Chapter 10. Biological Rhythms and Sleep

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1438

By Daisy Grewal Despite its importance for health and well-being, many American adults find it difficult to consistently get enough sleep. Approximately 50 to 70 million Americans suffer from a sleep disorder, according to the Center for Disease Control and Prevention. Sleep disturbances are particularly common in older adults and involve a variety of problems including difficulties falling or staying asleep, interrupted breathing, and restless leg syndrome. A person’s racial background can influence their likelihood of developing a sleep disorder, with a greater number of African Americans reporting sleep disturbances compared to White Americans. Beyond its effects on health, not getting enough sleep can lead to car accidents, medical errors, or other mistakes on the job. To encourage better sleep, the medical community encourages adults to engage in good “sleep hygiene” such as limiting or avoiding caffeine and nicotine, avoiding naps during the day, turning off electronics an hour before bed, exercising, and practicing relaxation before bedtime. It is also well-known that mental health is closely linked to sleep; insomnia is more common in people suffering from depression or anxiety. A recent study now raises the possibility that sleep could be affected by the degree to which someone feels like their life is purposeful or meaningful. Arlener Turner, Christine Smith, and Jason Ong of the Northwestern University School of Medicine found that people who reported having a greater sense of purpose in life also reported getting better sleep – even when taking into consideration age, gender, race, and level of education. © 2017 Scientific American

Keyword: Sleep; Attention
Link ID: 24217 - Posted: 10.19.2017

Amy Maxmen For the first time, researchers have cured the deadly neurological disease sleeping sickness using pills instead of a combination of intravenous infusions and pills. The investigators presented the results from final clinical trials on 17 October at the European Congress on Tropical Medicine and International Health in Antwerp, Belgium, providing hope that the treatment will help to eliminate the malady within a decade. The oral therapy — called fexinidazole — cured 91% of people with severe sleeping sickness, compared with 98% who were treated with the combination therapy. It also cured 99% of people in an early stage of the disease who would typically undergo a spinal tap, to determine whether they needed infusions. The relative ease of the treatment with fexinidazole means that if approved, it might save more lives than the current option, say the investigators leading the phase 3 trial, the final phase of testing before the drug goes to regulators for approval. Sleeping sickness is endemic to Africa and generally infects extremely poor people who live in remote regions. The sick often suffer from the disease for years before seeking treatment, causing them and those caring for them to miss work and spend their savings on traditional medicines. Trekking to a hospital and remaining there for intravenous infusions is costly as well. © 2017 Macmillan Publishers Limited,

Keyword: Sleep
Link ID: 24216 - Posted: 10.19.2017

By NICHOLAS BAKALAR Lack of sleep may raise the risk for gestational diabetes. Gestational diabetes — abnormally high blood sugar that develops during pregnancy — can lead to excessive birth weight, preterm birth or respiratory distress in the baby, among other problems. It can also increase the mother’s risk for Type 2 diabetes later in life. Researchers pooled data from eight studies involving 17,595 women. Seven of the studies depended on self-reports of sleep, and one measured sleep duration. After adjusting for variables such as age, body mass index and ethnicity, they found that women who slept less than 6.25 hours a night were almost three times as likely to have gestational diabetes as those who slept more. The study is in Sleep Medicine Reviews. The reasons for the link are not known, but the authors suggest that hormonal changes in pregnancy as well as systematic inflammation tied to lack of sleep can lead to insulin resistance and high blood glucose levels. But the study is observational and does not prove a causal relationship between poor sleep and gestational diabetes. “Minimizing sleep disruption is important — limiting caffeine, avoiding electronics at bedtime and so on,” said the lead author, Dr. Sirimon Reutrakul, an associate professor of medicine at the University of Illinois at Chicago. “It’s another factor that may influence overall health. But it’s easier said than done.” © 2017 The New York Times Company

