Chapter 13. Memory and Learning

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 7030

Jon Hamilton Medical research was an early casualty of the COVID-19 pandemic. After cases began emerging worldwide, thousands of clinical trials unrelated to COVID-19 were paused or canceled amid fears that participants would be infected. But now some researchers are finding ways to carry on in spite of the coronavirus. "It's been a struggle of course," says Joshua Grill, who directs the Institute for Memory Impairments and Neurological Disorders at the University of California, Irvine. "But I think there's an imperative for us to find ways to move forward." Grill got a close-up view of the challenge in July when COVID-19 cases were spiking nationwide as he was trying to launch a study. UC Irvine and dozens of other research centers had just begun enrolling participants in the AHEAD study, a global effort that will test whether an investigational drug can slow down the earliest brain changes associated with Alzheimer's disease. Finding individuals willing and able to sign up for this sort of research is difficult even without a pandemic, says Grill, who also co-directs recruitment for the Alzheimer's Clinicals Trial Consortium, funded by the National Institute on Aging. "We're asking people do a lot, including enroll in long studies that require numerous visits," he says, "and in the AHEAD study, taking an investigational drug or placebo that's injected into a vein." Participants will receive either a placebo or a drug called BAN2401, made by Eisai, which is meant to reduce levels of amyloid, a toxic protein associated with Alzheimer's. People in the study will also have positron emission tomography, or PET, scans of their brains to measure changes in amyloid and another toxic protein called tau. © 2020 npr

Keyword: Alzheimers
Link ID: 27545 - Posted: 10.24.2020

By Jeremy Hsu Artificial intelligence could soon help screen for Alzheimer’s disease by analyzing writing. A team from IBM and Pfizer says it has trained AI models to spot early signs of the notoriously stealthy illness by looking at linguistic patterns in word usage. Other researchers have already trained various models to look for signs of cognitive impairments, including Alzheimer’s, by using different types of data, such as brain scans and clinical test results. But the latest work stands out because it used historical information from the multigenerational Framingham Heart Study, which has been tracking the health of more than 14,000 people from three generations since 1948. If the new models’ ability to pick up trends in such data holds up in forward-looking studies of bigger and more diverse populations, researchers say they could predict the development of Alzheimer’s a number of years before symptoms become severe enough for typical diagnostic methods to pick up. And such a screening tool would not require invasive tests or scans. The results of the Pfizer-funded and IBM-run study were published on Thursday in EClinicalMedicine. The new AI models provide “an augmentation to expert practitioners in how you would see some subtle changes earlier in time, before the clinical diagnosis has been achieved,” says Ajay Royyuru, vice president of health care and life sciences research at IBM. “It might actually alert you to some changes that [indicate] you ought to then go do a more complete exam.” To train these models, the researchers used digital transcriptions of handwritten responses from Framingham Heart Study participants who were asked to describe a picture of a woman who is apparently preoccupied with washing dishes while two kids raid a cookie jar behind her back. These descriptions did not preserve the handwriting from the original responses, says Rhoda Au, director of neuropsychology at the Framingham study and a professor at Boston University. © 2020 Scientific American,

Keyword: Alzheimers; Language
Link ID: 27544 - Posted: 10.24.2020

By Bruce Bower A type of bone tool generally thought to have been invented by Stone Age humans got its start among hominids that lived hundreds of thousands of years before Homo sapiens evolved, a new study concludes. A set of 52 previously excavated but little-studied animal bones from East Africa’s Olduvai Gorge includes the world’s oldest known barbed bone point, an implement probably crafted by now-extinct Homo erectus at least 800,000 years ago, researchers say. Made from a piece of a large animal’s rib, the artifact features three curved barbs and a carved tip, the team reports in the November Journal of Human Evolution. Among the Olduvai bones, biological anthropologist Michael Pante of Colorado State University in Fort Collins and colleagues identified five other tools from more than 800,000 years ago as probable choppers, hammering tools or hammering platforms. The previous oldest barbed bone points were from a central African site and dated to around 90,000 years ago (SN: 4/29/95), and were assumed to reflect a toolmaking ingenuity exclusive to Homo sapiens. Those implements include carved rings around the base of the tools where wooden shafts were presumably attached. Barbed bone points found at H. sapiens sites were likely used to catch fish and perhaps to hunt large land prey. The Olduvai Gorge barbed bone point, which had not been completed, shows no signs of having been attached to a handle or shaft. Ways in which H. erectus used the implement are unclear, Pante and his colleagues say. © Society for Science & the Public 2000–2020.

