Chapter 11. Emotions, Aggression, and Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 3258

Lenny Bernstein The Centers for Disease Control and Prevention warned parents and caregivers Tuesday to watch out for an uncommon, polio-like condition that mostly strikes children, usually between August and November. Acute flaccid myelitis, which may be caused by any of several viruses, is marked by a sudden weakness or paralysis of the limbs. Since surveillance began in 2014, prevalence of the ­syndrome has spiked in even-numbered years, often afflicting children about 5 years old. The disease is very rare, but a quick response is critical once the weakness sets in; the disease can progress over hours or days and lead to permanent paralysis or respiratory failure, according to a report issued Tuesday by the CDC. Among 238 cases in 2018 reviewed by the CDC, 98 percent of patients were hospitalized, 54 percent required intensive care, and 23 percent were placed on ventilators to help them breathe. Most patients were hospitalized within a day of experiencing weakness, but about 10 percent were not hospitalized until four or more days later, possibly because of failure to recognize the syndrome, the report said. Limb weakness, difficulty walking and limb pain are often preceded by fever or respiratory illness, usually by about six days, the CDC said. Hundreds of U.S. children have been affected, and many do not fully recover. A number of viruses — including West Nile virus, adenovirus and non-polio enteroviruses — are known to produce the symptoms in a small number of people who become infected by those pathogens. But enterovirus, particularly one dubbed EV-D68, appears to be the most common cause, the CDC said. The National Institute of Allergy and Infectious Diseases is working on a vaccine for EV-D68. © 1996-2020 The Washington Post

Keyword: Movement Disorders; Muscles
Link ID: 27403 - Posted: 08.06.2020

By Jennifer Couzin-Frankel Athena Akrami’s neuroscience lab reopened last month without her. Life for the 38-year-old is a pale shadow of what it was before 17 March, the day she first experienced symptoms of the novel coronavirus. At University College London (UCL), Akrami’s students probe how the brain organizes memories to support learning, but at home, she struggles to think clearly and battles joint and muscle pain. “I used to go to the gym three times a week,” Akrami says. Now, “My physical activity is bed to couch, maybe couch to kitchen.” Her early symptoms were textbook for COVID-19: a fever and cough, followed by shortness of breath, chest pain, and extreme fatigue. For weeks, she struggled to heal at home. But rather than ebb with time, Akrami’s symptoms waxed and waned without ever going away. She’s had just 3 weeks since March when her body temperature was normal. “Everybody talks about a binary situation, you either get it mild and recover quickly, or you get really sick and wind up in the ICU,” says Akrami, who falls into neither category. Thousands echo her story in online COVID-19 support groups. Outpatient clinics for survivors are springing up, and some are already overburdened. Akrami has been waiting more than 4 weeks to be seen at one of them, despite a referral from her general practitioner. The list of lingering maladies from COVID-19 is longer and more varied than most doctors could have imagined. Ongoing problems include fatigue, a racing heartbeat, shortness of breath, achy joints, foggy thinking, a persistent loss of sense of smell, and damage to the heart, lungs, kidneys, and brain. © 2020 American Association for the Advancement of Science.

Keyword: Stroke; Stress
Link ID: 27399 - Posted: 08.03.2020

Jon Hamilton For years, public health officials have been trying to dispel the myth that people who get a flu shot are more likely to get Alzheimer's disease. They are not. And now there is evidence that vaccines that protect against the flu and pneumonia may actually protect people from Alzheimer's, too. The evidence comes from two studies presented Monday at this year's Alzheimer's Association International Conference, which is being held as a virtual event. "We've always known that vaccines are very important to our overall health," says Maria Carrillo, chief science officer of the Alzheimer's Association. "And maybe they even contribute to protecting our memory, our cognition, our brain." The first study came from a team at the University of Texas that combed through millions of medical records in a national database. The goal was to find factors that affected a person's risk of getting certain diseases, including Alzheimer's. "And one of the things that came back was flu shots," says Albert Amran, a medical student of the McGovern Medical School at the University of Texas Health Science Center in Houston and an author of the study. That seemed odd. So Amran and a team of researchers took a closer look at the medical records of about 9,000 people who were at least 60 years old. Some had received a seasonal flu shot. Some hadn't. "We [tried] to make sure that both groups had an equal amount of, say, smoking status, obesity, diabetes, cardiovascular disease," Amran says. Those are known risk factors for Alzheimer's. The team also looked at factors like education and income, and indicators like the number of prescriptions a person had received, to make sure that people who got vaccines weren't just healthier overall. They weren't. © 2020 npr

