Chapter 13. Memory and Learning

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 1919

By Jake Buehler A fruit bat hanging in the corner of a cave stirs; it is ready to move. It scans the space to look for a free perch and then takes flight, adjusting its membranous wings to angle an approach to a spot next to one of its fuzzy fellows. As it does so, neurological data lifted from its brain is broadcast to sensors installed in the cave’s walls. This is no balmy cave along the Mediterranean Sea. The group of Egyptian fruit bats is in Berkeley, California, navigating an artificial cave in a laboratory that researchers have set up to study the inner workings of the animals’ minds. The researchers had an idea: that as a bat navigates its physical environment, it’s also navigating a network of social relationships. They wanted to know whether the bats use the same or different parts of their brain to map these intersecting realities. In a new study published in Nature in August, the scientists revealed that these maps overlap. The brain cells informing a bat of its own location also encode details about other bats nearby — not only their location, but also their identities. The findings raise the intriguing possibility that evolution can program those neurons for multiple purposes to serve the needs of different species. The neurons in question are located in the hippocampus, a structure deep within the mammalian brain that is involved in the creation of long-term memories. A special population of hippocampal neurons, known as place cells, are thought to create an internal navigation system. First identified in the rat hippocampus in 1971 by the neuroscientist John O’Keefe, place cells fire when an animal is in a particular location; different place cells encode different places. This system helps animals determine where they are, where they need to go and how to get from here to there. In 2014, O’Keefe was awarded the Nobel Prize for his discovery of place cells, and over the last several decades they have been identified in multiple primate species, including humans. However, moving from place to place isn’t the only way an animal can experience a change in its surroundings. In your home, the walls and furniture mostly stay the same from day to day, said Michael Yartsev, who studies the neural basis of natural behavior at the University of California, Berkeley and co-led the new work. But the social context of your living space could change quite regularly. © 2023 An editorially independent publication supported by the Simons Foundation.

Keyword: Learning & Memory
Link ID: 28982 - Posted: 11.01.2023

By Paula Span A year ago, the Food and Drug Administration announced new regulations allowing the sale of over-the-counter hearing aids and setting standards for their safety and effectiveness. That step — which was supposed to take three years but required five — portended cheaper, high-quality hearing aids that people with mild to moderate hearing loss could buy online or at local pharmacies and big stores. So how’s it going? It’s a mixed picture. Manufacturers and retailers have become serious about making hearing aids more accessible and affordable. Yet the O.T.C. market remains confusing, if not downright chaotic, for the mostly older consumers the new regulations were intended to help. The past year also brought renewed focus on the importance of treating hearing loss, which affects two-thirds of people over age 70. Researchers at Johns Hopkins University published the first randomized clinical trial showing that hearing aids could help reduce the pace of cognitive decline. Some background: In 2020, the influential Lancet Commission on Dementia Prevention, Intervention and Care identified hearing loss as the greatest potentially modifiable risk factor for dementia. Previous studies had demonstrated a link between hearing loss and cognitive decline, said Dr. Frank Lin, an otolaryngologist and epidemiologist at Johns Hopkins and lead author of the new research. “What remained unanswered was, If we treat hearing loss, does it actually reduce cognitive loss?” he said. The ACHIEVE study (for Aging and Cognitive Health Evaluation in Elders) showed that, at least for a particular group of older adults, it could. Of nearly 1,000 people ages 70 to 84 with untreated mild to moderate hearing loss, half received hearing assessments from audiologists, were fitted with midpriced hearing aids and were counseled on how to use them for several months. The control group participated in a health education program. Over three years, the study found that hearing-aid use had scant effect on healthy volunteers at low risk of cognitive loss. But among participants who were older and less affluent, hearing aids reduced the rate of cognitive decline by 48 percent, compared with the control group, a difference the researchers deemed “clinically meaningful.” © 2023 The New York Times Company