Keyword: Evolution; Learning & Memory
Link ID: 27543 - Posted: 10.24.2020

By Meagan Cantwell Although bird brains are tiny, they’re packed with neurons, especially in areas responsible for higher level thinking. Two studies published last month in Science explore the structure and function of avian brains—revealing they are organized similarly to mammals’ and are capable of conscious thought. © 2020 American Association for the Advancement of Science.

Keyword: Evolution; Learning & Memory
Link ID: 27541 - Posted: 10.24.2020

Catherine Offord Overactivation of the brain’s immune cells, called microglia, may play a role in cognitive impairments associated with Down syndrome, according to research published today (October 6) in Neuron. Researchers in Italy identified elevated numbers of the cells in an inflammation-promoting state in the brains of mice with a murine version of the syndrome as well as in postmortem brain tissue from people with the condition. The team additionally showed that drugs that reduce the number of activated microglia in juvenile mice could boost the animals’ performance on cognitive tests. “This is a fabulous study that gives a lot of proof of principle to pursuing some clinical trials in people,” says Elizabeth Head, a neuroscientist at the University of California, Irvine, who was not involved in the work. “The focus on microglial activation, I thought, was very novel and exciting,” she adds, noting that more research will be needed to see how the effects of drugs used in the study might translate from mice to humans. Down syndrome is caused by an extra copy of part or all of human chromosome 21, and is the most commonly occurring chromosomal condition in the US. Children with Down syndrome often experience cognitive delays compared to typically developing children, although there’s substantial variation and the effects are usually mild or moderate. People with the syndrome also have a higher risk of certain medical conditions, including Alzheimer’s disease. © 1986–2020 The Scientist.

Keyword: Development of the Brain; Glia
Link ID: 27537 - Posted: 10.21.2020

By Nicholas Bakalar A mother’s psychological distress during pregnancy may increase the risk for asthma in her child, a new study suggests. Researchers had the parents of 4,231 children fill out well-validated questionnaires on psychological stress in the second trimester of pregnancy, and again three years later. The mothers also completed questionnaires at two and six months after giving birth. The study, in the journal Thorax, found that 362 of the mothers and 167 of the fathers had clinically significant psychological distress during the mothers’ pregnancies. When the children were 10 years old, parents reported whether their child had ever been diagnosed with asthma. As an extra measure, the researchers tested the children using forced expiratory volume, or FEV, a standard clinical test of lung function. After controlling for age, smoking during pregnancy, body mass index, a history of asthma and other factors, they found that maternal depression and anxiety during pregnancy was significantly associated with both diagnoses of asthma and poorer lung function in their children. There was no association between childhood asthma and parents’ psychological distress in the years after pregnancy, and no association with paternal psychological stress at any time. “Of course, this could be only one of many causes of asthma,” said the lead author, Dr. Evelien R. van Meel of Erasmus University in Rotterdam, “but we corrected for many confounders, and we saw the effect only in mothers. This seems to suggest that there’s something going on in the uterus. But this is an observational study, and we can’t say that it’s a causal effect.” © 2020 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 27534 - Posted: 10.21.2020