Keyword: Sleep; Sexual Behavior
Link ID: 24215 - Posted: 10.19.2017

By Virginia Morell Dog owners often wonder what—if anything—is going on when their pooches are sleeping. It turns out they may be learning, according to a new study. Researchers in Hungary trained 15 pet dogs to sit and lie down using English phrases instead of the Hungarian they already knew. Afterward, the scientists attached small electrodes to the dogs’ heads to record their brain activity while they slept. Electroencephalograms (EEGs) showed that during 3-hour naps, the dogs’ brains experienced brief, repeated moments of “slow-wave” brain activity, lasting 0.5 to 5 seconds. These bursts—called sleep spindles because they look like a train of fast, rhythmic waves on EEG recordings—occur during non-REM sleep and are known to support memory, learning, general intelligence, and healthy aging in humans and rats. But this is the first time they’ve been studied in detail in dogs. Like those of humans and rats, the dogs’ sleep spindles occur in short cycles in the 9-hertz to 16-hertz range; in humans and rats, these cycles are associated with memory consolidation. The scientists also discovered that the number of spindle sessions per minute correlated with how well the dogs learned their new, foreign vocabulary, the researchers report this week in Scientific Reports. And—just like in humans—females had more spindle sessions per minute than males and performed better during testing. About 30% of the females learned the new words, compared to about 10% of the males. That suggests, the researchers say, that dogs can serve as models to better understand the function of our own sleep spindles. © 2017 American Association for the Advancement of Science

Keyword: Sleep; Learning & Memory
Link ID: 24191 - Posted: 10.14.2017

By DANIEL E. SLOTNIK Dr. Michel Jouvet, a neurophysiologist who discovered the region of the brain that controls rapid eye movement, and who helped define REM sleep as a unique state of consciousness common to humans and animals alike, was found dead on Oct. 3 in Villeurbanne, France. He was 91. Pierre-Hervé Luppi, a fellow researcher who worked with Dr. Jouvet for many years, said he had died overnight at a hospital. The curious physiological phenomenon known as REM sleep was first reported in the early 1950s by Eugene Aserinsky and Nathaniel Kleitman, researchers at the University of Chicago. They noticed that people who appeared to be sleeping soundly sometimes moved their fully lidded eyes, and that electroencephalogram recordings showed that brain activity during periods of eye movement was closer to that of someone awake than someone unconscious. They and another colleague, William C. Dement, eventually determined that sleepers had intermittent periods of REM during which they often dreamed. Dr. Jouvet was a researcher at the University of Lyon in France, studying how sleeping cats react to stimuli, before he turned his attention to REM in the late 1950s. In deep, or slow-wave, sleep, both cats and humans show slight muscle tension and low brain activity. But Dr. Jouvet found that during periods of REM sleep the muscles of cats were completely slack, even though their brain waves suggested physical activity. He called the REM state “paradoxical sleep,” since the brain is active even though the body is virtually still. © 2017 The New York Times Company

Keyword: Sleep
Link ID: 24177 - Posted: 10.12.2017

By Leslie Kaufman It is 7 p.m. on a spring Friday, and the Highland Hospital emergency room in Oakland, one of the busiest trauma centers in northern California, is expecting. When the patient—a young bicyclist hit by a car—arrives, blood is streaming down his temples. From a warren of care rooms, a team of nearly a dozen doctors and nurses materializes and buzzes around the patient. Amelia Breyre, a first-year resident who looks not much older than a college sophomore, immediately takes charge. As soon as the team finishes immobilizing the victim, Breyre must begin making split-second decisions: X-ray? Intubate? Transfusion? She quickly determines there is no internal bleeding or need for surgery and orders up neck X-rays after bandaging the patient’s head. Breyre will make a half-dozen similar critical choices tonight. Highland, a teaching hospital, is perhaps the most selective emergency-medical residency in the nation. To be here, she must be outstanding. To succeed, though, she must stay sharp. That quality of focus—amid the chaos and battered ­humanity that comes through Highland’s doors—is itself in need of urgent care. Andrew Herring, an emergency-room doctor who supervises Breyre and 40 other residents, is worried about the team. ER doctors are shift workers, and their hours are spread over a dizzying, ever-changing schedule of mornings, afternoons, and nights that total 20 ­different shifts a month. That’s meant to equally distribute the burden of nocturnal work across an entire team of physicians. But despite those good intentions, Herring says, the result is that every single one of them is exhausted and sleep ­deprived. That’s dangerous for doctor and patient alike.

