Chapter 14. Attention and Consciousness

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1251

Hannah Devlin French scientists have been criticised for concealing the death of the patient at the centre of a breakthrough in which consciousness was restored to a man in a persistent vegetative state. The treatment was hailed as a major advance in the field and suggested that the outlook for these patients and their families might be less bleak than was previously thought. However, it has emerged that the scientists behind the research withheld the fact that the man, who remains anonymous, died a few months after receiving the therapy. The team justified the decision, citing the family’s wish to keep the death private and a concern that people might have wrongly linked the therapy, which involved nerve stimulation, to the 35-year-old’s death from a lung infection. However, others said the decision had created an over-optimistic narrative of a patient on an upward trajectory. Damian Cruse, a cognitive neuroscientist at the University of Birmingham, said: “I do worry that the media coverage of the study gave a more hopeful message to other families in this situation than the message that perhaps would have been delivered with all of the facts … If we protect patient anonymity, then there’s no reason not to be able to tell the full story.” When the paper came out last month, Angela Sirigu, who led the work at the Institut des Sciences Cognitives Marc Jeannerod in Lyon, France, told the Guardian: “He is still paralysed, he cannot talk, but he can respond. Now he is more aware.” © 2017 Guardian News and Media Limited

Keyword: Consciousness
Link ID: 24155 - Posted: 10.06.2017

By Caroline Williams We are used to hearing that meditation is good for the brain, but now it seems that not just any kind of meditation will do. Just like physical exercise, the kind of improvements you get depends on exactly how you train – and most of us are doing it all wrong. That the brain changes physically when we learn a new skill, like juggling or playing a musical instrument, has been known for over a decade. Previous studies had suggested that meditation does something similar for parts of the brain involved in focused attention. Two new studies published in Science Advances suggest that certain kinds of meditation can change social and emotional circuitry, too. The research comes out of the ReSource Project at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, and looked at the effects of three different meditation techniques on the brains and bodies of more than 300 volunteers over 9 months. One technique was based on mindfulness meditation, and taught people to direct attention to the breath or body. A second type concentrated on compassion and emotional connection via loving kindness meditations and non-judgmental problem-sharing sessions with a partner. A final method encouraged people to think about issues from different points of view, also via a mix of partnered sessions and solo meditation. In one study, MRI scans taken after each three-month course showed that parts of the cortex involved in the specific skill that was trained grew thicker in comparison with scans from a control group. © Copyright New Scientist Ltd.

Keyword: Stress
Link ID: 24149 - Posted: 10.05.2017

Alva Noë Philosophers have long worried whether it is ever really possible to know how things are, internally, with another. After all, we are confined to the external — to mere behavior, or perhaps to behavior plus measurements of brain activity. But the thoughts, feelings, images, sensations of another person, these are always hidden from our direct inspection. The situation of doctors facing unresponsive victims of brain injury is a terrifying real-world example of the fact that we our locked out of the minds of another. Consider the remarkable report, published Monday in Current Biology and discussed here, that a team in France has enabled a patient who has languished for 15 years in a vegetative state, to show, as they claim, a marked improvement in his levels of consciousness. They achieved this by means of the direct and sustained stimulation of the vagus nerve. As Dr. Angela Sirigu, one of the team leaders, explains by email, the results are dramatic: "After VNS [vagus nerve stimulation] the patient could respond to simple orders that were impossible before (to follow an object with his gaze, to turn the head on the other side of the bed on verbal request). His ability to sustain attention, like staying awake when listening to his therapist reading a book, greatly improved as reported by the mother. After stimulation, we found also responses to 'threat' that were absent before implantation. For instance, when the examiner's head suddenly approached to the patient's face, he reacted with surprise by opening the eyes wide, a reaction which indicates that he was fully aware that the examiner was too close to him." © 2017 npr

