocalized more using distinct patterns when reunited with their mothers than did pups that had not been separated, a process controlled by oxytocin neurons in the pups’ hypothalamus, the team found. “It would make sense if oxytocin is on both sides of this: making moms want to take care of their pups that are calling, and making pups call in a manner that makes mom want to take care of them,” Donaldson says. “Then we have this sort of convergence where oxytocin is once again doing everything.” © 2025 Simons Foundation
Keyword: Sexual Behavior; Animal Communication
Link ID: 29928 - Posted: 09.13.2025
By Andrea Thompson A school-aged child in Los Angeles County has died from a rare but always fatal complication from a measles infection they acquired when they were an infant who was too young to be vaccinated. The first dose of the vaccine is typically not administered until one year of age. Experts say the death underscores the need for high levels of vaccination in a population to protect the most vulnerable against the disease, as well as from side effects that can occur long after the initial illness has passed. “This case is a painful reminder of how dangerous measles can be, especially for our most vulnerable community members,” said Los Angeles County Health Officer Muntu Davis in a recent statement. The child who died suffered from subacute sclerosing panencephalitis (SSPE), a progressive brain disorder that usually develops two to 10 years after a measles infection. The measles virus appears to mutate into a form that avoids detection by the immune system, allowing it to hide in the brain and eventually destroy neurons. “It’s just a virus that goes unchecked and destroys brain tissue, and we have no therapy for it,” said Walter Orenstein, an epidemiologist and professor emeritus at Emory University, to Scientific American earlier this year. People with SSPE experience a gradual, worsening loss of neurological function and usually die within one to three years after diagnosis, according to the Los Angeles County Health Department. The disorder affects only about one in every 10,000 people who contract measles. But the risk may be as high as about one in 600 for those who are infected as infants. “There is no treatment for this. Children who suffer from this will always die,” said Paul Offit, director of the Vaccine Education Center and an attending physician in the Division of Infectious Diseases at Children’s Hospital of Philadelphia, in a previous interview with Scientific American. © 2025 SCIENTIFIC AMERICAN,
Keyword: Development of the Brain
Link ID: 29927 - Posted: 09.13.2025
By Jake Buehler All eight arms of an octopus can be used for whatever their cephalopod owner wishes, but some arms are favored for certain tasks. A new, detailed analysis of how octopuses wield their famously flexible appendages suggests that all eight arms share a skill set, but the front four spend more time on exploration and the back four on movement. The findings, published September 11 in Scientific Reports, provide a comprehensive accounting of how subtle arm movements coordinate the clever invertebrates’ repertoire of behaviors. Octopuses live their lives through their sucker-lined arms, which make up the bulk of their body mass and contain most of their nervous system. Marine biologist Chelsea Bennice wanted to understand how octopuses use the extreme flexibility of their boneless limbs to move, hunt and investigate their environment. Her colleagues had examined some of these behaviors in laboratory settings, but not in the wild. Bennice and her colleagues watched 25 videos, filmed from 2007 to 2015, of multiple species of wild octopuses in Spain and the Caribbean, cataloging their behaviors and arm movements. In all, the researchers logged nearly 4,000 arm actions, which could be broken down into 12 types, including raising, reaching and grasping. The arms could deform in four distinct ways: elongating, shortening, bending and twisting. The team found that the octopuses were exceptionally ambidextrous. “Octopuses are ultimate multitaskers,” says Bennice, of Florida Atlantic University in Boca Raton. “All arms are capable of all arm behaviors and all arm deformations. They can even use multiple arm actions on a single arm and on several arms at the same time.” © Society for Science & the Public 2000–2025.