By Laurie Archbald-Pannone The number of cases of dementia in the United States is rising as baby boomers age, raising questions for boomers themselves and also for their families, caregivers and society. Dementia, which is not technically a disease but a term for impaired ability to think, remember or make decisions, is one of the most feared impairments of old age. Incidence increases dramatically as people move into their 90s. About 5 percent of those 71 to 79 have dementia, and about 37 percent of those about 90 live with it. Older people may worry about their own loss of function as well as the cost and toll of caregiving for someone with dementia. A 2018 study estimated that the lifetime cost of care for a person with Alzheimer’s, the most common form of dementia, to be $329,360. That figure, too, will no doubt rise, putting even more burdens on family, Medicare and Medicaid. There’s also been a good deal of talk and reporting about dementia in recent months because of the presidential election. Some voters have asked whether one or both candidates might have dementia. But is this even a fair question to ask? When these types of questions are posed — adding further stigma to people with dementia — it can unfairly further isolate them and those caring for them. We need to understand dementia and the impact it has on more than 5 million people in the United States who now live with dementia and their caregivers. That number is expected to triple by 2060. First, it is important to know that dementia cannot be diagnosed from afar or by someone who is not a doctor. A person needs a detailed doctor’s exam for a diagnosis. Sometimes, brain imaging is required. And, forgetting an occasional word — or even where you put your keys — does not mean a person has dementia. There are different types of memory loss and they can have different causes, such as other medical conditions, falls or even medication, including herbals, supplements and anything over-the-counter. © 1996-2020 The Washington Post

Keyword: Alzheimers
Link ID: 27532 - Posted: 10.19.2020

By Benedict Carey Scott Lilienfeld, an expert in personality disorders who repeatedly disturbed the order in his own field, questioning the science behind many of psychology’s conceits, popular therapies and prized tools, died on Sept. 30 at his home in Atlanta. He was 59. The cause was pancreatic cancer, his wife, Candice Basterfield, said. Dr. Lilienfeld’s career, most of it spent at Emory University in Atlanta, proceeded on two tracks: one that sought to deepen the understanding of so-called psychopathic behavior, the other to expose the many faces of pseudoscience in psychology. Psychopathy is characterized by superficial charm, grandiosity, pathological lying and a lack of empathy. Descriptions of the syndrome were rooted in research in the criminal justice system, where psychopaths often end up. In the early 1990s, Dr. Lilienfeld worked to deepen and clarify the definition. In a series of papers, he anchored a team of psychologists who identified three underlying personality features that psychopaths share, whether they commit illegal acts or not: fearless dominance, meanness and impulsivity. The psychopath does what he or she wants, without anxiety, regret or regard for the suffering of others. “When you have these three systems interacting, it’s a bad brew, and it creates the substrate for what can become psychopathy,” said Mark F. Lenzenweger, a professor of psychology at the State University of New York at Binghamton. “This was Scott’s great contribution: He helped change the thinking about psychopathy, in a profound way, by focusing on aspects of personality, rather than on a list of bad behaviors.” Dr. Lilienfeld’s parallel career encompassed clinical psychology and aimed to shake it free of empty theorizing, softheadedness and bad practice. In the late 1990s and early 2000s, he led a loose group of researchers who began to question the validity of some of the field’s favored constructs, like repressed memories of abuse and multiple personality disorder. The Rorschach inkblot test took a direct hit as largely unreliable. The group also attacked treatments including psychological debriefing and eye movement desensitization and reprocessing, or E.M.D.R., both of which are used for trauma victims. © 2020 The New York Times Company

Keyword: Aggression; Learning & Memory
Link ID: 27529 - Posted: 10.19.2020

By Lydia Denworth, Spectrum, Brendan Borrell, Allyson Berent is a specialty veterinarian in New York City. She treats animals that other doctors cannot help. When no good therapies are available, she invents one. Cats and dogs consumed almost all of her time—until 6 years ago, when her second daughter was born. As a baby, Quincy appeared healthy and happy, smiling at an early age and giggling frequently. But during her first few months of life, she missed many developmental milestones: At 10 weeks, she was not making eye contact. When her parents waved toys in front of her, she stared blankly. She had trouble feeding. And when she was lying on her stomach, she could not lift her head. Doctors kept telling Berent and her husband to give it time, but the couple insisted on genetic testing: At 7 months old, their daughter was diagnosed with Angelman syndrome, a neurodevelopmental condition that affects as many as one in 12,000 people. Most people with Angelman syndrome have severe intellectual disability. They never talk or live an independent life. They experience seizures, gut issues, and sleeping and feeding difficulties. Due to balance and motor problems, they are usually unable or barely able to walk. Many also meet the diagnostic criteria for autism. Within days of learning her daughter’s diagnosis, Berent set herself a new goal: curing Quincy. With her medical background, she had no trouble parsing the scientific research on Angelman syndrome. She learned that it stems from a missing or mutated copy of a gene called UBE3A, which generates a protein essential for healthy brain activity. People inherit two copies of UBE3A, one from each parent, but the paternal copy is typically silent. In about 70% of people with Angelman, the maternal copy is absent, and they produce none of the protein. Many others with the syndrome have a small mutation in the mother’s copy, rendering it ineffective. © 2020 American Association for the Advancement of Science.