Keyword: Consciousness
Link ID: 24127 - Posted: 09.30.2017

Hannah Devlin A 35-year-old man who had been in a persistant vegetative state (PVS) for 15 years has shown signs of consciousness after receiving a pioneering therapy involving nerve stimulation. The treatment challenges a widely-accepted view that there is no prospect of a patient recovering consciousness if they have been in PVS for longer than 12 months. Since sustaining severe brain injuries in a car accident, the man had been completely unaware of the world around him. But when fitted with an implant to stimulate the vagus nerve, which travels into the brain stem, the man appeared to flicker back into a state of consciousness. He started to track objects with his eyes, began to stay awake while being read a story and his eyes opened wide in surprise when the examiner suddenly moved her face close to the patient’s. He could even respond to some simple requests, such as turning his head when asked – although this took about a minute. Angela Sirigu, who led the work at the Institut des Sciences Cognitives Marc Jeannerod in Lyon, France, said: “He is still paralysed, he cannot talk, but he can respond. Now he is more aware.” Niels Birbaumer, of the University of Tübingen and a pioneer of brain-computer interfaces to help patients with neurological disorders communicate, said the findings, published in the journal Current Biology, raised pressing ethical issues. “Many of these patients may and will have been neglected, and passive euthanasia may happen often in a vegetative state,” he said. “This paper is a warning to all those believing that this state is hopeless after a year.” © 2017 Guardian News and Media Limited

Keyword: Consciousness
Link ID: 24116 - Posted: 09.26.2017

By Anil Ananthaswamy “We were very happy when we saw him reacting,” says Angela Sirigu of the French National Centre for Scientific Research in Bron, leader of the team that has “woken” a man from a vegetative state. “This patient is like our baby. We are very attached to him. He’ll always remain in our hearts, because he’s our first patient.” Sirigu and her colleagues chose the 35-year-old man to be the first to trial vagus nerve stimulation because his condition had not improved for 15 years. They reasoned that any improvements in his behaviour would be down to the stimulation and not simply chance fluctuations. Before the stimulation started, the man was unresponsive, and his eyes were shut for most of the day. If open, they would stare into empty space, says Sirigu. “You had the feeling he was not looking at you.” That changed once her team began stimulating his vagus nerve. Almost immediately, he began opening his eyes more often. About a month after stimulation began, his behavioural improvements started stabilising. “His eyes were moving around as if he wanted to follow me,” says Sirigu. He then began to respond to instructions to turn his gaze from one side of the bed to another. When a clinician asked him to smile, he’d react by raising his left cheek. When the team played some of his favourite music by French singer Jean-Jacques Goldman, the man had tears in his eyes. Sirigu says vagus nerve stimulation activates the neuroendocrinal system, which can explain the tears. But it happened at the same time as he listened to his preferred music, says Sirigu. “What can we say? We can conclude that there was an emotional reaction.” © Copyright New Scientist Ltd.

Keyword: Consciousness
Link ID: 24115 - Posted: 09.26.2017

By Anna Azvolinsky To define human consciousness at the neuronal level is among the most difficult of tasks for neuroscience. Still, researchers have made inroads, most recently by sinking electrodes deep with the brains of epilepsy patients and recording the activity of single neurons as the awake patients described whether they observed an image flashed before them. Previous work had found that the stronger the individual neuron activity, the more likely it is to be associated with conscious perception. In this latest study, published today (September 21) in Current Biology, researchers from the University of Bonn Medical Center in Germany find a second factor—timing—that appears important to the brain’s conscious awareness. Firing of single neurons within the medial temporal lobe (MTL), which is important for long-term memory, was weaker and delayed when human subjects were not aware of seeing an image compared to when they reported seeing one. “[The authors] contribute a major piece of the puzzle of human consciousness with a set of data that is very impressive,” says Rafael Malach, a neurobiologist who studies the human brain at the Weizmann Institute of Science in Israel and who was not involved in the work. “This is a well-designed study done in a medical setting that generated a unique dataset that is not easy to obtain,” says Itzhak Fried, a professor of neurosurgery at the Geffen School of Medicine at the University of California, Los Angeles, who was also not involved in the work but who has previously collaborated with one of the study’s authors, Florian Mormann. © 1986-2017 The Scientist