Keyword: Hearing; Alzheimers
Link ID: 28979 - Posted: 11.01.2023

Anil Oza Scientists once considered sleep to be like a shade getting drawn over a window between the brain and the outside world: when the shade is closed, the brain stops reacting to outside stimuli. A study published on 12 October in Nature Neuroscience1 suggests that there might be periods during sleep when that shade is partially open. Depending on what researchers said to them, participants in the study would either smile or frown on cue in certain phases of sleep. “You’re not supposed to be able to do stuff while you sleep,” says Delphine Oudiette, a cognitive scientist at the Paris Brain Institute in France and a co-author of the study. Historically, the definition of sleep is that consciousness of your environment halts, she adds. “It means you don’t react to the external world.” Dream time A few years ago, however, Oudiette began questioning this definition after she and her team conducted an experiment in which they were able to communicate with people who are aware that they are dreaming while they sleep — otherwise known as lucid dreamers. During these people’s dreams, experimenters were able to ask questions and get responses through eye and facial-muscle movements2. Karen Konkoly, who was a co-author on that study and a cognitive scientist at Northwestern University in Evanston, Illinois, says that after that paper came out, “it was a big open question in our minds whether communication would be possible with non-lucid dreamers”. So Oudiette continued with the work. In her latest study, she and her colleagues observed 27 people with narcolepsy — characterized by daytime sleepiness and a high frequency of lucid dreams — and 22 people without the condition. While they were sleeping, participants were repeatedly asked to frown or smile. All of them responded accurately to at least 70% of these prompts. © 2023 Springer Nature Limited

Keyword: Sleep; Learning & Memory
Link ID: 28968 - Posted: 10.25.2023

By Carl Zimmer An international team of scientists has mapped the human brain in much finer resolution than ever before. The brain atlas, a $375 million effort started in 2017, has identified more than 3,300 types of brain cells, an order of magnitude more than was previously reported. The researchers have only a dim notion of what the newly discovered cells do. The results were described in 21 papers published on Thursday in Science and several other journals. Ed Lein, a neuroscientist at the Allen Institute for Brain Science in Seattle who led five of the studies, said that the findings were made possible by new technologies that allowed the researchers to probe millions of human brain cells collected from biopsied tissue or cadavers. “It really shows what can be done now,” Dr. Lein said. “It opens up a whole new era of human neuroscience.” Still, Dr. Lein said that the atlas was just a first draft. He and his colleagues have only sampled a tiny fraction of the 170 billion cells estimated to make up the human brain, and future surveys will certainly uncover more cell types, he said. Biologists first noticed in the 1800s that the brain was made up of different kinds of cells. In the 1830s, the Czech scientist Jan Purkinje discovered that some brain cells had remarkably dense explosions of branches. Purkinje cells, as they are now known, are essential for fine-tuning our muscle movements. Later generations developed techniques to make other cell types visible under a microscope. In the retina, for instance, researchers found cylindrical “cone cells” that capture light. By the early 2000s, researchers had found more than 60 types of neurons in the retina alone. They were left to wonder just how many kinds of cells were lurking in the deeper recesses of the brain, which are far harder to study. © 2023 The New York Times Company

Keyword: Brain imaging; Development of the Brain
Link ID: 28963 - Posted: 10.14.2023

By Laura Sanders A new look at the human brain is beginning to reveal the inner lives of its cellular residents. The human brain holds a dizzying collection of diverse cells, and no two brains are the same, cellularly speaking. Those are the prevailing conclusions of an onslaught of 21 papers published online October 12 in Science, Science Advances and Science Translational Medicine. The results just start to scratch the surface of understanding the mysteries of the brain. Still, they provide the most intimate look yet at the cells that build the brain, and offer clues about how the brain enables thoughts, actions and memories. The collection of data may also guide researchers in their hunt for the causes of brain disorders such as schizophrenia, Alzheimer’s disease and depression. The new brain map is a result of a coordinated international research effort called the National Institutes of Health’s Brain Initiative Cell Census Network, or BICCN, which ramped up in 2017. Many of the studies in the collection are based on a powerful technology called single-cell genomics. The method reveals which genes are active inside of a single cell, information that provides clues about the cell’s identity and job. As part of the BICCN, researchers examined all sorts of brains. One project detailed the cells in small pieces of live brain tissue taken from 75 people undergoing surgery for tumors or epilepsy, an approach that’s been used on smaller scales before (SN: 8/7/19). Another looked at samples taken from the brains of 17 deceased children. Still another looked at brain tissue from seven people, seven chimpanzees, four gorillas, three rhesus macaques and three marmosets. © Society for Science & the Public 2000–2023.