Keyword: Laterality; Evolution
Link ID: 29926 - Posted: 09.13.2025
By Kenneth Chang After decades of brain research, scientists still aren’t sure whether most people see the same way, more or less — especially with colors. Is what I call red also red for you? Or could my red be your blue? Or maybe neon pink? If it were possible to project what I see directly into your mind, would the view be the same, or would it instead resemble a crazy-hued Andy Warhol painting? “That’s an age-old question, isn’t it?” said Andreas Bartels, a professor of visual neuroscience at the University of Tübingen in Germany. But scientists do have a good understanding of which parts of the brain handle vision. They have even figured out where various vision-processing tasks are performed, like recognizing what is moving, identifying colors and adjusting to different lighting conditions. Amazingly, it is even possible to deduce what you’re seeing by looking at an M.R.I. scan showing which parts of your brain are lighting up. “That comes out of the world of science fiction, or one would think, right?” Dr. Bartels said. “It’s amazing that this is possible, but this always has happened in individual brains.” That is, researchers pulled off this sleight of science with individuals. They would first show a subject lying in the M.R.I. machine a series of images, mapping out how that person’s brain responded. After that initial training, the researchers could randomly show one of the images and, based on just the brain activity, make a good guess at what the image was. In new research, Dr. Bartels and Michael Bannert, a postdoctoral researcher in Dr. Bartels’ laboratory, used that technique to provide a partial answer to the question of whether most of us have a shared sense of colors. They put 15 people, all with standard color vision, in an M.R.I. machine. The volunteers viewed expanding concentric rings that were red, green or yellow. © 2025 The New York Times Company
Keyword: Vision; Consciousness
Link ID: 29925 - Posted: 09.10.2025
Ian Sample Science editor The cry of a distressed baby triggers a rapid emotional response in both men and women that is enough to make them physically hotter, researchers say. Thermal imaging revealed that people experienced a rush of blood to the face that raised the temperature of their skin when they were played recordings of babies wailing. The effect was stronger and more synchronised when babies were more distressed, leading them to produce more chaotic and disharmonious cries. The work suggests that humans respond automatically to specific features in cries that ramp up when babies are in pain. “The emotional response to cries depends on their ‘acoustic roughness’,” said Prof Nicolas Mathevon at the University of Saint-Etienne in France. “We are emotionally sensitive to the acoustic parameters that encode the level of pain in a baby’s cry.” Evolution equipped baby humans with a hard-to-ignore wail to boost their odds of getting the care they need. But not all infant cries are the same. When a baby is in real distress, they forcefully contract their rib cage, producing higher pressure air that causes chaotic vibrations in the vocal cords. This produces “acoustic roughness”, or more technically, disharmonious sounds called nonlinear phenomena (NLP). To see how men and women responded to infants’ cries, scientists played recordings to volunteers with little or no experience with babies. While listening, the participants were filmed with a thermal camera that captured subtle changes in their facial temperature. © 2025 Guardian News & Media Limited
Keyword: Sexual Behavior; Emotions
Link ID: 29924 - Posted: 09.10.2025
By Viviane Callier All animals, from jellyfish to humans, need sleep. But how these wide-ranging organisms control that need has remained a mystery. It turns out that—in fruit flies, at least—sleep might be an “inescapable consequence” of aerobic metabolism, according to a new study. Mitochondria in Drosophila’s sleep-regulating neurons sense metabolic damage that accumulates during waking hours and trigger the pressure to sleep. “It’s a really beautiful contribution,” says Keith Hengen, associate professor of biology at Washington University in St. Louis, who was not involved in the work. The study explains how the brain integrates information from a metabolic thermostat to regulate sleep pressure, Hengen says. “That’s a really hard problem, and I think they’ve nailed it.” The regulators of sleep are distinct from the function of sleep, Hengen and other sleep researchers note. Just as fullness regulates food intake, but food intake doesn’t so much serve to fill the stomach as to get calories and nutrients, “we need to make this distinction between sensing of sleep pressure and the function of sleep,” says Giorgio Gilestro, associate professor of systems neurobiology at Imperial College London, who was not involved in the new study. And with respect to sleep pressure, he adds, there are two processes at play: a well-studied circadian clock mechanism that links sleep to daylight cycles, and a less-understood homeostatic process that fine-tunes the need for sleep based on other factors. © 2025 Simons Foundation
Keyword: Sleep; Evolution
Link ID: 29923 - Posted: 09.10.2025
By Sofia Caetano Avritzer When Canada legalized cannabis in 2018, its effects on human health were all over the news. Cyntia Duval, a women’s health researcher at the University of Toronto at the time, wondered how its consumption might affect female fertility. To her surprise, there was almost no information on the subject — though there was plenty of data on marijuana’s effects on pregnancy and male fertility. Chemicals in cannabis may push eggs to become ready for fertilization. But this may come at a cost: more eggs with the wrong number of chromosomes, Duval and colleagues now report in a study published September 9 in Nature Communications. Delta-9-tetrahydrocannabinol, or THC, is the main psychoactive chemical in marijuana. It binds to cannabinoid receptors in the brain. But these receptors are all over our bodies, including in our reproductive organs. The receptors usually bind endocannabinoids, molecules naturally produced by the body and essential for normal bodily functions like the production of eggs and sperm. Consuming THC can affect cannabinoid receptors in the reproductive system. Many studies report that using cannabis decreases sperm count and motility. Men are usually told to avoid cannabis for at least three months before trying to conceive, Duval says. But what about women? © Society for Science & the Public 2000–2025.