Keyword: Biological Rhythms
Link ID: 24165 - Posted: 10.09.2017

By Jessica Hamzelou AT LAST, we’ve seen how the brain memories when we sleep. By scanning slumbering people, researchers have watched how the “trace” of a memory moves from one region of the brain to another. “The initial memory trace kind of disappears, and at the same time, another emerges,” says Shahab Vahdat at Stanford University in California. It is the first time memories have been observed being filed away in humans during sleep, he says. Vahdat and his colleagues did this by finding people who were able to fall asleep in the confined, noisy space of an fMRI scanner, which is no easy undertaking. “We screened more than 50 people in a mock scanner, and only 13 made it through to the study,” says Vahdat. The team then taught this group of volunteers to press a set of keys in a specific sequence – in the same way that a pianist might learn to play a tune. It took each person between about 10 and 20 minutes to master a sequence involving five presses. “They had to learn to play it as quickly and as accurately as possible,” says Vahdat. Once they had learned the sequence, each volunteer put on a cap of EEG electrodes to monitor the electrical activity of their brain, and entered an fMRI scanner – which detects which regions of the brain are active. The team saw a specific pattern of brain activity while the volunteers performed the key-pressing task. Once they had stopped, this pattern kept replaying, as if each person was subconsciously revising what they had learned. © Copyright New Scientist Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 24151 - Posted: 10.05.2017

Allison Aubrey "With exquisite precision, our inner clock adapts our physiology to the dramatically different phases of the day," the Nobel Prize committee wrote of the work of Jeffrey C. Hall, Michael Rosbash and Michael W. Young. "The clock regulates critical functions such as behavior, hormone levels, sleep, body temperature and metabolism." We humans are time-keeping machines. And it seems we need regular sleeping and eating schedules to keep all of our clocks in sync. Studies show that if we mess with the body's natural sleep-wake cycle — say, by working an overnight shift, taking a trans-Atlantic flight or staying up all night with a new baby or puppy — we pay the price. Our blood pressure goes up, hunger hormones get thrown off and blood sugar control goes south. We can all recover from an occasional all-nighter, an episode of jet lag or short-term disruptions. But over time, if living against the clock becomes a way of life, this may set the stage for weight gain and metabolic diseases such as Type 2 diabetes. "What happens is that you get a total de-synchronization of the clocks within us," explains Fred Turek, a circadian scientist at Northwestern University. "Which may be underlying the chronic diseases we face in our society today." So consider what happens, for instance, if we eat late or in the middle of the night. The master clock — which is set by the light-dark cycle — is cuing all other clocks in the body that it's night. Time to rest. "The clock in the brain is sending signals saying: Do not eat, do not eat!" says Turek. But when we override this signal and eat anyway, the clock in the pancreas, for instance, has to start releasing insulin to deal with the meal. And, research suggests, this late-night munching may start to reset the clock in the organ. The result? Competing time cues. © 2017 npr

Keyword: Biological Rhythms
Link ID: 24143 - Posted: 10.04.2017

Tina Hesman Saey Discoveries about the molecular ups and downs of fruit flies’ daily lives have won Jeffrey C. Hall, Michael Rosbash and Michael W. Young the Nobel Prize in physiology or medicine. These three Americans were honored October 2 by the Nobel Assembly at the Karolinska Institute in Stockholm for their work in discovering important gears in the circadian clocks of animals. The trio will equally split the 9 million Swedish kronor prize — each taking home the equivalent of $367,000. The researchers did their work in fruit flies. But “an awful lot of what was subsequently found out in the fruit flies turns out also to be true and of huge relevance to humans,” says John O’Neill, a circadian cell biologist at the MRC Laboratory of Molecular Biology in Cambridge, England. Mammals, humans included, have circadian clocks that work with the same logic and many of the same gears found in fruit flies, say Jennifer Loros and Jay Dunlap, geneticists at the Geisel School of Medicine at Dartmouth College. Circadian clocks are networks of genes and proteins that govern daily rhythms and cycles such as sleep, the release of hormones, the rise and fall of body temperature and blood pressure, as well as other body processes. Circadian rhythms help organisms, including humans, anticipate and adapt to cyclic changes of light, dark and temperature caused by Earth’s rotation. When circadian rhythms are thrown out of whack, jet lag results. Shift workers and people with chronic sleep deprivation experience long-term jet lag that has been linked to serious health consequences including cancer, diabetes, heart disease, obesity and depression. © Society for Science & the Public 2000 - 2017.