Keyword: Alzheimers; Neuroimmunology
Link ID: 27385 - Posted: 07.27.2020

Kayt Sukel A 44-year-old male patient, with no history of cardiovascular disease, arrived at an emergency room in New York City after experiencing difficulty speaking and moving the right side of his body. The on-call physician quickly determined he had suffered a stroke—a condition that normally affects people who are decades older. In Italy, a 23-year-old man sought care for a complete facial palsy and feelings of “pins and needles” in his legs. Doctors discovered axonal sensory-motor damage suggesting Guillain Barré Syndrome, a rare autoimmune neurological disorder where the immune system, sometimes following an infection, mistakes some of the body’s own peripheral nerve cells as foreign invaders and attacks them. A 58-year-old woman in Detroit was rushed to the hospital with severe cognitive impairment, unable to remember anything beyond her own name. MRI scans showed widespread inflammation across the patient’s brain, leading doctors to diagnose a rare but dangerous neurological condition called acute necrotizing hemorrhagic encephalopathy. At first glance, it may seem that these patients have little in common. Yet all three were also suffering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease, better known as Covid-19. While most individuals infected with this new virus exhibit fever, cough, and respiratory symptoms, doctors across the globe are also documenting patients presenting with a handful of neurological manifestations—leading clinicians and researchers to wonder if Covid-19 also has the ability to invade the human nervous system. “As more people are being tested and diagnosed with this virus, physicians are starting to see more uncommon symptoms and complications, including neurological ones,” says Diane Griffin, M.D., Ph.D., a researcher at Johns Hopkins University’s Bloomberg School of Public Health. “But as Covid-19 is a new virus, we aren’t yet sure why these things are happening. Is the virus getting into the brain directly? Is it affecting the brain through other means? These are important questions to answer.” © 2020 The Dana Foundation

Keyword: Movement Disorders; Neuroimmunology
Link ID: 27370 - Posted: 07.16.2020

by Sarah DeWeerdt The amygdala is a deep brain structure about the size and shape of an almond — from which it gets its name. It is commonly described as a center for detecting threats in the environment and for processing fear and other emotions. Researchers who study the region argue that its function is broader — and that it plays a crucial role in autism. “Emotion is such a big part in social function,” says Wei Gao, associate professor of biomedical sciences at Cedars-Sinai Medical Center in Los Angeles, California. “So I think the amygdala has got to have a big role in the emergence or development of autism-related traits.” The amygdala is the brain’s surveillance hub: involved in recognizing when someone with an angry face and hostile body language gets closer, tamping down alarm when a honeybee buzzes past, and paying attention when your mother teaches you how to cross the street safely and points out which direction traffic will be coming from — in other words, things people should run away from, but also those they should look toward, attend to and remember. In that sense, researchers say, this little knot of brain tissue shows just how tangled up emotion and social behavior are for humans. “Important events tend to be emotional in nature,” as do most aspects of social behavior, says John Herrington, assistant professor of psychiatry at the Children’s Hospital of Philadelphia in Pennsylvania. As a result, the amygdala has long been a focus of autism research, but its exact role in the condition is still unclear. © 2020 Simons Foundation

Keyword: Autism; Emotions
Link ID: 27363 - Posted: 07.15.2020

By Rachel Nuwer In the years leading up to the roaring 2020s, young people were once again dropping acid. Onetime Harvard psychologist Timothy Leary died almost 25 years ago, after which some of his ashes were launched into space. But from 2015 to 2018, the rate of “turning on and tuning in” with LSD, to paraphrase Leary, increased by more than 50 percent in the U.S.—a rise perhaps fueled by a need for chemical escapism. Those results were published in the July issue of Drug and Alcohol Dependence. The authors of the study suspect that many users may be self-medicating with the illegal substance to find relief from depression, anxiety and general stress over the state of the world. “LSD is used primarily to escape. And given that the world’s on fire, people might be using it as a therapeutic mechanism,” says Andrew Yockey, a doctoral candidate in health education at the University of Cincinnati and lead author of the paper. “Now that COVID’s hit, I’d guess that use has probably tripled.” To arrive at their findings, Yockey and his colleagues turned to data collected from more than 168,000 American adults by the National Survey on Drug Use and Health, an annual, nationally representative questionnaire. They analyzed trends since 2015, partly because of the timing of the 2016 presidential election. The researchers found that past-year LSD use increased by 56 percent over three years. The rise was especially pronounced in certain user groups, including people with college degrees (who saw a 70 percent increase) and people aged 26 to 34 (59 percent), 35 to 49 (223 percent) and 50 or older (45 percent). Younger people aged 18 to 25, on the other hand, decreased their use by 24 percent. © 2020 Scientific American