Keyword: Drug Abuse; Sexual Behavior
Link ID: 29922 - Posted: 09.10.2025
By Rachel E. Gross The first thing Debra McVean did when she woke up at the hospital in March 2024 was try to get to the bathroom. But her left arm wouldn’t move; neither would her left leg. She was paralyzed all along her left side. She had suffered a stroke, her doctor soon explained. A few nights before, a blood clot had lodged in an artery in her neck, choking off oxygen to her brain cells. Now an M.R.I. showed a dark spot in her brain, an eerie absence directly behind her right eye. What that meant for her prognosis, however, the doctor couldn’t say. “Something’s missing there, but you don’t know what,” Ms. McVean’s husband, Ian, recalled recently. “And you don’t know how that will affect her recovery. It’s that uncertainty, it eats away at you.” With a brain injury, unlike a broken bone, there is no clear road to recovery. Nor are there medical tools or therapies to help guide the brain toward healing. All doctors can do is encourage patients to work hard in rehab, and hope. That is why, for decades, the medical attitude toward survivors of brain injury has been largely one of neurological “nihilism,” said Dr. Fernando Testai, a neurologist at the University of Illinois, Chicago, and the editor in chief of the Journal of Stroke and Cerebrovascular Diseases. Stroke, he said, “was often seen as a disease of ‘diagnose and adios.’” That may be about to change. A few days after Ms. McVean woke up in the Foothills Medical Center in Calgary, she was told about a clinical trial for a pill that could help the brain recover from a stroke or traumatic injury, called Maraviroc. Given her level of physical disability, she was a good candidate for the study. She hesitated. The pills were large — horse pills, she called them. But she knew the study could help others, and there was a 50 percent chance that she would get a drug that could help her, too. © 2025 The New York Times Company
Keyword: Stroke; Regeneration
Link ID: 29921 - Posted: 09.06.2025
Rachel Fieldhouse An analysis of 56 million people has shown that exposure to air pollution increases the risk of developing a particular form of dementia, the third most common type after Alzheimer’s disease and vascular dementia. The study, published in Science on 4 September1, suggests that there is a clear link between long-term exposure to PM2.5 — airborne particles that are smaller than 2.5 micrometres in diameter — and the development of dementia in people with Lewy body dementia or Parkinson’s disease. The study found that PM2.5 exposure does not necessarily induce Lewy body dementia, but “accelerates the development,” in people who are already genetically predisposed to it, says Hui Chen, a clinician–neuroscientist at the University of Technology Sydney in Australia. PM2.5 exposure Lewy body dementia is an umbrella term for two different types of dementia: Parkinson’s disease with dementia, and dementia with Lewy bodies. In both cases, dementia is caused by the build-up of α-synuclein (αSyn) proteins into clumps, called Lewy bodies, in the brain’s nerve cells, which cause the cells to stop working and eventually die. Studies have suggested that long-term exposure to air pollution from car-exhaust, wildfires and factory fumes, is linked with increased risks of developing neurodegenerative illnesses, including Parkinson's disease with dementia2. Study co-author Xiaobo Mao, who researches neurodegenerative conditions at Johns Hopkins University in Baltimore, Maryland, says he and his colleagues wanted to determine if PM2.5 exposure also influenced the risk of developing Lewy body dementia. They analysed 2000–2014 hospital-admissions data from 56.5 million people with Lewy body dementia and Parkinson’s disease with or without dementia. The data served to identify people with severe neurological diseases. © 2025 Springer Nature Limited
Keyword: Alzheimers; Parkinsons
Link ID: 29920 - Posted: 09.06.2025
Ivana Drobnjak O'Brien An ultrasound “helmet” offers potential new ways for treating neurological conditions without surgery or other invasive procedures, a study has shown. The device can target brain regions 1,000 times smaller than ultrasound can, and could replace existing approaches such as deep brain stimulation (DBS) in treating Parkinson’s disease. It also holds potential for conditions such as depression, Tourette syndrome, chronic pain, Alzheimer’s and addiction. Unlike DBS, which requires a highly invasive procedure in which electrodes are implanted deep in the brain to deliver electrical pulses, using ultrasound sends mechanical pulses into the brain. But no one had managed to create an approach capable of delivering them precisely enough to make a meaningful impact until now. A study published in Nature Communications introduces a breakthrough system that can hit brain regions 30 times smaller than previous deep-brain ultrasound devices could. “It is a head helmet with 256 sources that fits inside an MRI scanner,” said the author and participant Ioana Grigoras, of Oxford University. “It is chunky and claustrophobic putting it on the head at first, but then you get