Keyword: Autism; Development of the Brain
Link ID: 27528 - Posted: 10.16.2020

by Angie Voyles Askham Autism is a neurodevelopmental condition. Although it is diagnosed based on the presence of two core behaviors — restricted interests and repetitive behaviors, as well as difficulties with social interactions and communication — those traits are thought to arise because of alterations in how different parts of the brain form and connect to one another. No research has uncovered a ‘characteristic’ brain structure for autism, meaning that no single pattern of changes appears in every autistic person. Studies of brain structure often turn up dissimilar results — there is great variety across individuals in general. But some trends have begun to emerge for subsets of autistic people. These differences might one day provide some insight into how some autistic people’s brains function. They may also point to bespoke treatments for particular subtypes of autism. Here is what we know about how brain structure differs between people with and without autism. Which brain regions are known to be structurally different between autistic and non-autistic people? Children and adolescents with autism often have an enlarged hippocampus, the area of the brain responsible for forming and storing memories, several studies suggest, but it is unclear if that difference persists into adolescence and adulthood1,2. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27526 - Posted: 10.16.2020

Frank R. Lin, M.D., Ph.D. When I was going through my otolaryngology residency at Johns Hopkins in the early 2000s, I was struck by the disparity between how hearing loss was managed in children and in older adults. In the case of the child, it was a medical priority to ensure access to a hearing aid so he or she could communicate optimally at home and in school, and such devices were covered by insurance. This approach was justified based on extensive research demonstrating that hearing loss could have a substantial impact on a child’s cognitive and brain development, with lifetime consequences for educational and vocational achievement. For the older adult, the approach was radically different, even if the degree of hearing impairment was the same as in the child. The adult would be reassured that the deficit was to be expected, based on his or her age, and told that a hearing aid, if desired, would represent an out-of-pocket expense averaging about $4,000. Medicare provided no coverage for hearing aids. There was no robust research demonstrating meaningful consequences of hearing loss for older adults, as there was for children, and the clinical approach was typically guided by the notion that it was a very common, and hence inconsequential, aspect of aging. But this approach didn’t make sense, given what I had observed clinically. Older adults with hearing loss recounted to me their sense of isolation and loneliness, and the mental fatigue of constantly concentrating in trying to follow conversations. Family members would often describe a decline in patients’ general well-being and mental acuity as they struggled to hear. For those who obtained effective treatment for their hearing loss with hearing aids or a cochlear implant, the effects were often equally dramatic. Patients spoke of reengaging with family, no longer getting fatigued from straining to listen, and becoming their “old selves” again. If hearing was fundamentally important for children and represented a critical sensory input that could affect brain function, wouldn’t loss of hearing have corresponding implications for the aging brain and its function? © 2020 The Dana Foundation.