Keyword: Biological Rhythms
Link ID: 24138 - Posted: 10.03.2017

Bill Chappell Jeffrey C. Hall, Michael Rosbash a and Michael W. Young are the joint winners of the 2017 Nobel Prize in Physiology or Medicine, winning for their discoveries about how internal clocks and biological rhythms govern human life. The three Americans won "for their discoveries of molecular mechanisms controlling the circadian rhythm" the Nobel Foundation says. From the Nobel Assembly at Karolinska Institutet, which announced the prize early Monday morning: "Using fruit flies as a model organism, this year's Nobel laureates isolated a gene that controls the normal daily biological rhythm. They showed that this gene encodes a protein that accumulates in the cell during the night, and is then degraded during the day. Subsequently, they identified additional protein components of this machinery, exposing the mechanism governing the self-sustaining clockwork inside the cell. We now recognize that biological clocks function by the same principles in cells of other multicellular organisms, including humans. "With exquisite precision, our inner clock adapts our physiology to the dramatically different phases of the day. The clock regulates critical functions such as behavior, hormone levels, sleep, body temperature and metabolism." Hall, 72, was born in New York and has worked at institutions from the University of Washington to the California Institute of Technology. For decades, he was on the faculty at Brandeis University in Waltham, west of Boston; more recently, he has been associated with the University of Maine. Rosbash, 73, was born in Kansas City, Mo., and studied at the Massachusetts Institute of Technology and at the University of Edinburgh in Scotland. Since 1974, he has been on faculty at Brandeis University in Waltham, Mass. Young, 68, was born in Miami, Fla., and earned his doctoral degree at the University of Texas in Austin. He then worked as a postdoctoral fellow at Stanford University in Palo Alto before joining the faculty at the Rockefeller University in 1978. © 2017 npr

Keyword: Biological Rhythms
Link ID: 24136 - Posted: 10.02.2017

Rachel Cooke Matthew Walker has learned to dread the question “What do you do?” At parties, it signals the end of his evening; thereafter, his new acquaintance will inevitably cling to him like ivy. On an aeroplane, it usually means that while everyone else watches movies or reads a thriller, he will find himself running an hours-long salon for the benefit of passengers and crew alike. “I’ve begun to lie,” he says. “Seriously. I just tell people I’m a dolphin trainer. It’s better for everyone.” Walker is a sleep scientist. To be specific, he is the director of the Center for Human Sleep Science at the University of California, Berkeley, a research institute whose goal – possibly unachievable – is to understand everything about sleep’s impact on us, from birth to death, in sickness and health. No wonder, then, that people long for his counsel. As the line between work and leisure grows ever more blurred, rare is the person who doesn’t worry about their sleep. But even as we contemplate the shadows beneath our eyes, most of us don’t know the half of it – and perhaps this is the real reason he has stopped telling strangers how he makes his living. When Walker talks about sleep he can’t, in all conscience, limit himself to whispering comforting nothings about camomile tea and warm baths. It’s his conviction that we are in the midst of a “catastrophic sleep-loss epidemic”, the consequences of which are far graver than any of us could imagine. This situation, he believes, is only likely to change if government gets involved. Walker has spent the last four and a half years writing Why We Sleep, a complex but urgent book that examines the effects of this epidemic close up, the idea being that once people know of the powerful links between sleep loss and, among other things, Alzheimer’s disease, cancer, diabetes, obesity and poor mental health, they will try harder to get the recommended eight hours a night (sleep deprivation, amazing as this may sound to Donald Trump types, constitutes anything less than seven hours). © 2017 Guardian News and Media Limited