comfortable.” Current DBS methods used on Parkinson’s patients use hard metal frames that are screwed into the head to hold them down. To test the system, the researchers applied it to seven volunteers, directing ultrasound waves to a tiny region the size of a grain of rice in the lateral geniculate nucleus (LGN), the key pathway for visual information that comes from the eyes to the brain. “The waves reached their target with remarkable accuracy,” the senior author Prof Charlotte Stagg of Oxford University said. “That alone was extraordinary, and no one has done it before.” Follow-up experiments showed that modulating the LGN produced lasting effects in the visual cortex, reducing its activity. “The equivalent in patients with Parkinson’s would be targeting a motor control region and seeing tremors disappear,” she added. © 2025 Guardian News & Media Limite
Keyword: Parkinsons; Brain imaging
Link ID: 29919 - Posted: 09.06.2025
By Claudia López Lloreda The process of making a decision engages neurons across the entire brain, according to a new mouse dataset created by an international collaboration. “Many, many areas are recruited even for what are arguably rather simple decisions,” says Anne Churchland, professor of neurobiology at University of California, Los Angeles and one of the founding members of the collaboration, called the International Brain Laboratory (IBL). The canonical model suggests that the activity underlying vision-dependent decisions goes from the visual thalamus to the primary visual cortex and association areas, and then possibly to the frontal cortex, Churchland says. But the new findings suggest that “maybe there’s more parallel processing and less of a straightforward circuit than we thought.” Churchland and other scientists established the IBL in 2017 out of frustration with small-scale studies of decision-making that analyzed only one or two brain regions at a time. The IBL aimed to study how the brain integrates information and makes a decision at scale. “We came together as a large group with the realization that a large team effort could be transformative in these questions that had been kind of stymieing all of us,” Churchland says. After years of standardizing their methods and instrumentation across the 12 participating labs, the IBL team constructed a brain-wide map of neural activity in mice as they complete a decision-making task. That map, published today in Nature, reveals that the activity associated with choices and motor actions shows up widely across the brain. The same is true for the activity underlying decisions based on prior knowledge, according to a companion paper by the same team, also published today in Nature. © 2025 Simons Foundation
Keyword: Attention; Brain imaging
Link ID: 29918 - Posted: 09.06.2025
Jon Hamilton A rigorous new study finds that a single dose of LSD can ease anxiety and depression for months. The study involved 198 adults with generalized anxiety disorder, or GAD, a disabling form of anxiety that affects about 1 in 10 people over the course of a year. Participants who got lower doses of LSD (25 or 50 micrograms) did no better than those who got a placebo. But people who received higher doses (100 or 200 micrograms) responded quickly, a team reports in the Journal of the American Medical Association. "By the next day, they were showing strong improvements," says Dr. David Feifel of Kadima Neuropsychiatry Institute in San Diego, one of the 22 centers that participated in the study. "And those improvements held out all the way to the end of the study, which was 12 weeks." But it's unclear whether some of the improvement was related to non-drug factors like the sensory environment in which people were treated, says Robin Carhart-Harris, a psychedelics researcher at the University of California, San Francisco who was not involved in the study. "The safety looks good, the tolerability looks good," he says, "but where is the depth of information about the way you delivered this product?" Carhart-Harris, like many scientists who study psychedelics, believes that successful treatment is more likely if a person has the right mindset when beginning a trip and if the trip occurs in a place with the right sensory environment. "It's characterized by continuous worry, inability to relax, and all the physical manifestations, racing heart rates and sweatiness," Feifel says. It's also frequently accompanied by depression. Current antidepressant and antianxiety drugs are inadequate for about half of people diagnosed with GAD. © 2025 npr
Keyword: Stress; Drug Abuse
Link ID: 29917 - Posted: 09.06.2025