Keyword: Development of the Brain; Brain imaging
Link ID: 28962 - Posted: 10.14.2023

By Benjamin Mueller Once their scalpels reach the edge of a brain tumor, surgeons are faced with an agonizing decision: cut away some healthy brain tissue to ensure the entire tumor is removed, or give the healthy tissue a wide berth and risk leaving some of the menacing cells behind. Now scientists in the Netherlands report using artificial intelligence to arm surgeons with knowledge about the tumor that may help them make that choice. The method, described in a study published on Wednesday in the journal Nature, involves a computer scanning segments of a tumor’s DNA and alighting on certain chemical modifications that can yield a detailed diagnosis of the type and even subtype of the brain tumor. That diagnosis, generated during the early stages of an hourslong surgery, can help surgeons decide how aggressively to operate, the researchers said. In the future, the method may also help steer doctors toward treatments tailored for a specific subtype of tumor. “It’s imperative that the tumor subtype is known at the time of surgery,” said Jeroen de Ridder, an associate professor in the Center for Molecular Medicine at UMC Utrecht, a Dutch hospital, who helped lead the study. “What we have now uniquely enabled is to allow this very fine-grained, robust, detailed diagnosis to be performed already during the surgery.” A brave new world. A new crop of chatbots powered by artificial intelligence has ignited a scramble to determine whether the technology could upend the economics of the internet, turning today’s powerhouses into has-beens and creating the industry’s next giants. Here are the bots to know: ChatGPT. ChatGPT, the artificial intelligence language model from a research lab, OpenAI, has been making headlines since November for its ability to respond to complex questions, write poetry, generate code, plan vacations and translate languages. GPT-4, the latest version introduced in mid-March, can even respond to images (and ace the Uniform Bar Exam). © 2023 The New York Times Company

Keyword: Robotics; Intelligence
Link ID: 28958 - Posted: 10.12.2023

By Mark Johnson Using a host of high-tech tools to simulate brain development in a lab dish, Stanford University researchers have discovered several dozen genes that interfere with crucial steps in the process and may lead to autism, a spectrum of disorders that affects about one in every 36 Americans, impairing their ability to communicate and interact with others. The results of a decade of work, the findings published in the journal Nature may one day pave the way for scientists to design treatments that allow these phases of brain development to proceed unimpaired. The study delves into a 20-year-old theory that suggests one cause of autism may be a disruption of the delicate balance between two types of nerve cells found in the brain’s cerebral cortex, the area responsible for higher-level processes such as thought, emotion, decision-making and language. Some nerve cells in this region of the brain excite other nerve cells, encouraging them to fire; other cells, called interneurons, do the opposite. Too much excitation can impair focus in the brain and cause epilepsy, a seizure disorder that is more common in people with autism than in the general population. Scientists therefore believe a proper balance requires more of the inhibiting interneurons. In the developing fetus, these nerve cells start out deep in the brain in a region called the subpallium, then migrate slowly to the cerebral cortex. The process begins mid-gestation and ends in the infant’s second year of life, said Sergiu Pasca, a Stanford University professor of psychiatry and behavioral sciences who led the study. Pasca’s team, which included researchers from the University of California at San Francisco and the Icahn School of Medicine at Mount Sinai, tested 425 genes that have been linked to neurodevelopmental disorders to determine which ones interfere with the generation and migration of interneurons. Genes linked to autism were among those identified in the study. “What’s really cool about this paper is that autism is a collection of different behaviors, but we don’t have [an] understanding of how those behaviors are connected to differences in the brain,” said James McPartland, a professor of child psychiatry and psychology at the Yale School of Medicine, who was not involved in the study. The new work advances research into autism by “beginning to create a fundamental understanding of the building blocks of brain development,” he said.