Keyword: Consciousness
Link ID: 24100 - Posted: 09.23.2017

James Gorman Imagine a species that lived in a world of smells and didn’t pay a lot of attention to what things look like. What would members of that species use for a mirror? Would they even want a mirror? Yes, of course, we are talking about dogs, who usually don’t seem to understand the mirrors humans use. Sometimes they ignore them. Often they bark as if the dog in the mirror were a stranger. Scientists use mirrors to find out if animals recognize themselves, to see if they have some sense of self. Chimpanzees do very well on what is called the mirror test. A chimp will notice a mark on his face and perhaps even use the mirror to aid in removing it. He might use the mirror to examine parts of his body he can’t normally see, like the inside of his mouth. Researchers have reported that dolphins, one elephant and a magpie have also passed this test. Dogs have not, and that has raised questions about whether dogs might recognize themselves if another sense were tested. Alexandra Horowitz, a psychologist at Barnard College who studies the behavior of dogs and has written several books about them, decided to give dogs a chance at showing self-recognition on their own, smelly terms. In a recent study, she concludes that they do recognize the smell of their own urine. While some researchers find the study intriguing, the scientist who first developed that mirror mark test doesn’t think the evidence supports her conclusion. Still, even the idea of a smell mirror is mind (nose?) boggling. “I had always flirted with the idea in my head that there should be an olfactory mirror,” Dr. Horowitz said, acknowledging that “it could be horrifying for humans.” © 2017 The New York Times Company

Keyword: Chemical Senses (Smell & Taste); Consciousness
Link ID: 24095 - Posted: 09.22.2017

By Ariana Eunjung Cha Over the past two decades, U.S. parents and teachers have reported epidemic levels of children with trouble focusing, impulsive behavior and so much energy that they are bouncing off walls. Educators, policymakers and scientists have referred to attention-deficit/hyperactivity disorder, or ADHD, as a national crisis and have spent billions of dollars looking into its cause. They've looked at genetics, brain development, exposure to lead, the push for early academics, and many other factors. But what if the answer to at least some cases of ADHD is more obvious? What if, as a growing number of researchers are proposing, many kids today simply aren't getting the sleep they need, leading to challenging behaviors that mimic ADHD? That provocative and controversial theory has been gaining momentum in recent years, with several studies suggesting strong links between ADHD and the length, timing and quality of sleep. In an era in which even toddlers know the words Netflix and Hulu, when demands for perfectionism extend to squirmy preschoolers and many elementary-age students juggle multiple extracurricular activities each day, one question is whether some kids are so stimulated or stressed that they are unable to sleep as much or as well as they should. Growing evidence suggests that a segment of children with ADHD are misdiagnosed and actually suffer from insufficient sleep, insomnia, obstructed breathing or another known sleep disorder. But the most paradigm-challenging idea may be that ADHD may itself be a sleep disorder. If correct, this idea could fundamentally change the way ADHD is studied and treated. © 1996-2017 The Washington Post

Keyword: ADHD; Sleep
Link ID: 24092 - Posted: 09.21.2017

Patrick Barkham Humans trying to chat each other up in a noisy nightclub may find verbal communication futile. But it appears even more pointless for pumpkin toadlets after scientists discovered that females have lost the ability to hear the sound of male mating calls. An international team from Brazil, Denmark and the UK has discovered that the males of two species of tiny orange frogs continue to make high-pitched calls despite neither females nor males being able to hear them. It is believed to be the first case in the animal kingdom of a communication signal enduring even after its target audience has lost the ability to detect it. Field studies began in Brazil’s Atlantic forest by playing frog calls to determine how these species, which possess a middle ear, could hear their own calls. Lead researcher Dr Sandra Goutte at the Universidade Estadual de Campinas, São Paulo, was surprised to find the frogs refused to respond to her playback communication, didn’t change their calling behaviour and didn’t even orient themselves towards the sounds. “I thought I would find the sound transmission pathway from the outside to the middle ear,” she said. “We didn’t think it would be possible that they would not be able to hear their own calls.” © 2017 Guardian News and Media Limited