Keyword: Drug Abuse; Stress
Link ID: 27356 - Posted: 07.11.2020

Sherry H-Y. Chou Aarti Sarwal Neha S. Dangayach The patient in the case report (let’s call him Tom) was 54 and in good health. For two days in May, he felt unwell and was too weak to get out of bed. When his family finally brought him to the hospital, doctors found that he had a fever and signs of a severe infection, or sepsis. He tested positive for SARS-CoV-2, the virus that causes COVID-19 infection. In addition to symptoms of COVID-19, he was also too weak to move his legs. When a neurologist examined him, Tom was diagnosed with Guillain-Barre Syndrome, an autoimmune disease that causes abnormal sensation and weakness due to delays in sending signals through the nerves. Usually reversible, in severe cases it can cause prolonged paralysis involving breathing muscles, require ventilator support and sometimes leave permanent neurological deficits. Early recognition by expert neurologists is key to proper treatment. We are neurologists specializing in intensive care and leading studies related to neurological complications from COVID-19. Given the occurrence of Guillain-Barre Syndrome in prior pandemics with other corona viruses like SARS and MERS, we are investigating a possible link between Guillain-Barre Syndrome and COVID-19 and tracking published reports to see if there is any link between Guillain-Barre Syndrome and COVID-19. Some patients may not seek timely medical care for neurological symptoms like prolonged headache, vision loss and new muscle weakness due to fear of getting exposed to virus in the emergency setting. People need to know that medical facilities have taken full precautions to protect patients. Seeking timely medical evaluation for neurological symptoms can help treat many of these diseases. © 2010–2020, The Conversation US, Inc.

Keyword: Movement Disorders; Neuroimmunology
Link ID: 27353 - Posted: 07.08.2020

Jordana Cepelewicz We consider the brain the very center of who we are and what we do: ruler of our senses, master of our movements; generator of thought, keeper of memory. But the brain is also rooted in a body, and the connection between the two goes both ways. If certain internal receptors indicate hunger, for instance, we’re driven to eat; if they indicate cold, we dress more warmly. However, decades of research have also shown that those sensations do much more than alert the brain to the body’s immediate concerns and needs. As the heart, lungs, gut and other organs transmit information to the brain, they affect how we perceive and interact with our environment in surprisingly profound ways. Recent studies of the heart in particular have given scientists new insights into the role that the body’s most basic processes play in defining our experience of the world. In the late 19th century, the psychologist William James and the physician Carl Lange proposed that emotional states are the brain’s perception of certain bodily changes in response to a stimulus — that a pounding heart or shallow breathing gives rise to emotions like fear or anger rather than vice versa. Researchers have since found many examples of physiological arousal leading to emotional arousal, but they wanted to delve deeper into that link. Beginning in the 1930s, scientists found that systole dampens pain and curbs startle reflexes. Further work traced this effect to the fact that during systole, pressure sensors send signals about the heart’s activity to inhibitory regions of the brain. This may be useful because, while the brain must constantly balance and integrate internal and external signals, “you cannot pay attention to everything at once,” said Ofer Perl, a postdoctoral research fellow at the Icahn School of Medicine at Mount Sinai in New York. Experiments even showed that people were more likely to forget words that were presented exactly at systole than words that they saw and encoded during the rest of the cardiac cycle. All Rights Reserved © 2020