By Ute Eberle Before weight coach Bella Barnes consults with new clients, she already knows what they’ll say. The women struggle with their weight, naturally. But they don’t want to lose pounds. They want to gain them. Her clients find themselves too thin, and they’re suffering. “Last week, I signed up a client who wears leggings that have bum pads in them,” says Barnes, who lives in Great Britain. “I’ve had another client recently that, in summer, wears three pairs of leggings just to try and make herself look a bit bigger.” These women belong to a demographic group that has been widely overlooked. As the world focuses on its billion-plus obese citizens, there remain people at the other end of the spectrum who are skinny, often painfully so, but don’t want to be. Researchers estimate that around 1.9 percent of the population are “constitutionally thin,” with 6.5 million of these people in the United States alone. YOU MAY ALSO LIKE Conceptual illustration shows three dinner plates, two at night with crescent moons are empty, representing a nightly fast, and a third with a sun theme, full of food and representing the benefits of eating during a limited time during the day. Constitutionally thin individuals often eat as much as their peers and don’t exercise hard. Yet their body mass index is below 18.5 — and sometimes as low as 14, which translates to 72 pounds on a five-foot frame — and they don’t easily gain weight. The condition is “a real enigma,” write the authors of a recent paper in the Annual Review of Nutrition. Constitutional thinness, they say, challenges “basic dogmatic knowledge about energy balance and metabolism.” It is also understudied: Fewer than 50 clinical studies have looked at constitutionally thin people, compared with thousands on unwanted weight gain. © 2025 Annual Reviews
Keyword: Obesity
Link ID: 29916 - Posted: 09.06.2025
By Jeré Longman Dr. A. James Hudspeth, a neuroscientist at the Rockefeller University in Manhattan who was pivotal in discovering how sound waves are converted in the inner ear to electrical signals that the brain can perceive as a whisper, a symphony or a thunderclap, died on Aug. 16 at his home in Manhattan. He was 79. His wife, Dr. Ann Maurine Packard, said the cause was glioblastoma, a brain cancer. Scientists have long understood how sound waves enter the ear canal and cause the eardrum to vibrate. They have also understood how the vibrations travel through the three small bones of the middle ear, then to the cochlea in the inner ear, a tiny organ about the size of a chickpea that is filled with fluid and is shaped like a snail’s shell. And they have long known that microscopic receptor cells in the cochlea play a role in the process of hearing. But by the time Dr. Hudspeth began his research in the 1970s, it was still unclear how these cells — known as hair cells (the name derives from tufts of cylindrical, hairlike rods known as stereocilia) — transformed the mechanical vibrations of sound waves into nerve impulses that the brain could interpret as, say, a child crying or a dog barking. Dr. Hudspeth “provided the major framework” for this understanding, the committee that awarded him and two other scientists (Robert Fettiplace and Christine Petit) the Kavli Prize in Neuroscience for their pioneering work on the processes of hearing wrote in its citation in 2018. Each cochlea contains about 16,000 hair cells. Atop each cell, 20 to 300 of these rods are gathered in a bundle — the shortest to the tallest — in rows that resemble a staircase or a pipe organ. Hair cells line the cochlea, with each tuned to a narrow frequency range that collectively decodes the broad spectrum of tones in every sound. © 2025 The New York Times Compan
Keyword: Hearing
Link ID: 29915 - Posted: 09.06.2025
Ian Sample Science editor A three-minute brainwave test can detect memory problems linked to Alzheimer’s disease long before people are typically diagnosed, raising hopes that the approach could help identify those most likely to benefit from new drugs for the condition. In a small trial, the test flagged specific memory issues in people with mild cognitive impairment, highlighting who was at greater risk of developing Alzheimer’s. Trials in larger groups are under way. The Fastball test is a form of electroencephalogram (EEG) that uses small sensors on the scalp to record the brain’s electrical activity while people watch a stream of images on a screen. The test detects memory problems by analysing the brain’s automatic responses to images the person sees before the test. “This shows us that our new passive measure of memory, which we’ve built specifically for Alzheimer’s disease diagnosis, can be sensitive to those individuals at very high risk but who are not yet diagnosed,” said Dr George Stothart, a cognitive neuroscientist at the University of Bath, where the test was developed. The trial, run with the University of Bristol, involved 54 healthy adults and 52 patients with mild cognitive impairment (MCI). People with MCI have problems with memory, thinking or language, but these are not usually severe enough to prevent them doing their daily activities. Before the test, volunteers were shown eight images and told to name them, but not specifically to remember them or look out for them in the test. The researchers then recorded the participants’ brain activity as they watched hundreds of images flash up on a screen. Each image appeared for a third of a second and every fifth picture was one of the eight they had seen before. © 2025 Guardian News & Media Limited
Keyword: Alzheimers; Attention
Link ID: 29914 - Posted: 09.03.2025