Keyword: Sleep
Link ID: 24105 - Posted: 09.25.2017

By STEPH YIN Worms and fish do it. Birds and bees do it. But do jellyfish fall asleep? It seems like a simple question, but answering it required a multistep investigation by a trio of Caltech graduate students. Their answer, published Thursday in Current Biology, is that at least one group of jellyfish called Cassiopea, or the upside-down jellyfish, does snooze. The finding is the first documented example of sleep in an animal with a diffuse nerve net, a system of neurons that are spread throughout an organism and not organized around a brain. It challenges the common notion that sleep requires a brain. It also suggests sleep could be an ancient behavior because the group that includes jellyfish branched off from the last common ancestor of most living animals early on in evolution. Working together was natural for Claire Bedbrook, Michael Abrams and Ravi Nath. The three leading co-authors of the paper are all Ph.D. candidates in biology at the California Institute of Technology and close friends. The project started with an observation by Mr. Abrams that some upside-down jellyfish in his lab would immediately slow their pulsing when the lights were turned off. Over coffee one evening, he discussed this phenomenon with Mr. Nath, who had been studying sleep in roundworms and pondering whether other “simple” animals slept. The two decided to visit Mr. Abrams’s lab in the middle of the night, to see how the jellyfish were behaving. The Cassiopea, or upside-down, jellyfish, demonstrated patterns of behavior consistent with sleep, according to an experiment conducted by Caltech graduate students. Credit Jan Easter Photography In the darkened lab, they observed a tankful of jellyfish pulsing infrequently and staying still for long periods of time — jellyfish that looked, in other words, like they were sleeping. Ms. Bedbrook started to believe they were onto something. © 2017 The New York Times Company

Keyword: Sleep; Evolution
Link ID: 24097 - Posted: 09.22.2017

Carrie Arnold The purpose and evolutionary origins of sleep are among the biggest mysteries in neuroscience. Every complex animal, from the humblest fruit fly to the largest blue whale, sleeps — yet scientists can’t explain why any organism would leave itself vulnerable to predators, and unable to eat or mate, for a large portion of the day. Now, researchers have demonstrated for the first time that even an organism without a brain — a kind of jellyfish — shows sleep-like behaviour, suggesting that the origins of sleep are more primitive than thought. Researchers observed that the rate at which Cassiopea jellyfish pulsed their bell decreased by one-third at night, and the animals were much slower to respond to external stimuli such as food or movement during that time. When deprived of their night-time rest, the jellies were less active the next day. “Everyone we talk to has an opinion about whether or not jellyfish sleep. It really forces them to grapple with the question of what sleep is,” says Ravi Nath, the paper’s first author and a molecular geneticist at the California Institute of Technology (Caltech) in Pasadena. The study was published on 21 September in Current Biology1. “This work provides compelling evidence for how early in evolution a sleep-like state evolved,” says Dion Dickman, a neuroscientist at the University of Southern California in Los Angeles. Nath is studying sleep in the worm Caenorhabditis elegans, but whenever he presented his work at research conferences, other scientists scoffed at the idea that such a simple animal could sleep. The question got Nath thinking: how minimal can an animal’s nervous system get before the creature lacks the ability to sleep? Nath’s obsession soon infected his friends and fellow Caltech PhD students Michael Abrams and Claire Bedbrook. Abrams works on jellyfish, and he suggested that one of these creatures would be a suitable model organism, because jellies have neurons but no central nervous system. Instead, their neurons connect in a decentralized neural net. © 2017 Macmillan Publishers Limited

Keyword: Sleep; Evolution
Link ID: 24096 - Posted: 09.22.2017

By Ariana Eunjung Cha Over the past two decades, U.S. parents and teachers have reported epidemic levels of children with trouble focusing, impulsive behavior and so much energy that they are bouncing off walls. Educators, policymakers and scientists have referred to attention-deficit/hyperactivity disorder, or ADHD, as a national crisis and have spent billions of dollars looking into its cause. They've looked at genetics, brain development, exposure to lead, the push for early academics, and many other factors. But what if the answer to at least some cases of ADHD is more obvious? What if, as a growing number of researchers are proposing, many kids today simply aren't getting the sleep they need, leading to challenging behaviors that mimic ADHD? That provocative and controversial theory has been gaining momentum in recent years, with several studies suggesting strong links between ADHD and the length, timing and quality of sleep. In an era in which even toddlers know the words Netflix and Hulu, when demands for perfectionism extend to squirmy preschoolers and many elementary-age students juggle multiple extracurricular activities each day, one question is whether some kids are so stimulated or stressed that they are unable to sleep as much or as well as they should. Growing evidence suggests that a segment of children with ADHD are misdiagnosed and actually suffer from insufficient sleep, insomnia, obstructed breathing or another known sleep disorder. But the most paradigm-challenging idea may be that ADHD may itself be a sleep disorder. If correct, this idea could fundamentally change the way ADHD is studied and treated. © 1996-2017 The Washington Post