Keyword: Emotions
Link ID: 27349 - Posted: 07.08.2020

Nicola Davis People living with inflammatory bowel disease (IBD) have more than twice the risk of developing dementia, researchers have revealed in the latest study to link gut health to neurological diseases. A growing body of research suggests changes in the gastrointestinal tract may affect the brain through two-way communication known as the gut-brain axis. Scientists have previously found signs that the abnormally folded proteins involved in Parkinson’s disease may arise in the gut and travel to the brain via the vagus nerve, while changes to the microbial community in the gut – the gut microbiome – have been linked with conditions ranging from mental health problems to motor neurone disease and Parkinson’s disease. In addition, previous work has shown people with IBD have a higher risk of Parkinson’s disease. Researchers now say they have found that people with IBD – inflammatory conditions including ulcerative colitis and Crohn’s disease, which have symptoms including stomach pain and bloody stools – have a greater chance of developing dementia than those without, and tend to be diagnosed with dementia several years earlier. “The findings suggest that there may be a connection between IBD and neurocognitive decline,” said Dr Bing Zhang, first author of the research from the University of California San Francisco. While the study does not prove IBD causes dementia, Zhang and his colleagues outlined a number of ways the two may be linked, noting chronic inflammation has been suggested to trigger processes involved in Alzheimer’s disease, and blood clots and stroke – features involved in vascular dementia. © 2020 Guardian News & Media Limited or its affiliated companies.

Keyword: Alzheimers; Neuroimmunology
Link ID: 27326 - Posted: 06.26.2020

By Andrew McCormick The psychiatrist was bald, with kind eyes, a silver goatee and the air of exhaustion that follows a person who works hard in a difficult field. It was March 2019, and having let an old prescription expire months earlier, I had gone to the Veterans Affairs hospital in Manhattan — my first time at a V.A. — hoping to get antidepressants. In a small, sparsely decorated office, the doctor and I faced each other across a wide desk. He told me about various V.A. programs — counseling, group therapy, a veterans’ yoga class, each accompanied by a flier — and described at length the V.A.’s crisis hotline. I appreciated his care, but I wasn’t there to break any new emotional ground; I really just wanted a prescription and to be on my way. I answered briskly as he worked through the questions any mental health worker asks you on a first visit. Did I have a history of anxiety or depression? Yes. Had I had thoughts of hurting myself or of suicide? Not really. Did anyone in my family have a history of mental health issues? Suddenly, my brain went foggy and my thoughts failed to connect. My speech slowed, and I began struggling to form sentences. Weird, I thought. I hadn’t felt sick. I worried the doctor might think he’d hit a nerve, when in fact I had answered questions like these many times before, including in post-deployment health evaluations in the Navy. My vision blurred. Eyes aflutter, I motioned to the doctor to give me a minute. I think I laughed. With the calm dispassion of a man who’s seen it all, the doctor picked up a phone beside him: “I’m going to need some help,” he said. “He’s about to pass out. . . . Yeah, he looks like he might throw up.” I swallowed hard. I tried not to. “Yeah, he just threw up.” © 2020 The New York Times Company

Keyword: Depression; Stress
Link ID: 27319 - Posted: 06.24.2020

By Elizabeth Pennisi When Muhammad Ali duked it out with Joe Frazier in the boxing ring, it’s unlikely anyone thought about what was happening to the genes inside their heads. But a new study in fighting fish has demonstrated that as the fish spar, genes in their brains begin to turn on and off in a coordinated way. It’s still unclear what those genes are doing or how they influence the skirmish, but similar changes may be happening in humans. The work is “a really cool example of the way that social interactions can get under the skin,” says Alison Bell, a behavioral ecologist at the University of Illinois, Urbana-Champaign, who was not involved with the study. The molecular basis of how animals, humans included, coordinate behaviors is a mystery. Whether it be mating or fighting, “animals need to be really good at this, but we don’t particularly know how they do it,” says Hans Hofmann, an evolutionary social neuroscientist at the University of Texas, Austin. When molecular biologist Norihiro Okada at Kitasato University in Japan first saw Siamese fighting fish (Betta splendens) on TV, he realized the animals could help solve this mystery. Native to Thailand, these goldfish-size swimmers have been bred to have very large, vibrantly colored fins and tails. Aquarium owners tend to keep their pets, or “bettas” as they are often called, separate. The fish are territorial and can get into fights that last more than 1 hour, with strikes, bites, and chases (as seen in the video below). They will even lock jaws in a fish version of an arm wrestle. Okada and colleagues videotaped more than a dozen hours of fights between 17 pairs of fish and then analyzed what happened—and when—in each fight. The longer the fight, the more the fish synchronize their behavior, timing their circling, striking, and biting more than anyone had ever realized, the researchers report today in PLOS Genetics. © 2020 American Association for the Advancement of Science.