Jon Hamilton People who inherit two copies of a gene variant called APOE4 have a 60% chance of developing Alzheimer's by age 85. Only about 2% to 3% of people in the U.S. have this genetic profile, and most of them don't know it because they've never sought genetic testing. But three scientists are among those who did get tested, and learned that they are in the high-risk group. Now, each is making an effort to protect not only their own brain, but the brains of others with the genotype known as APOE4-4. "I just felt like the end of the world," says June, who asked to use only her first name out of fear that making her genetic status public could affect her job or health insurance. June was 57 when she found out. As someone with a doctorate in biochemistry, she quickly understood what the results meant. New tests of blood and spinal fluid could help doctors quickly identify patients who would most benefit from treatment. "People with our genotype are almost destined to get the disease," she says. "We tend to get symptoms 7 to 10 years earlier than the general population, which means that I had about seven years left before I may get the disease." At first, June spent sleepless nights online, reading academic papers about Alzheimer's and genetics. She even looked into physician-assisted suicide in an effort to make sure she would not become a burden to her adult son. © 2025 npr
Keyword: Alzheimers; Genes & Behavior
Link ID: 29913 - Posted: 09.03.2025
Rachel Fieldhouse A man with partial paralysis was able to operate a robotic arm when he used a non-invasive brain device partially controlled by artificial intelligence (AI), a study reports1. The AI-enabled device also allowed the man to perform screen-based tasks four times better than when he used the device on its own. Brain–computer interfaces (BCIs) capture electrical signals from the brain, then analyse them to determine what the person wants to do and translate the signals into commands. Some BCIs are surgically implanted and record signals directly from the brain, which typically makes them more accurate than non-invasive devices that are attached to the scalp. Jonathan Kao, who studies AI and BCIs at the University of California, Los Angeles, and his colleagues wanted to improve the performance of non-invasive BCIs. The results of their work are published in Nature Machine Intelligence this week. First, the team tested its BCI by tasking four people — one with paralysis and three without — with moving a computer cursor to a particular spot on a screen. All four were able to complete the task the majority of the time. When the authors added an AI co-pilot to the device, the participants completed the task more quickly and had a higher success rate. The device with the co-pilot doesn’t need to decode as much brain activity because the AI can infer what the user wants to do, says Kao. “These co-pilots are essentially collaborating with the BCI user and trying to infer the goals that the BCI user is wishing to achieve, and then helps to complete those actions,” he adds. The researchers also trained an AI co-pilot to control a robotic arm. The participants were required to use the robotic arm to pick up coloured blocks and move them to marked spots on a table. The person with paralysis could not complete the task using the conventional, non-invasive BCI, but was successful 93% of the time using the BCI with an AI co-pilot. Those without paralysis also completed the task more quickly when using the co-pilot. © 2025 Springer Nature Limited
Keyword: Robotics
Link ID: 29912 - Posted: 09.03.2025
By Lauren Schenkman Microglia safeguard the proliferation and survival of young GABAergic interneurons by secreting insulin-like growth factor 1 (IGF-1), according to a new study of human brain tissue and organoids. The finding points to the potential origin of the brain signaling imbalance implicated in autism and other conditions. Microglia contribute to brain development, past findings show, but their exact function has been unclear. Some experiments showed that these cells prune neural circuits, but later work called that idea into question. The new research “identifies microglia as really an important source of IGF, and one that sets the supply of GABAergic interneurons in the developing brain,” says Damon Page, principal investigator at Seattle Children’s Research Institute. Page was not involved in this work but led an earlier investigation that showed IGF-1 prevents microcephaly in a mouse model of autism when administered during a critical window soon after birth. This new study “extends back that window into the embryonic period,” he says, with implications for understanding both typical development and conditions such as autism. The study was published 6 August in Nature. The investigators used staining techniques to pinpoint microglia in the medial ganglionic eminence, where interneurons form, in human brain tissue samples at various developmental stages. At early developmental stages, microglia were sprinkled throughout brain matter, but later on these cells arranged themselves around clusters of GABAergic neuroblasts, with their processes extending into the clusters. Microglia also aligned themselves with radial glia, the precursors to many brain cells. Based on existing data, IGF-1 emerged as the chemical most likely to mediate microglia’s effects on developing cell types, and in organoid models of the developing human brain, the cells secreted IGF-1, they found. © 2025 Simons Foundation