Keyword: ADHD; Sleep
Link ID: 24092 - Posted: 09.21.2017

Aaron E. Carroll Many high-school-aged children across the United States now find themselves waking up much earlier than they’d prefer as they return to school. They set their alarms, and their parents force them out of bed in the morning, convinced that this is a necessary part of youth and good preparation for the rest of their lives. It’s not. It’s arbitrary, forced on them against their nature, and a poor economic decision as well. The National Heart, Lung and Blood Institute recommends that teenagers get between nine and 10 hours of sleep. Most in the United States don’t. It’s not their fault. My oldest child, Jacob, is in 10th grade. He plays on the junior varsity tennis team, but his life isn’t consumed by too many extracurricular activities. He’s a hard worker, and he spends a fair amount of time each evening doing homework. I think most nights he’s probably asleep by 10 or 10:30. His school bus picks him up at 6:40 a.m. To catch it, he needs to wake up not long after 6. Nine hours of sleep is a pipe dream, let alone 10. There’s an argument to be made that we should cut back on his activities or make him go to bed earlier so that he gets more sleep. Teens aren’t wired for that, though. They want to go to bed later and sleep later. It’s not the activities that prevent them from getting enough sleep — it’s the school start times that require them to wake up so early. More than 90 percent of high schools and more than 80 percent of middle schools start before 8:30 a.m. Some argue that delaying school start times would just cause teenagers to stay up later. Research doesn’t support that idea. A systematic review published a year ago examined how school start delays affect students’ sleep and other outcomes. Six studies, two of which were randomized controlled trials, showed that delaying the start of school from 25 to 60 minutes corresponded with increased sleep time of 25 to 77 minutes per week night. In other words, when students were allowed to sleep later in the morning, they still went to bed at the same time, and got more sleep. © 2017 The New York Times Company

Keyword: Biological Rhythms; Development of the Brain
Link ID: 24060 - Posted: 09.13.2017

By Clare Wilson Have we had our first peek at the source of nightmares? When rats are given a fright while they are awake, the fear centre of their brains gets reactivated when they next go to sleep. This could explain why people who go through frightening experiences often have nightmares afterwards, says György Buzsáki of New York University. Rats store mental maps of the world they experience in their hippocampi – two curved structures in the brain. Different places are processed by distinct groups of neurons in the hippocampi that fire together in sequence as rats run around a maze, for example. Later, after exploring an environment like this, these firing sequences have been seen replaying as the animals sleep, as if dreaming of the routes they’d taken. This process is thought to allow memories to become consolidated for longer term storage, and has recently been detected in people for the first time. Buzsáki’s team wondered if such memory replay might include not just spatial information but also how the animal was feeling at the time. They tested this by giving a rat an unpleasant but harmless experience – a puff of air in the face from a computer keyboard cleaner – at a particular spot along a route. As expected, the rats learned to fear that particular place. “They slow down before the location of the air puff, then run superfast away from it,” says Buzsáki’s colleague, Gabrielle Girardeau. “If you do it in the face of a human, they don’t like it either.” © Copyright New Scientist Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 24058 - Posted: 09.12.2017

By Andy Coghlan A type of therapy originally designed for insomnia has been found to also help a range of mental health issues, including negative thoughts, anxiety, depression and psychosis. Daniel Freeman, at the University of Oxford, and his colleagues have been testing Sleepio, a type of cognitive behavioural therapy available online. The ten-week course is intended to restore healthy sleep patterns in people with insomnia, and Freeman wanted to see if it could also relieve other problems. Learn more about the science of sleep: In our expert talk at New Scientist Live in London His team asked nearly 1900 students who have difficulty sleeping to try using Sleepio, and nearly 1870 others to try following standard advice for insomnia. Both groups filled in questionnaires beforehand that assessed their sleep patterns, as well as tendencies to experience paranoia and hallucinations. They repeated these questionnaires at three, ten and 22 weeks into the experiment. Overall, those using Sleepio slept 50 per cent better than the control group, says Freeman. Compared to this group, the Sleepio users also had a 30 per cent reduction in hallucinations, 25 per cent reduction in paranoia, and their anxiety and depression levels were 20 per cent lower. © Copyright New Scientist Ltd.