Keyword: Aggression; Epigenetics
Link ID: 27310 - Posted: 06.19.2020

Tracking the brain’s reaction to virtual-reality-simulated threats such as falling rocks and an under-researched fear reduction strategy may provide better ways of treating anxiety disorders and preventing relapses. Hippocrates described them as ‘masses of terrors,’ while French physicians in the 18th century labelled them as ‘vapours’ and ‘melancholia.’ Nowadays we know that panic attacks, a common symptom of anxiety, can be linked to intense phobias or even a general anxiety disorder with no specific source. ‘But if you’re not sure what a panic attack is, it’s very frightening,’ said Dr Iris Lange, a psychologist based at KU Leuven, in Belgium. ‘You probably think you will get a heart attack. We see a lot of people having to go to the medical emergency services.’ According to an EU and OECD report from 2018, anxiety disorders are the most common mental disorder across European Union countries and affect an estimated 25 million people. Decades of research have shown how anxiety amplifies sensitivity to threats. People with high anxiety will perceive even non-harmful things, such as insects, as potential threats. However, researchers have until recently used mice and rat experiments to understand the neuroscientific concepts of how anxiety patients behave when defending themselves from such perceived threats. ‘We are translating concepts that are probably not translatable (to humans), or we're just translating very core concepts,’ said Professor Dominik R Bach, a neuroscientist at University College London, in the UK.

Keyword: Stress; Learning & Memory
Link ID: 27305 - Posted: 06.17.2020

An epidemic of fatal drug overdoses across Canada is on the rise amid COVID-19 pandemic restrictions that harm-reduction workers and doctors say exacerbates the toxic supply. Overdose prevention sites continue to run but physical distancing guidelines mean fewer people are able to use the services. For example, a site in Toronto that previously averaged more than 100 visits a day now sees fewer than half that. From March 2019 to May 2020, Ontario's coroner reported a 25 per cent increase in fatal overdoses, based on preliminary estimates for all substances. Nick Boyce, director of the Ontario Harm Reduction Network, said the increase is significant. "It matches anecdotally what I've been hearing from the front-line workers we work with around the province," Boyce said. "They're all saying deaths are going up. But to hear that number and to see that number, I was not expecting it to be that high." Last year, fentanyl directly contributed to about 75 per cent of opioid-related deaths in Ontario. More than 14,000 Canadians have been killed by opioids in the last four years, according to federal data. "Laws actually incentivize drug dealers and suppliers to come up with new and different drugs," Boyce said. "We learned this lesson in the 1920s with alcohol prohibition when people switched from drinking beer to toxic moonshine. We're seeing that with the opioid drug supply now." ©2020 CBC/Radio-Canada.

Keyword: Drug Abuse; Stress
Link ID: 27296 - Posted: 06.10.2020

Béatrice Pudelko Fear, anxiety, worry, lack of motivation and difficulty concentrating — students cite all sorts of reasons for opposing distance learning. But are these excuses or real concerns? What does science say? At the beginning of the pandemic, when universities and CEGEPs, Québec’s junior colleges, were putting in place scenarios to continue teaching at a distance, students expressed their opposition by noting that the context was “not conducive to learning.” Teachers also felt that the students were “simply not willing to continue learning in such conditions.” A variety of negative emotions were reported in opinion columns, letters and surveys. A petition was even circulated calling for a suspension of the winter session, which Education Minister Jean-François Roberge refused. Students are not the only ones who have difficulty concentrating on intellectual tasks. In a column published in La Presse, Chantal Guy says that like many of her colleagues, she can’t devote herself to in-depth reading. “After a few pages, my mind wanders and just wants to go check out Dr. Arruda’s damn curve,” Guy wrote, referring to Horacio Arruda, the province’s public health director. In short: “It’s not the time that’s lacking in reading, it’s the concentration,” she said. “People don’t have the head for that.” Why do students feel they don’t have the ability for studies? Recent advances in cognitive science provide insights into the links between negative emotions and cognition in tasks that require sustained intellectual investment. © 2010–2020, The Conversation US, Inc.