Keyword: Autism; Genes & Behavior
Link ID: 28947 - Posted: 10.07.2023

Jon Hamilton A team of researchers has developed a new way to study how genes may cause autism and other neurodevelopmental disorders: by growing tiny brain-like structures in the lab and tweaking their DNA. These "assembloids," described in the journal Nature, could one day help researchers develop targeted treatments for autism spectrum disorder, intellectual disability, schizophrenia, and epilepsy. "This really accelerates our effort to try to understand the biology of psychiatric disorders," says Dr. Sergiu Pașca, a professor of psychiatry and behavioral sciences at Stanford University and an author of the study. The research suggests that someday "we'll be able to predict which pathways we can target to intervene" and prevent these disorders, adds Kristen Brennand, a professor of psychiatry at Yale who was not involved in the work. The study comes after decades of work identifying hundreds of genes that are associated with autism and other neurodevelopmental disorders. But scientists still don't know how problems with these genes alter the brain. "The challenge now is to figure out what they're actually doing, how disruptions in these genes are actually causing disease," Pașca says. "And that has been really difficult." For ethical reasons, scientists can't just edit a person's genes to see what happens. They can experiment on animal brains, but lab animals like rodents don't really develop anything that looks like autism or schizophrenia. So Pașca and a team of scientists tried a different approach, which they detailed in their new paper. The team did a series of experiments using tiny clumps of human brain cells called brain organoids. These clumps will grow for a year or more in the lab, gradually organizing their cells much the way a developing brain would. And by exposing an organoid to certain growth factors, scientists can coax it into resembling tissue found in brain areas including the cortex and hippocampus. © 2023 npr

Keyword: Epilepsy; Autism
Link ID: 28940 - Posted: 10.03.2023

By Stephanie Pappas If you’ve ever awoken from a vivid dream only to find that you can’t remember the details by the end of breakfast, you’re not alone. People forget most of the dreams they have—though it is possible to train yourself to remember more of them. Dreaming happens mostly (though not always exclusively) during rapid eye movement (REM) sleep. During this sleep stage, brain activity looks similar to that in a waking brain, with some very important differences. Key among them: during REM sleep, the areas of the brain that transfer memories into long-term storage—as well as the long-term storage areas themselves—are relatively deactivated, says Deirdre Barrett, a dream researcher at Harvard Medical School and author of the book The Committee of Sleep (Oneiroi Press, 2001). This may be a side effect of REM’s role in memory consolidation, according to a 2019 study on mice in the journal Science. Short-term memory areas are active during REM sleep, but those only hang on to memories for about 30 seconds. “You have to wake up from REM sleep, generally, to recall a dream,” Barrett says. If, instead, you pass into the next stage of sleep without rousing, that dream will never enter long-term memory. REM sleep occurs about every 90 minutes, and it lengthens as the night drags on. The first REM cycle of the night is typically just a few minutes long, but by the end of an eight-hour night of sleep, a person has typically been in the REM stage for a good 20 minutes, Barrett says. That’s why the strongest correlation between any life circumstance and your memory of dreams is the number of hours you’ve slept. If you sleep only six hours, you’re getting less than half of the dream time of an eight-hour night, she says. Those final hours of sleep are the most important for dreaming. And people tend to remember the last dream of the night—the one just before waking. © 2023 Scientific American