Keyword: Hearing; Alzheimers
Link ID: 27525 - Posted: 10.16.2020

Keith A. Trujillo1, Alfredo Quiñones-Hinojosa2, Kenira J. Thompson3 Joe Louis Martinez Jr. died on 29 August at the age of 76. In addition to making extraordinary contributions to the fields of neurobiology and Chicano psychology, Joe was a tireless advocate of diversity, equity, and inclusion in the sciences. He established professional development programs for individuals from underrepresented groups and provided lifelong mentoring as they pursued careers in science and academia. Joe was passionately devoted to expanding opportunities in the sciences well before diversity became a visible goal for scientific organizations and academic institutions. Born in Albuquerque, New Mexico, on 1 August 1944, Joe received his bachelor's degree in psychology from the University of San Diego in 1966; his master's in experimental psychology from New Mexico Highlands University in 1968; and his Ph.D. in physiological psychology from the University of Delaware in 1971. His faculty career began in 1972 at California State University, San Bernardino (CSUSB), shortly after the campus was established. He later completed postdocs in the laboratory of neurobiologist James McGaugh at the University of California, Irvine, and with neurobiologist Floyd Bloom at the Salk Institute for Biological Studies in San Diego, California. The University of California, Berkeley, recruited Joe in 1982, and he served as a professor as well as the area head of biopsychology and faculty assistant to the vice chancellor for affirmative action. As the highest-ranking Hispanic faculty member in the University of California system, Joe used his voice to help others from underrepresented groups. However, he felt that he could have a greater impact on diversity in the sciences by helping to build a university with a high concentration of Hispanic students, so in 1995 he moved to the University of Texas, San Antonio (UTSA). He began as a professor of biology and went on to assume a range of leadership roles, including director of the Cajal Neuroscience Institute. At UTSA, he worked with colleagues to obtain nearly $18 million in funding for neuroscience research and education. In 2012, he moved to the University of Illinois at Chicago where he served as professor and psychology department head until his retirement in 2016. At each institution, he embraced the opportunity to provide guidance and mentoring to innumerable students, faculty, and staff. © 2020 American Association for the Advancement of Science.

Keyword: Learning & Memory
Link ID: 27523 - Posted: 10.16.2020

By Pam Belluck After contracting the coronavirus in March, Michael Reagan lost all memory of his 12-day vacation in Paris, even though the trip was just a few weeks earlier. Several weeks after Erica Taylor recovered from her Covid-19 symptoms of nausea and cough, she became confused and forgetful, failing to even recognize her own car, the only Toyota Prius in her apartment complex’s parking lot. Lisa Mizelle, a veteran nurse practitioner at an urgent care clinic who fell ill with the virus in July, finds herself forgetting routine treatments and lab tests, and has to ask colleagues about terminology she used to know automatically. “I leave the room and I can’t remember what the patient just said,” she said, adding that if she hadn’t exhausted her medical leave she’d take more time off. “It scares me to think I’m working,” Ms. Mizelle, 53, said. “I feel like I have dementia.” It’s becoming known as Covid brain fog: troubling cognitive symptoms that can include memory loss, confusion, difficulty focusing, dizziness and grasping for everyday words. Increasingly, Covid survivors say brain fog is impairing their ability to work and function normally. “There are thousands of people who have that,” said Dr. Igor Koralnik, chief of neuro-infectious disease at Northwestern Medicine in Chicago, who has already seen hundreds of survivors at a post-Covid clinic he leads. “The impact on the work force that’s affected is going to be significant. Scientists aren’t sure what causes brain fog, which varies widely and affects even people who became only mildly physically ill from Covid-19 and had no previous medical conditions. Leading theories are that it arises when the body’s immune response to the virus doesn’t shut down or from inflammation in blood vessels leading to the brain. © 2020 The New York Times Company