Keyword: Hearing; Sexual Behavior
Link ID: 24088 - Posted: 09.21.2017

Sigal Samuel James Kugel has been spent his entire scholarly career studying the Bible, but some very basic questions about it still obsess him. What was it about the minds of ancient Israelites that allowed them to hear and see God directly—or at least, to believe that they did? Were the biblical prophets literally hearing voices and seeing visions, understanding themselves to be transmitting God’s own exact words? If so, why did such direct encounters with God become rarer over time? In his new and final book, The Great Shift, Kugel investigates these questions through the lens of neuroscientific findings. (The approach is reminiscent of other recent books, like Kabbalah: A Neurocognitive Approach to Mystical Experiences, co-written by a neurologist and a mysticism scholar.) First, Kugel uses biblical research to show that ancient people had a “sense of self” that was fundamentally different from the one modern Westerners have—and that this enabled them to experience and interpret prophecy differently than we do. Then he uses scientific research to show that we shouldn’t assume their view was wrong. If anything, our modern Western notion of the bounded, individual self is the anomaly; most human beings throughout history conceived of the self as a porous entity open to intrusions. In fact, much of the rest of the world today still does. Kugel cites several studies showing that even now, many healthy people hear voices—as much as 15 percent of the general population. He also cites a recent cross-cultural study in which researchers interviewed voice hearers in the United States, Ghana, and India. The researchers recorded “striking differences” in how the different groups of people felt about the voices they hear: In Ghana and India, many participants “insisted that their predominant or even only experience of the voice was positive. … Not one American did so.” (c) 2017 by The Atlantic Monthly Group.

Keyword: Consciousness; Attention
Link ID: 24084 - Posted: 09.20.2017

By Bernardo Kastrup An article on the neuroscience of infant consciousness, which attracted some interest a few years ago, asked: “When does your baby become conscious?” The premise, of course, was that babies aren’t born conscious but, instead, develop consciousness at some point. (According to the article, it is about five months of age). Yet, it is hard to think that there is nothing it feels like to be a newborn. Newborns clearly seem to experience their own bodies, environment, the presence of their parents, etcetera—albeit in an unreflective, present-oriented manner. And if it always feels like something to be a baby, then babies don’t become conscious. Instead, they are conscious from the get-go. The problem is that, somewhat alarmingly, the word “consciousness” is often used in the literature as if it entailed or implied more than just the qualities of experience. Dijksterhuis and Nordgren, for instance, insisted that “it is very important to realize that attention is the key to distinguish between unconscious thought and conscious thought. Conscious thought is thought with attention.” This implies that if a thought escapes attention, then it is unconscious. But is the mere lack of attention enough to assert that a mental process lacks the qualities of experience? Couldn’t a process that escapes the focus of attention still feel like something? Consider your breathing right now: the sensation of air flowing through your nostrils, the movements of your diaphragm, etcetera. Were you not experiencing these sensations a moment ago, before I directed your attention to them? Or were you just unaware that you were experiencing them all along? By directing your attention to these sensations, did I make them conscious or did I simply cause you to experience the extra quality of knowing that the sensations were conscious? © 2017 Scientific American,