Keyword: Sleep; Depression
Link ID: 24044 - Posted: 09.07.2017

By TARA PARKER-POPE It started as a simple conversation about a child’s birthday party. But it quickly escalated into a full-blown marital rift. She accused him of neglecting the family. He said she was yelling. “Whatever,” she said. “Go. Go.” “Go where?” he replied. “I don’t know,” she told him. “I don’t want to talk to you anymore.” The bickering parents were among 43 couples taking part in an Ohio State University study exploring how marital interactions influence a person’s health. Every couple in the study — just like couples in the real world — had experienced some form of routine marital conflict. Hot-button topics included managing money, spending time together as a family or an in-law intruding on the relationship. But while marital spats were universal among the couples, how they handled them was not. Some couples argued constructively and even with kindness, while others — like the couple fighting about the birthday party — were hostile and negative. What made the difference? The hostile couples were most likely to be those who weren’t getting much sleep. “When people have slept less, it’s a little like looking at the world through dark glasses,” said Janice Kiecolt-Glaser, a longtime relationship scientist and director of the Ohio State Institute for Behavioral Medicine Research. “Their moods are poorer. We’re grumpier. Lack of sleep hurts the relationship.” The men and women in the study had been married from three to 27 years. They reported varying amounts of sleep — anywhere from three and a half to nine hours a night. Each couple made two visits to the lab, where the partners were prodded to talk about the issues that caused the most conflict in their relationship. Then the researchers analyzed videos of their exchanges using well-established scoring techniques to assess positive and negative interactions and hostile and constructive responses. After all the data were parsed, a clear pattern emerged. © 2017 The New York Times Company

Keyword: Sleep; Emotions
Link ID: 24034 - Posted: 09.05.2017

By Katie Moritz If you’re like a lot of people all over the world, you have a hard time sleeping. Maybe you’ve tried apps that promote sleep, or going without electronics for the hours leading up to bedtime, or supplements like melatonin or magnesium. But have you tried thinking differently about your waking life? Research suggests that having a purpose in life leads to a better night’s sleep. Picture in your mind your biggest interests and your loftiest goals. Pursuing those could help you get better shut-eye. A research team at the Northwestern University Feinberg School of Medicine looked at the sleep habits of more than 800 older adults—though they said the results are likely applicable to everyone—and found that the ones who reported having a purpose in life have fewer sleep disturbances like sleep apnea and restless leg syndrome and sleep better over a long period. Purpose pbs rewire“Helping people cultivate a purpose in life could be an effective drug-free strategy to improve sleep quality, particularly for a population that is facing more insomnia,” said Jason Ong, one of the study’s authors and an associate professor of neurology at the Feinberg School of Medicine, to the university. “Purpose in life is something that can be cultivated and enhanced through mindfulness therapies.” In the Northwestern study, the people who felt their lives had meaning were 63 percent less likely to have sleep apnea, 52 percent less likely to have restless leg syndrome and had better sleep quality. Poor sleep quality is defined by having trouble falling and staying asleep and feeling tired during the day.

Keyword: Sleep; Depression
Link ID: 23967 - Posted: 08.17.2017

By NICHOLAS BAKALAR Children who sleep less may be at increased risk for Type 2 diabetes, researchers report. Earlier studies found a link between shorter sleep and diabetes in adults, but the connection has been little studied in children. British researchers studied 4,525 9- and 10-year olds from varying ethnic backgrounds. On average, their parents reported they slept 10 hours a night, with 95 percent sleeping between eight and 12 hours. The study, in Pediatrics, found that the less sleep, the more likely the children were to have higher body mass indexes, higher insulin resistance and higher glucose readings. All three are risk factors for Type 2 diabetes. Over all, increasing weekday sleep duration by an hour was associated with a 0.2 lower B.M.I. and a 3 percent reduction in insulin resistance. The reasons for the link remain unclear, but the researchers suggest that poor sleep may affect appetite regulation, leading to overeating and obesity. This observational study could not establish cause and effect. Still, the senior author, Christopher G. Owen, a professor of epidemiology at St. George’s University of London, said that for children, the more sleep the better — there is no threshold. “Increasing sleep is a very simple, low-cost intervention,” he said. “We should be doing our utmost to make sure that children sleep for an adequate amount of time.” © 2017 The New York Times Company

Keyword: Sleep; Obesity
Link ID: 23957 - Posted: 08.15.2017