Keyword: Alzheimers; Learning & Memory
Link ID: 27522 - Posted: 10.12.2020

By Bret Stetka The human brain is hardwired to map our surroundings. This trait is called spatial memory—our ability to remember certain locations and where objects are in relation to one another. New findings published today in Scientific Reports suggest that one major feature of our spatial recall is efficiently locating high-calorie, energy-rich food. The study’s authors believe human spatial memory ensured that our hunter-gatherer ancestors could prioritize the location of reliable nutrition, giving them an evolutionary leg up. In the study, researchers at Wageningen University & Research in the Netherlands observed 512 participants follow a fixed path through a room where either eight food samples or eight food-scented cotton pads were placed in different locations. When they arrived at a sample, the participants would taste the food or smell the cotton and rate how much they liked it. Four of the food samples were high-calorie, including brownies and potato chips, and the other four, including cherry tomatoes and apples, were low in calories—diet foods, you might call them. After the taste test, the participants were asked to identify the location of each sample on a map of the room. They were nearly 30 percent more accurate at mapping the high-calorie samples versus the low-calorie ones, regardless of how much they liked those foods or odors. They were also 243 percent more accurate when presented with actual foods, as opposed to the food scents. “Our main takeaway message is that human minds seem to be designed for efficiently locating high-calorie foods in our environment,” says Rachelle de Vries, a Ph.D. candidate in human nutrition and health at Wageningen University and lead author of the new paper. De Vries feels her team’s findings support the idea that locating valuable caloric resources was an important and regularly occurring problem for early humans weathering the climate shifts of the Pleistocene epoch. “Those with a better memory for where and when high-calorie food resources would be available were likely to have a survival—or fitness—advantage,” she explains. © 2020 Scientific American

Keyword: Learning & Memory; Obesity
Link ID: 27518 - Posted: 10.10.2020

By Elizabeth Svoboda After a 3-year-old named Matthew started having one seizure after another, his worried parents learned he had a chronic brain condition that was causing the convulsions. They faced an impossible decision: allow the damaging seizures to continue indefinitely, or allow surgeons to remove half of their son’s brain. They chose the latter. When Matthew emerged from surgery, he couldn’t walk or speak. But bit by bit, he remastered speech and recaptured his lost milestones. The moment one side of his brain was removed, the remainder set itself to the colossal task of re-forging lost neural connections. This gut-level renovation was so successful that no one who meets Matthew today would guess that half his brain is gone. Stanford neuroscientist David Eagleman is obsessed with probing the outer limits of this kind of neural transformation — and harnessing it to useful ends. We’ve all heard that our brains are more plastic than we think, that they can adapt ingeniously to changed conditions, but in “Livewired: The Inside Story of the Ever-Changing Brain,” Eagleman tackles this topic with fresh élan and rigor. He shows not just how we can direct our own neural remodeling on a cellular level, but how such remodeling — a process he calls “livewiring” — alters the core of who we are. “Our machinery isn’t fully preprogrammed, but instead shapes itself by interacting with the world,” Eagleman writes. “You are a different person than you were at this time last year, because the gargantuan tapestry of your brain has woven itself into something new.”

Keyword: Development of the Brain; Language
Link ID: 27515 - Posted: 10.10.2020

R. Stanley Williams For the first time, my colleagues and I have built a single electronic device that is capable of copying the functions of neuron cells in a brain. We then connected 20 of them together to perform a complicated calculation. This work shows that it is scientifically possible to make an advanced computer that does not rely on transistors to calculate and that uses much less electrical power than today’s data centers. Our research, which I began in 2004, was motivated by two questions. Can we build a single electronic element – the equivalent of a transistor or switch – that performs most of the known functions of neurons in a brain? If so, can we use it as a building block to build useful computers? Neurons are very finely tuned, and so are electronic elements that emulate them. I co-authored a research paper in 2013 that laid out in principle what needed to be done. It took my colleague Suhas Kumar and others five years of careful exploration to get exactly the right material composition and structure to produce the necessary property predicted from theory. Kumar then went a major step further and built a circuit with 20 of these elements connected to one another through a network of devices that can be programmed to have particular capacitances, or abilities to store electric charge. He then mapped a mathematical problem to the capacitances in the network, which allowed him to use the device to find the solution to a small version of a problem that is important in a wide range of modern analytics. © 2010–2020, The Conversation US, Inc.