Keyword: Glia; Learning & Memory
Link ID: 29911 - Posted: 09.03.2025
By Joshua Cohen Roughly 40 percent of adult Americans are considered obese, and weight-loss drugs have come to play a central role in medical treatment over the past few years. As of the spring of 2024, one in eight U.S. adults had taken drugs including Wegovy, Zepbound, or Ozempic, among others, for weight loss. These products belong to a class of drugs known as glucagon-like peptide-1 agonists, or GLP-1s, which can be remarkably effective, but when patients go off GLP-1s, weight rebound occurs. And as it turns out, a relatively large portion of patients discontinue these medications within one year. Prime Therapeutics, a company that manages prescription drug coverage benefits for insurers, employers, and government programs, has been documenting this phenomenon. In 2023, the company published research indicating that merely 32 percent of patients remained on their GLP-1 at the end of one year. A follow-up analysis found that by year two, only 15 percent remained on the drug. And in a new review, the company found that only 8 percent of patients remained on the drugs after three years. The main reason for discontinuation — cited by almost half of patients in a large-scale survey — is concern about the medications’ side effects. People may quit their medication after experiencing common side effects, such as uncomfortable gastrointestinal issues. They may also quit out of fear of more serious ones, like certain cancers — although research suggests GLP-1s are associated with a lower risk for many types of cancer. Additionally, some GLP-1 users may also be at risk of nutrient deficiency and muscle or bone loss without a proper diet and exercise regimen. Health and nutrition experts suggest that optimizing the benefits conferred by GLP-1s requires lifestyle interventions aimed at modifying patient behavior. GLP-1 medicines work for weight loss by curbing hunger and slowing digestion, but they don’t replace the need for improved diet and increased physical activity. Rather, these prescription pharmaceuticals and other non-GLP-1 obesity drugs work together with nutrition and exercise to promote optimal health. In an email to Undark, Jody Dushay, an assistant professor at Harvard Medical School, wrote that “nutrition and exercise hugely benefit overall health” and increase the positive effects of the medications.
Keyword: Obesity
Link ID: 29910 - Posted: 09.03.2025
By R. Douglas Fields It is late at night. You are alone and wandering empty streets in search of your parked car when you hear footsteps creeping up from behind. Your heart pounds, your blood pressure skyrockets. Goose bumps appear on your arms, sweat on your palms. Your stomach knots and your muscles coil, ready to sprint or fight. Now imagine the same scene, but without any of the body’s innate responses to an external threat. Would you still feel afraid? Experiences like this reveal the tight integration between brain and body in the creation of mind — the collage of thoughts, perceptions, feelings and personality unique to each of us. The capabilities of the brain alone are astonishing. The supreme organ gives most people a vivid sensory perception of the world. It can preserve memories, enable us to learn and speak, generate emotions and consciousness. But those who might attempt to preserve their mind by uploading its data into a computer miss a critical point: The body is essential to the mind. How is this crucial brain-body connection orchestrated? The answer involves the very unusual vagus nerve. The longest nerve in the body, it wends its way from the brain throughout the head and trunk, issuing commands to our organs and receiving sensations from them. Much of the bewildering range of functions it regulates, such as mood, learning, sexual arousal and fear, are automatic and operate without conscious control. These complex responses engage a constellation of cerebral circuits that link brain and body. The vagus nerve is, in one way of thinking, the conduit of the mind. How could stimulating a single nerve potentially have such wide-ranging psychological and cognitive benefits? Nerves are typically named for the specific functions they perform. Optic nerves carry signals from the eyes to the brain for vision. Auditory nerves conduct acoustic information for hearing. The best that early anatomists could do with this nerve, however, was to call it the “vagus,” from the Latin for “wandering.” The wandering nerve was apparent to the first anatomists, notably Galen, the Greek polymath who lived until around the year 216. But centuries of study were required to grasp its complex anatomy and function. This effort is ongoing: Research on the vagus nerve is at the forefront of neuroscience today. © 2025Simons Foundation
Keyword: Emotions
Link ID: 29909 - Posted: 08.30.2025