Keyword: Attention; Stress
Link ID: 27293 - Posted: 06.09.2020

Allison Aubrey Sleep makes everything easier, even in these difficult days. Why then is it so hard to get? For most of us, right now, it takes work to settle our minds so we can rest. From medication to melatonin to putting on fuzzy socks, we all have routines we hope will help us drift off into sleep. And for good reason. "You've just got to gradually bring the brain and the body down, sort of from that altitude of wakefulness onto the hard, safe landing pad of sleep at night," says Matthew Walker, a sleep researcher at the University of California, Berkeley and the author of Why We Sleep. Don't count sheep Not only will counting sheep not help you fall asleep faster, but a study by Allison Harvey at UC Berkeley found that it actually "made it harder to fall asleep, and it took you longer to fall asleep." Do use calming mental imagery Harvey found that other types of mental imagery, however, are conducive to sleep. Walker suggests imagining a pleasant walk you've taken before, "like a hike in the woods or if it's a walk down on a beach that you do on vacation." Mentally navigating that walk, he says, "tended to hasten the speed of the onset of sleep." Try relaxation and meditation apps as training wheels "I'm a big fan of those things," says Chris Winter, a neurologist and sleep researcher in Charlottesville, Virginia. These apps can train you to meditate — to clear away regrets about the past and worries about the future so you can learn to be in the moment. "The ability to settle your mind and initiate sleep is a skill," Winter says. "The more you practice it, the better you'll get at it and the more confident you become." Melatonin has mixed results © 2020 npr

Keyword: Sleep; Stress
Link ID: 27289 - Posted: 06.08.2020

­­Researchers at the National Institute of Neurological Disorders and Stroke (NINDS), a part of the National Institutes of Health, have identified a specific, front-line defense that limits the infection to the olfactory bulb and protects the neurons of the olfactory bulb from damage due to the infection. Neurons in the nose respond to inhaled odors and send this information to a region of the brain referred to as the olfactory bulb. Although the location of nasal neurons and their exposure to the outside environment make them an easy target for infection by airborne viruses, viral respiratory infections rarely make their way from the olfactory bulb to the rest of the brain, where they could cause potentially fatal encephalitis. The study was published in Science Immunology. Taking advantage of special viruses that can be tracked with fluorescent microscopy, the researchers led by Dorian McGavern, Ph.D., senior investigator at NINDS, found that a viral infection that started in the nose was halted right before it could spread from the olfactory bulb to the rest of the central nervous system. “Airborne viruses challenge our immune system all the time, but rarely do we see viral infections leading to neurological conditions,” said Dr. McGavern. “This means that the immune system within this area has to be remarkably good at protecting the brain.” Additional experiments showed that microglia, immune cells within the central nervous system, took on an underappreciated role of helping the immune system recognize the virus and did so in a way that limited the damage to neurons themselves. This sparing of neurons is critical, because unlike cells in most other tissues, most neuronal populations do not come back.

Keyword: Chemical Senses (Smell & Taste); Glia
Link ID: 27287 - Posted: 06.06.2020

Veronique Greenwood Inside a series of tubes in a bright, warm room at Harvard Medical School, hundreds of fruit flies are staying up late. It has been days since any of them have slept: The constant vibrations that shake their homes preclude rest, cling as they might to the caps of the tubes for respite. Not too far away in their own tubes live other sleepless flies, animated with the calm persistence of those consigned to eternal day. A genetic tweak to certain neurons in their brains keeps them awake for as long as they live. They do not live long. The shaken flies and the engineered flies both die swiftly — in fact, the engineered ones survive only half as long as well-rested controls. After days of sleeplessness, the flies’ numbers tumble, then crash. The tubes empty out. The lights shine on. We all know that we need sleep to be at our best. But profound sleep loss has more serious and immediate effects: Animals completely deprived of sleep die. Yet scientists have found it oddly hard to say exactly why sleep loss is lethal. Sleep is primarily seen as a neurological phenomenon, and yet when deprived creatures die, they have a puzzlingly diverse set of failures in the body outside the nervous system. Insufficient sleep in humans and lab animals, if chronic, sets up health problems that surface over time, such as heart disease, high blood pressure, obesity and diabetes. But those conditions are not what slays creatures that are 100% sleep deprived within days or weeks. What does sleep do that makes it deadly to go without? Could answering that question explain why we need sleep in the first place? Under the pale light of the incubators in Dragana Rogulja’s lab at Harvard Medical School, sleepless flies have been living and dying as she pursues the answers. Simons Foundation © 2020