Keyword: Sleep; Learning & Memory
Link ID: 28939 - Posted: 10.03.2023

Sara Reardon Scientists have identified two types of brain cell linked to a reduced risk of dementia in older people — even those who have brain abnormalities that are hallmarks of Alzheimer’s disease1. The finding could eventually lead to new ways to protect these cells before they die. The results were published in Cell on 28 September. The most widely held theory about Alzheimer’s attributes the disease to a build-up of sticky amyloid proteins in the brain. This leads to clump-like ‘plaques’ of amyloid that slowly kill neurons and eventually destroy memory and cognitive ability. But not everyone who develops cognitive impairment late in life has amyloid clumps in their brain, and not everyone with amyloid accumulation develops Alzheimer’s. Neurobiologist Hansruedi Mathys at the University of Pittsburgh School of Medicine in Pennsylvania and neuroscientist Li-Huei Tsai and computer scientist Manolis Kellis at the Massachusetts Institute of Technology in Cambridge and their colleagues decided to investigate this disconnect. To do so, they used data from a massive study that tracks cognitive and motor skills in thousands of people throughout old age. The researchers examined tissue samples from 427 brains from participants who had died. Some of those participants had dementia typical of advanced Alzheimer’s disease, some had mild cognitive impairment and the remainder had no sign of impairment. The researchers isolated cells from each participant’s prefrontal cortex, the region involved in higher brain function. To classify the cells, they sequenced all the active genes in each one. This allowed them to create an atlas of the brain showing where the different cell types occur. The scientists identified two key cell types that had a specific genetic marker. One had active genes coding for reelin, a protein associated with brain disorders such as schizophrenia, and the other had active genes that code for somatostatin, a hormone that regulates processes throughout the body. © 2023 Springer Nature Limited

Keyword: Alzheimers; Genes & Behavior
Link ID: 28938 - Posted: 09.29.2023

By Clay Risen Endel Tulving, whose insights into the structure of human memory and the way we recall the past revolutionized the field of cognitive psychology, died on Sept. 11 in Mississauga, Ontario. He was 96. His daughters, Linda Tulving and Elo Tulving-Blais, said his death, at an assisted living home, was caused by complications of a stroke. Until Dr. Tulving began his pathbreaking work in the 1960s, most cognitive psychologists were more interested in understanding how people learn things than in how they retain and recall them. When they did think about memory, they often depicted it as one giant cerebral warehouse, packed higgledy-piggledy, with only a vague conception of how we retrieved those items. This, they asserted, was the realm of “the mind,” an untestable, almost philosophical construct. Dr. Tulving, who spent most of his career at the University of Toronto, first made his name with a series of clever experiments and papers, demonstrating how the mind organizes memories and how it uses contextual cues to retrieve them. Forgetting, he posited, was less about information loss than it was about the lack of cues to retrieve it. He established his legacy with a chapter in the 1972 book “Organization of Memory,” which he edited with Wayne Donaldson. In that chapter, he argued for a taxonomy of memory types. He started with two: procedural memory, which is largely unconscious and involves things like how to walk or ride a bicycle, and declarative memory, which is conscious and discrete. © 2023 The New York Times Company

Keyword: Learning & Memory
Link ID: 28934 - Posted: 09.29.2023

By Veronique Greenwood In the dappled sunlit waters of Caribbean mangrove forests, tiny box jellyfish bob in and out of the shade. Box jellies are distinguished from true jellyfish in part by their complex visual system — the grape-size predators have 24 eyes. But like other jellyfish, they are brainless, controlling their cube-shaped bodies with a distributed network of neurons. That network, it turns out, is more sophisticated than you might assume. On Friday, researchers published a report in the journal Current Biology indicating that the box jellyfish species Tripedalia cystophora have the ability to learn. Because box jellyfish diverged from our part of the animal kingdom long ago, understanding their cognitive abilities could help scientists trace the evolution of learning. The tricky part about studying learning in box jellies was finding an everyday behavior that scientists could train the creatures to perform in the lab. Anders Garm, a biologist at the University of Copenhagen and an author of the new paper, said his team decided to focus on a swift about-face that box jellies execute when they are about to hit a mangrove root. These roots rise through the water like black towers, while the water around them appears pale by comparison. But the contrast between the two can change from day to day, as silt clouds the water and makes it more difficult to tell how far away a root is. How do box jellies tell when they are getting too close? “The hypothesis was, they need to learn this,” Dr. Garm said. “When they come back to these habitats, they have to learn, how is today’s water quality? How is the contrast changing today?” In the lab, researchers produced images of alternating dark and light stripes, representing the mangrove roots and water, and used them to line the insides of buckets about six inches wide. When the stripes were a stark black and white, representing optimum water clarity, box jellies never got close to the bucket walls. With less contrast between the stripes, however, box jellies immediately began to run into them. This was the scientists’ chance to see if they would learn. © 2023 The New York Times Company