Keyword: Consciousness; Attention
Link ID: 24083 - Posted: 09.20.2017

You may well be yawning just reading this - it's contagious. Now researchers have looked at what happens in our brains to trigger that response. A University of Nottingham team found it occurs in a part of the brain responsible for motor function. The primary motor cortex also plays a part in conditions such as Tourette's syndrome. So the scientists say understanding contagious yawning could also help understand those disorders too. Contagious yawning is a common form of echophenomena - the automatic imitation of someone else's words or actions. Echophenomena is also seen in Tourette's, as well as in other conditions, including epilepsy and autism. To test what's happening in the brain during the phenomenon, scientists monitored 36 volunteers while they watched others yawning. In the study, published in the journal Current Biology, some were told it was fine to yawn while others were told to stifle the urge. The urge to yawn was down to how each person's primary motor cortex worked - its "excitability". And, using external transcranial magnetic stimulation (TMS), it was also possible to increase "excitability" in the motor cortex and therefore people's propensity for contagious yawns. Georgina Jackson, professor of cognitive neuropsychology who worked on the study, said the finding could have wider uses: "In Tourette's, if we could reduce the excitability we might reduce the ticks, and that's what we are working on." Prof Stephen Jackson, who also worked on the research, added: "If we can understand how alterations in cortical excitability give rise to neural disorders we can potentially reverse them. "We are looking for potential non-drug, personalised treatments, using TMS that might be effective in modulating imbalances in the brain networks." © 2017 BBC

Keyword: Attention
Link ID: 24022 - Posted: 09.01.2017

By Helen Thomson Have you ever seen the Virgin Mary in your grilled cheese? Or a screaming face inside a bell pepper? Seeing faces in inanimate objects is a common phenomenon. Now it seems that we’re not alone in experiencing it – monkeys do too. Pareidolia is the scientific term for erroneously perceiving faces where none exist. Other examples including seeing “ghosts” in blurry photos and the man in the moon. To investigate whether pareidolia was a uniquely human experience, Jessica Taubert at the US National Institute of Mental Health in Maryland and her colleagues trained five rhesus macaques to stare at pairs of photos. Each photo showed either an inanimate object that prompts pareidolia in humans, an equivalent object that doesn’t, or the face of a monkey (below). We already knew that both people and monkeys will look longer at images of faces than other things. So the team presented each of the photos in every possible pairing – 1980 in all – and measured the time the monkeys spent looking at each. The monkeys did indeed seem to succumb to pareidolia – they spent more time looking at illusory faces than the non-illusory photos they were paired with. Interestingly, they also spent more time looking at the illusory faces than the monkey faces, perhaps because they spent longer studying these more unusual “faces”, or because they tend to dislike holding the gaze of another monkey. © Copyright New Scientist Ltd.

Keyword: Attention
Link ID: 23997 - Posted: 08.25.2017

By Helen Thomson Our brains seem better at predictions than we are. A part of our brain becomes active when it knows something will be successfully crowdfunded, even if we consciously decide otherwise. If this finding stands up and works in other areas of life, neuroforecasting may lead to better voting polls or even predict changes in financial markets. To see if one can predict market behaviour by sampling a small number of people, Brian Knutson at Stanford University in California and his team scanned the brains of 30 people while they decided whether to fund 36 projects from the crowdfunding website Kickstarter. The projects were all recently posted proposals for documentary films. Each participant had their brain scanned while taking in the pictures and descriptions of each campaign, and they were then asked if they would want to fund the project. When the real Kickstarter campaigns ended a few weeks later, 18 of the projects had gained enough funding to go forward. Examining the participants’ brain scans, the team discovered that activity in a region called the nucleus accumbens had been different when they considered projects that later went on to be successful. Prediction paradox The team trained an algorithm to recognise these differences in brain activity using scan data from 80 per cent of the projects, then tested the program on the remaining 20 per cent. Using neural activity alone, the algorithm was able to forecast which Kickstarter campaigns would be funded with 59.1 per cent accuracy – more than would be expected by chance. © Copyright New Scientist Ltd.