Keyword: Learning & Memory; Robotics
Link ID: 27512 - Posted: 10.07.2020

By Macarena Carrizosa, Sophie Bushwick A new system called PiVR creates working artificial environments for small animals such as zebra fish larvae and fruit flies. Developers say the system’s affordability could help expand research into animal behavior. © 2020 Scientific American

Keyword: Development of the Brain; Vision
Link ID: 27505 - Posted: 10.07.2020

by Angie Voyles Askham Autistic people share some brain structure differences with people who have other neuropsychiatric conditions, including schizophrenia and attention deficit hyperactivity disorder (ADHD), according to a massive new brain-imaging study1. These shared differences stem from the atypical development of one particular type of neuron, the findings suggest. The results provide “further evidence that our understanding of autism can really be advanced by explicitly studying autism in the context of other disorders,” says Armin Raznahan, chief of the Section on Developmental Neurogenomics at the U.S. National Institute of Mental Health in Bethesda, Maryland, who was not involved in the study. The researchers looked at brain scans from 28,321 people to identify structural changes associated with any of six conditions: autism, ADHD, bipolar disorder, major depressive disorder, obsessive-compulsive disorder and schizophrenia. The team found that the brains of people with these conditions differ from controls in a specific way: They have similar patterns of thickness across the cortex, the brain’s outer layer. The cortical regions with the biggest differences in thickness are typically rich in a particular type of excitatory neuron. “We were able to put our fingers on what might be behind that commonality,” says lead researcher Tomas Paus, professor of psychology and psychiatry at the University of Toronto in Canada. “That was very exciting.” The work combined data from 145 cohorts within the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, an international group of researchers who collect and analyze brain-scan data in a standardized way so that they can pool their results. © 2020 Simons Foundation

Keyword: Autism; Brain imaging
Link ID: 27503 - Posted: 10.03.2020

In an article published in Nature Genetics, researchers confirm that about 14% of all cases of cerebral palsy, a disabling brain disorder for which there are no cures, may be linked to a patient’s genes and suggest that many of those genes control how brain circuits become wired during early development. This conclusion is based on the largest genetic study of cerebral palsy ever conducted. The results led to recommended changes in the treatment of at least three patients, highlighting the importance of understanding the role genes play in the disorder. The work was largely funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. “Our results provide the strongest evidence to date that a significant portion of cerebral palsy cases can be linked to rare genetic mutations, and in doing so identified several key genetic pathways involved,” said Michael Kruer, M.D., a neurogeneticist at Phoenix Children’s Hospital and the University of Arizona College of Medicine - Phoenix and a senior author of the article. “We hope this will give patients living with cerebral palsy and their loved ones a better understanding of the disorder and doctors a clearer roadmap for diagnosing and treating them.” Cerebral palsy affects approximately one in 323 children(link is external) in the United States. Signs of the disorder appear early in childhood resulting in a wide range of permanently disabling problems with movement and posture, including spasticity, muscle weakness, and abnormal gait. Nearly 40% of patients need some assistance with walking. In addition, many patients may also suffer epileptic seizures, blindness, hearing and speech problems, scoliosis, and intellectual disabilities.

Keyword: Development of the Brain; Genes & Behavior
Link ID: 27494 - Posted: 09.28.2020

by Peter Hess / Some preterm babies who are later diagnosed with autism show increasing developmental delays during infancy, according to a new study1. This distinct pattern could help doctors identify autism in preterm babies and start them on therapies in infancy, says Li-Wen Chen, pediatric neurologist at National Cheng Kung University College of Medicine in Taiwan, who designed and conducted the study. About 7 percent of children born preterm are autistic, compared with 1 to 2 percent of children in the general population. Researchers cannot accurately predict which preterm babies are most likely to be later diagnosed with the condition, however. The new study tracked ‘very preterm’ babies — meaning those born more than 8 weeks prematurely and weighing 3.3 pounds or less — from birth to 5 years old. It shows that preterm autistic babies’ development deviates significantly from that of their non-autistic peers starting at 6 months of age. This split could flag preterm babies in need of behavioral interventions well before the typical age of an autism diagnosis, which is about 4 years in the United States. “This early trajectory work is really very valuable, because it means you shouldn’t be making predictions based on single observations,” says Neil Marlow, professor of neonatal medicine at University College London in the United Kingdom, who was not involved in the work. Autistic children who are born preterm score lower on measures of nonverbal behaviors important for social interactions than do autistic children who are born full-term, according to previous work by Chen’s team2. Those results also showed that autism traits are more similar among preterm children than among full-term children. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27493 - Posted: 09.28.2020