Keyword: Learning & Memory; Evolution
Link ID: 28925 - Posted: 09.23.2023

COMIC: When, why and how did neurons first evolve? Scientists are piecing together the ancient story. By Tim Vernimmen Illustrated by Maki Naro 09.14.2023 © 2023 Annual Reviews

Keyword: Evolution; Development of the Brain
Link ID: 28920 - Posted: 09.21.2023

By Janet Lee Doing puzzles, playing memory-boosting games, taking classes and reading are activities that we often turn to for help keeping our brains sharp. But research is showing that what you eat, how often you exercise and the type of exercise you do can help lower your risk of dementia to a greater extent than previously thought. Live well every day with tips and guidance on food, fitness and mental health, delivered to your inbox every Thursday. Although more studies are needed, “there’s a lot of data that suggests exercise and diet are good for the brain and can prevent or help slow down” cognitive changes, says Jeffrey Burns, co-director of the University of Kansas Alzheimer’s Disease Research Center in Fairway. And living a healthy lifestyle can produce brain benefits no matter what your age. The big diet picture If you’re already eating in a way that protects your heart — plenty of whole grains, vegetables, and fruit, and little saturated fat, sodium and ultra-processed “junk” foods — there’s good news: You’re also protecting your brain. A healthy cardiovascular system keeps blood vessels open, allowing good blood flow to the brain and reducing the risk of high blood pressure, stroke and dementia. Research suggests that two specific dietary approaches — the Mediterranean diet and the MIND diet (the Mediterranean-DASH Intervention for Neurodegenerative Delay, essentially a combo of two heart-healthy eating plans) — may help stave off cognitive decline. Both diets rely on eating mostly plant foods (fruits, vegetables, whole grains, beans, nuts), olive oil, fish and poultry. The main difference between the two is that the MIND diet emphasizes specific fruits and vegetables, such as berries and leafy greens. Studies show that people who most closely follow either diet have a reduced risk of dementia compared with those who don’t. For example, people eating the Mediterranean way had a 23 percent lower risk of dementia in a nine-year study of more than 60,000 men and women published this year in BMC Medicine.

Keyword: Alzheimers
Link ID: 28915 - Posted: 09.21.2023

By Jim Davies Think of what you want to eat for dinner this weekend. What popped into mind? Pizza? Sushi? Clam chowder? Why did those foods (or whatever foods you imagined) appear in your consciousness and not something else? Psychologists have long held that when we are making a decision about a particular category of thing, we tend to bring to mind items that are typical or common in our culture or everyday lives, or ones we value the most. On this view, whatever foods you conjured up are likely ones that you eat often, or love to eat. Sounds intuitive. But a recent paper published in Cognition suggests it’s more complicated than that. Tracey Mills, a research assistant working at MIT, led the study along with Jonathan Phillips, a cognitive scientist and philosopher at Dartmouth College. They put over 2,000 subjects, recruited online, through a series of seven experiments that allowed them to test a novel approach for understanding which ideas within a category will pop into our consciousness—and which won’t. In this case, they had subjects think about zoo animals, holidays, jobs, kitchen appliances, chain restaurants, sports, and vegetables. What they found is that what makes a particular thing come to mind—such as a lion when one is considering zoo animals—is determined not by how valuable or familiar it is, but by where it lies in a multidimensional idea grid that could be said to resemble a kind of word cloud. “Under the hypothesis we argue for,” Mills and Phillips write, “the process of calling members of a category to mind might be modeled as a search through feature space, weighted toward certain features that are relevant for that category.” Historical “value” just happens to be one dimension that is particularly relevant when one is talking about dinner, but is less relevant for categories such as zoo animals or, say, crimes, they write. © 2023 NautilusNext Inc., All rights reserved.