Keyword: Attention
Link ID: 23984 - Posted: 08.22.2017

By Abby Olena Our brains quickly characterize everything we see as familiar or new, and scientists have been investigating this connection between vision and cognition for years. Now, research in Japanese macaques (Macaca fuscata) reveals that the activation of neurons in a part of the primate brain called the perirhinal cortex can cause monkeys to recognize new objects as familiar and vice versa. The study was published today (August 17) in Science. “There are a lot of really exciting aspects to this paper,” says neuroscientist David Sheinberg of Brown University, who did not participate in the work. “This group continues to make advances that are helping us understand how we convert visual impressions into things we know.” Primate brains process visual information through several brain structures that make up the ventral visual stream. The last stop in this stream is the perirhinal cortex, part of the medial temporal lobe. Scientists know that this brain structure plays roles in visual memory and object discrimination. But one open question is whether the perirhinal cortex represents objects’ physical traits or whether it might also communicate information about nonphysical attributes, such as whether an object has been seen before. “In the primate, the perirhinal cortex is the link between the visual pathway and the limbic memory system,” coauthor and University of Tokyo neuroscientist Yasushi Miyashita writes in an email to The Scientist. “Therefore, the perirhinal cortex is one of the most likely candidates in the brain where visual information is transformed to subjective semantic values by referring to one’s own memory.” © 1986-2017 The Scientist

Keyword: Attention
Link ID: 23979 - Posted: 08.19.2017

By Aylin Woodward Two newly identified brain areas in rhesus monkeys seem to help the animals recognise familiar faces. Primates, Homo sapiens included, must be able to differentiate between faces and recognise friend from foe because social hierarchies play a large role in daily life. But exactly how primate brains deal with faces is not completely clear. One idea is that the same parts of the brain are involved in recognising both familiar and unfamiliar faces, just with varying efficiency. But Sofia Landi and Winrich Freiwald at Rockefeller University in New York have now cast doubt on that thinking. Their work shows that distinct brain areas are responsible for recognising the primates you know. Many researchers have already shown that certain areas of the temporal and prefrontal cortex are involved in unfamiliar face perception in rhesus monkey brains. Using whole-brain fMRI scans of four monkeys, Landi and Freiwald have now identified two additional brain areas that play a role not only in unfamiliar face perception but also in recognising familiar faces. The two new areas are in the anterior temporal lobe – the part of our brains above and in front of our ears. One is in the perirhinal cortex and one is in the temporal pole. These regions lit up far more when the monkeys recognised a familiar face in a photograph, as opposed to when they were presented with images of a stranger. © Copyright New Scientist Ltd.

Keyword: Attention
Link ID: 23949 - Posted: 08.11.2017

By Erin Blakemore Do you talk to yourself? Don’t sweat it: Scientists say you’re not alone. And the ways in which you chatter to yourself, both in your head and out loud, are changing what neuroscientists know about the human brain. Writing in Scientific American, psychologist Charles Fernyhough reveals why we’re our best conversational partners. Scientists have only recently learned how to study self-talk — and it’s opening up exciting new avenues of research. It turns out there are two ways of chatting yourself up. In “inner speech,” you speak to yourself without making sound. With “private speech,” you do the same thing, just out loud. This chatter serves varied purposes: It can help people control themselves and relate to others. But it’s notoriously hard to study. So Fernyhough and colleagues figured out some inventive ways to prompt people to talk to themselves as they lay inside a functional magnetic resonance imaging, or fMRI, scanner. When they studied the brains of people who talked to themselves internally, the team noticed that spontaneous inner speech activates a different part of the brain than words that the participants were asked to say aloud. And people whose self-talk takes the form of a monologue seem to activate different brain areas than those who carry on a dialogue in their heads. © 1996-2017 The Washington Post