Keyword: Sleep; Neuroimmunology
Link ID: 27285 - Posted: 06.06.2020

Patti Neighmond Having trouble getting to sleep these days? You're not alone. For people with a history of insomnia, sleep problems are magnified right now. And many who never struggled before are suddenly experiencing interruptions in their nightly rest or difficulty falling asleep. It's pretty typical that in moments of anxiety, sleep suffers, but the situation we're all living through today means the anxiety never stops, says neurologist and sleep specialist Dr. Douglas Kirsch, past president of the American Academy of Sleep Medicine. For occasional insomnia, the problems go away when the specific trigger is resolved. But now, he says, there's no resolution or relief from "the constant inflow of anxiety-provoking news." And that spells trouble for sleep. Family doctors and sleep specialists say many people who are feeling grief, frustration and anxiety, whether about the pandemic, financial worries or racial inequalities and unrest in the U.S., are finding themselves unable to sleep. And it's not just the worry. It's the interrupted schedules and isolation of the pandemic too. Here's why it's not all in your head and what they say you can do about it. We're suffering "collective social anxiety" — tame it to sleep better Before the pandemic, Arlene Rentas, a busy currency trader in Charlotte, N.C., kept a regular schedule and slept like clockwork. She would awaken at 5:30 in the morning and be out the door by 7 a.m., home by 8 p.m. and, after a quick run, in bed around 10 p.m. © 2020 npr

Keyword: Sleep; Stress
Link ID: 27276 - Posted: 06.03.2020

By Laura Sanders The heart has its own “brain.” Now, scientists have drawn a detailed map of this little brain, called the intracardiac nervous system, in rat hearts. The heart’s big boss is the brain, but nerve cells in the heart have a say, too. These neurons are thought to play a crucial role in heart health, helping to fine-tune heart rhythms and perhaps protecting people against certain kinds of heart disease. But so far, this local control system hasn’t been mapped in great detail. To make their map, systems biologist James Schwaber at Thomas Jefferson University in Philadelphia and colleagues imaged male and female rat hearts with a method called knife-edge scanning microscopy, creating detailed pictures of heart anatomy. Those images could then be built into a 3-D model of the heart. The scientists also plucked out individual neurons and measured the amount of gene activity within each cell. These measurements helped sort the heart’s neurons into discrete groups. Most of these neuron clusters dot the top of the heart, where blood vessels come in and out. Some of these clusters spread down the back of the heart, and were particularly abundant on the left side. With this new view of the individual clusters, scientists can begin to study whether these groups have distinct jobs. The comprehensive, 3-D map of the heart’s little brain could ultimately lead to targeted therapies that could treat or prevent heart diseases, the authors write online May 26 in iScience. © Society for Science & the Public 2000–2020.

Keyword: Development of the Brain
Link ID: 27274 - Posted: 06.03.2020

By Laura Sanders I’m on deadline, but instead of focusing, my mind buzzes with unrelated tidbits. My first-grader’s tablet needs an update before her online school session tomorrow. Heartbreaking deaths from COVID-19 in New York City make me tear up again. Was that a kid’s scream from upstairs? Do I need to run up there, or will my husband take care of it? These hornets of thoughts drive out the clear thinking my job demands. Try as I might to conjure up a coherent story, the relevant wisps float away. I’m scattered, worried and tired. And even though we’re all socially isolated, I’m not alone. The pandemic — and its social and economic upheavals — has left people around the world feeling like they can’t string two thoughts together. Stress has really done a number on us. That’s no surprise to scientists who study stress. Our brains are not built to do complex thinking, planning and remembering in times of massive upheaval. Feeling impaired is “a natural biological response,” says Amy Arnsten, a neuroscientist at Yale School of Medicine. “This is how our brains are wired.” Decades of research have chronicled the ways stress can disrupt business as usual in our brains. Recent studies have made even more clear how stress saps our ability to plan ahead and have pointed to one way that stress changes how certain brain cells operate. Scientists recognize the pandemic as an opportunity for a massive, real-time experiment on stress. COVID-19 foisted on us a heavy mix of health, economic and social stressors. And the end date is nowhere in sight. Scientists have begun collecting data to answer a range of questions. But one thing is clear: This pandemic has thrown all of us into uncharted territory. © Society for Science & the Public 2000–2020

Keyword: Stress
Link ID: 27266 - Posted: 05.28.2020