Keyword: Attention; Learning & Memory
Link ID: 28910 - Posted: 09.16.2023

By Joanna Thompson= Like many people, Mary Ann Raghanti enjoys potatoes loaded with butter. Unlike most people, however, she actually asked the question of why we love stuffing ourselves with fatty carbohydrates. Raghanti, a biological anthropologist at Kent State University, has researched the neurochemical mechanism behind that savory craving. As it turns out, a specific brain chemical may be one of the things that not only developed our tendency to overindulge in food, alcohol and drugs but also helped the human brain evolve to be unique from the brains of closely related species. A new study, led by Raghanti and published on September 11 in the Proceedings of the National Academy of Sciences USA, examined the activity of a particular neurotransmitter in a region of the brain that is associated with reward and motivation across several species of primates. The researchers found higher levels of that brain chemical—neuropeptide Y (NPY)—in humans, compared with our closest living relatives. That boost in the reward peptide could explain our love of high-fat foods, from pizza to poutine. The impulse to stuff ourselves with fats and sugars may have given our ancestors an evolutionary edge, allowing them to develop a larger and more complex brain. “I think this is a first bit of neurobiological insight into one of the most interesting things about us as a species,” says Robert Sapolsky, a neuroendocrinology researcher at Stanford University, who was not directly involved in the research but helped review the new paper. Advertisement Neuropeptide Y is associated with “hedonic eating”—consuming food strictly to experience pleasure rather than to satisfy hunger. It drives individuals to seek out high-calorie foods, especially those rich in fat. Historically, though, NPY has been overlooked in favor of flashier “feel good” chemicals such as dopamine and serotonin. © 2023 Scientific American,

Keyword: Obesity; Intelligence
Link ID: 28905 - Posted: 09.13.2023

By Jacqueline Howard and Deidre McPhillips, Most families of children with autism may face long wait times to diagnose their child with the disorder, and once a diagnosis is made, it sometimes may not be definitive. But now, two studies released Tuesday suggest that a recently developed eye-tracking tool could help clinicians diagnose children as young as 16 months with autism – and with more certainty. Kids’ developmental disability diagnoses became more common during pandemic, but autism rates held steady, CDC report says “This is not a tool to replace expert clinicians,” said Warren Jones, director of research at the Marcus Autism Center at Children’s Healthcare of Atlanta and Nien Distinguished Chair in Autism at Emory University School of Medicine, who was an author on both studies. Rather, he said, the hope with this eye-tracking technology is that “by providing objective measurements that objectively measure the same thing in each child,” it can help inform the diagnostic process. The tool, called EarliPoint Evaluation, is cleared by the US Food and Drug Administration to help clinicians diagnose and assess autism, according to the researchers. Traditionally, children are diagnosed with autism based on a clinician’s assessment of their developmental history, behaviors and parents’ reports. Evaluations can take hours, and some subtle behaviors associated with autism may be missed, especially among younger children. “Typically, the way we diagnose autism is by rating our impressions,” said Whitney Guthrie, a clinical psychologist and scientist at the Children’s Hospital of Philadelphia’s Center for Autism Research. She was not involved in the new studies, but her research focuses on early diagnosis of autism.

Keyword: Autism; Schizophrenia
Link ID: 28904 - Posted: 09.13.2023

By Saugat Bolakhe Memory doesn’t represent a single scientific mystery; it’s many of them. Neuroscientists and psychologists have come to recognize varied types of memory that coexist in our brain: episodic memories of past experiences, semantic memories of facts, short- and long-term memories, and more. These often have different characteristics and even seem to be located in different parts of the brain. But it’s never been clear what feature of a memory determines how or why it should be sorted in this way. Now, a new theory backed by experiments using artificial neural networks proposes that the brain may be sorting memories by evaluating how likely they are to be useful as guides in the future. In particular, it suggests that many memories of predictable things, ranging from facts to useful recurring experiences — like what you regularly eat for breakfast or your walk to work — are saved in the brain’s neocortex, where they can contribute to generalizations about the world. Memories less likely to be useful — like the taste of that unique drink you had at that one party — are kept in the seahorse-shaped memory bank called the hippocampus. Actively segregating memories this way on the basis of their usefulness and generalizability may optimize the reliability of memories for helping us navigate novel situations. The authors of the new theory — the neuroscientists Weinan Sun and James Fitzgerald of the Janelia Research Campus of the Howard Hughes Medical Institute, Andrew Saxe of University College London, and their colleagues — described it in a recent paper in Nature Neuroscience. It updates and expands on the well-established idea that the brain has two linked, complementary learning systems: the hippocampus, which rapidly encodes new information, and the neocortex, which gradually integrates it for long-term storage. James McClelland, a cognitive neuroscientist at Stanford University who pioneered the idea of complementary learning systems in memory but was not part of the new study, remarked that it “addresses aspects of generalization” that his own group had not thought about when they proposed the theory in the mid 1990s. All Rights Reserved © 2023