Keyword: Consciousness; Language
Link ID: 23924 - Posted: 08.07.2017

By Amanda Onion, While driving and accelerating in his car, a patient in France suddenly had a bizarre sensation. He felt like he was outside his car, looking in at his physical self, which was still at the wheel. The patient was part of a new study that links problems of the inner ear with eerie "out-of-body" experiences. These experiences arecurious, usually brief sensations in which a person's consciousness seems to exitthe body and then view the body from the outside. The study analyzed 210 patients who had visited their doctors with so-called vestibular disorders. The vestibular system, which is made up of several structures in the inner ear, provides the body with a sense of balance and spatial orientation. Problems with this system can cause dizziness or a floating sensation, among other symptoms. [7 Weird Facts About Balance] Maya Elzière, an ear, nose and throat specialist at Hôpital Européen in Marseille, France, and co-author of the study, enlisted patients who had experienced a range of issues, from recurrent vertigo and tinnitus to infections in the ear. Among these patients, 14 percent reported out-of-body experiences, compared with only 5 percent of healthy people without vestibular disorders who said the same. "Out-of-body experiences were about three times more frequent" in patients with vestibular disorders, versus those without these disorders, said Christophe Lopez, lead author of the study and a neuroscientist at Aix-Marseille Université in France. © 2017 Scientific American,

Keyword: Attention
Link ID: 23922 - Posted: 08.07.2017

By Knvul Sheikh The brain has evolved to recognize and remember many different faces. We can instantly identify a friend's countenance among dozens in a crowded restaurant or on a busy street. And a brief glance tells us whether that person is excited or angry, happy or sad. Brain-imaging studies have revealed that several blueberry-size regions in the temporal lobe—the area under the temple—specialize in responding to faces. Neuroscientists call these areas “face patches.” But neither brain scans nor clinical studies of patients with implanted electrodes explained exactly how the cells in these patches work. Now, using a combination of brain imaging and single-neuron recording in macaques, biologist Doris Tsao and her colleagues at the California Institute of Technology appear to have finally cracked the neural code for primate face recognition. The researchers found the firing rate of each face patch cell corresponds to a separate facial feature. Like a set of dials, the cells can be fine-tuned to respond to bits of information, which they can then combine in various ways to create an image of every face the animal encounters. “This was mind-blowing,” Tsao says. “The values of each dial are so predictable that we can re-create the face that a monkey sees by simply tracking the electrical activity of its face cells.” Previous studies had hinted at the specificity of these brain areas for encoding faces. In the early 2000s, when Tsao was a postdoctoral researcher at Harvard Medical School, she and electrophysiologist Winrich Freiwald showed that neurons in a monkey's face patches would fire electrical signals every time the animal saw pictures of a face. But the same brain cells showed little or no response to other objects, such as images of vegetables, radios or nonfacial body parts. Other experiments indicated that neurons in these regions could also distinguish among individual faces, even if they were cartoons. © 2017 Scientific American

Keyword: Attention
Link ID: 23913 - Posted: 08.03.2017

By Karl Gruber Are you good with faces? So is the Japanese rice fish – at least, it is if the faces are the right way up. Just like humans, the tiny fish has no problem recognising faces orientated the usual way, but, again like us, it struggles when they are inverted. The finding indicates that the fish may have developed a unique brain pathway for face recognition, just as humans have. We have no problem identifying most objects in our environment – say, a chair – no matter what way up they are. But faces are different. It is relatively easy for us to spot the differences between two faces, even if they are physically similar, if we see them in photographs the right way up. But if the images are upside down, telling them apart gets a bit tricky. “This is because we have a specific brain area for processing faces, and when the face is upside down, we process the image through object processing pathways, and not the face-processing pathways any more,” says Mu-Yun Wang at the University of Tokyo, Japan. Until now, this face-inversion effect was considered exclusive to mammals as it has only been observed in primates and sheep. Enter the Japanese rice fish, also known as the medaka (Oryzias latipes), a 3.5-centimetre-long shoaling fish commonly found in rice paddies, marshes, ponds and slow-moving streams in East Asia. These fish are very social, so identifying the right individuals to associate with is important. © Copyright New Scientist Ltd.

Keyword: Attention; Evolution
Link ID: 23891 - Posted: 07.28.2017