Keyword: Learning & Memory; Attention
Link ID: 28900 - Posted: 09.07.2023

By Astrid Landon In June 2015, Jeffrey Thelen’s parents noticed their son was experiencing problems with his memory. In the subsequent years, he would get lost driving to his childhood home, forget his cat had died, and fail to recognize his brother and sister. His parents wondered: Was electroconvulsive therapy to blame? Thelen had been regularly receiving the treatment to help with symptoms of severe depression, which he’d struggled with since high school. At 34 years old, he had tried medications, but hadn’t had a therapy plan. His primary care physician referred him to get an evaluation for ECT, which was then prescribed by a psychiatrist. Electroconvulsive therapy has been used to treat various mental illnesses since the late 1930s. The technique, which involves passing electrical currents through the brain to trigger a short seizure, has always had a somewhat torturous reputation. Yet it’s still in use, in a modified form of its original version. According to one commonly cited statistic, 100,000 Americans receive ECT annually — most often to ease symptoms of severe depression or bipolar disorder — although exact demographic data is scarce. For Thelen, the treatment appeared to relieve his depression symptoms somewhat, but he reported new headaches and concentration issues, in addition to the memory loss. Those claims are central to a lawsuit Thelen filed in 2020 against Somatics, LLC and Elektrika, Inc., manufacturers and suppliers of ECT devices, alleging that the companies failed to disclose — and even intentionally hid — risks associated with ECT, including “brain damage and permanent neurocognitive injuries.” Thelen’s legal team told Undark that they have since reached a resolution with Elektrika on confidential terms. With regard to Somatics, in June a jury found that the company failed to warn about risks associated with ECT, but could not conclude that there was a legal causation between that and Thelen’s memory loss. The following month, his lawyers filed a motion for a new trial. (In response to a request for comment, Conrad Swartz, one of Somatics’ co-founders, directed Undark to the company’s attorney, Sue Cole. Cole did not respond to multiple emails. Lawyers for Elektrika declined to comment.)

Keyword: Depression; Learning & Memory
Link ID: 28899 - Posted: 09.07.2023

By Claudia López Lloreda Cells hidden in the skull may point to a way to detect, diagnose and treat inflamed brains. A detailed look at the skull reveals that bone marrow cells there change and are recruited to the brain after injury, possibly traveling through tiny channels connecting the skull and the outer protective layer of the brain. Paired with the discovery that inflammation in the skull is disease-specific, these new findings collectively suggest the skull’s marrow could serve as a target to track and potentially treat neurological disorders involving brain inflammation, researchers report August 9 in Cell. Immune cells that infiltrate the central nervous system during many diseases and neuronal injury can wreak havoc by flooding the brain with damaging molecules. This influx of immune cells causes inflammation in the brain and spinal cord and can contribute to diseases like multiple sclerosis (SN: 11/26/19). Detecting and dampening this reaction has been an extensive field of research. With this new work, the skull, “something that has been considered as just protective, suddenly becomes a very active site of interaction with the brain, not only responding to brain diseases, but also changing itself in response to brain diseases,” says Gerd Meyer zu Hörste, a neurologist at University of Münster in Germany who was not involved in the study. Ali Ertürk of the Helmholtz Center in Munich and colleagues discovered this potential role for the skull while probing the idea that the cells in skull marrow might behave differently from those in other bones. Ertürk’s team compared the genetic activity of cells in mice skull marrow, and the proteins those cells made, with those in the rodent’s humerus, femur and four other bones, along with the meninges, the protective membranes between the skull and the brain. © Society for Science & the Public 2000–2023.

Keyword: Alzheimers; Multiple Sclerosis
Link ID: 28898 - Posted: 09.07.2023