Chapter 2. Neurophysiology: The Generation, Transmission, and Integration of Neural Signals

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 950

Enhancing the brain’s lymphatic system when administering immunotherapies may lead to better clinical outcomes for Alzheimer’s disease patients, according to a new study in mice. Results published April 28 in Nature suggest that treatments such as the immunotherapies BAN2401 or aducanumab might be more effective when the brain’s lymphatic system can better drain the amyloid-beta protein that accumulates in the brains of those living with Alzheimer’s. Major funding for the research was provided by the National Institute on Aging (NIA), part of the National Institutes of Health, and all study data is now freely available to the broader scientific community. “A broad range of research on immunotherapies in development to treat Alzheimer’s by targeting amyloid-beta has not to date demonstrated consistent results,” said NIA Director Richard J. Hodes, M.D. “While this study’s findings require further confirmation, the link it has identified between a well-functioning lymphatic system in the brain and the ability to reduce amyloid-beta accumulation may be a significant step forward in pursuing this class of therapeutics.” Abnormal buildup of amyloid-beta is one hallmark of Alzheimer’s disease. The brain’s lymphatic drainage system, which removes cellular debris and other waste, plays an important part in that accumulation. A 2018 NIA-supported study showed a link between impaired lymphatic vessels and increased amyloid-beta deposits in the brains of aging mice, suggesting these vessels could play a role in age-related cognitive decline and Alzheimer’s. The lymphatic system is made up of vessels which run alongside blood vessels and which carry immune cells and waste to lymph nodes. Lymphatic vessels extend into the brain’s meninges, which are membranes that surround the brain and spinal cord.

Keyword: Alzheimers; Sleep
Link ID: 27795 - Posted: 05.01.2021

By Noah Hutton Twelve years ago, when I graduated college, I was well aware of the Silicon Valley hype machine, but I considered the salesmanship of private tech companies a world away from objective truths about human biology I had been taught in neuroscience classes. At the time, I saw the neuroscientist Henry Markram proclaim in a TED talk that he had figured out a way to simulate an entire human brain on supercomputers within 10 years. This computer-simulated organ would allow scientists to instantly and noninvasively test new treatments for disorders and diseases, moving us from research that depends on animal experimentation and delicate interventions on living people to an “in silico” approach to neuroscience. My 22-year-old mind didn’t clock this as an overhyped proposal. Instead, it felt exciting and daring, the kind of moment that transforms a distant scientific pipe dream into a suddenly tangible goal and motivates funders and fellow researchers to think bigger. And so I began a 10-year documentary project following Markram and his Blue Brain Project, with the start of the film coinciding with the beginning of an era of big neuroscience where the humming black boxes produced by Silicon Valley came to be seen as the great new hope for making sense of the black boxes between our ears. My decade-long journey documenting Markram’s vision has no clear answers except perhaps one: that flashy presentations and sheer ambition are poor indicators of success when it comes to understanding the complex biological mechanisms of brains. Today, as we bear witness to a game of Pong being mind-controlled by a monkey as part of a typically bombastic demonstration by Elon Musk’s start-up Neuralink, there is more of a need than ever to unwind the cycles of hype in order to grapple with what the future of brain technology and neuroscience have in store for humanity. © 2021 Scientific American

Keyword: Brain imaging; Robotics
Link ID: 27794 - Posted: 05.01.2021

Lise Eliot Everyone knows the difference between male and female brains. One is chatty and a little nervous, but never forgets and takes good care of others. The other is calmer, albeit more impulsive, but can tune out gossip to get the job done. These are stereotypes, of course, but they hold surprising sway over the way actual brain science is designed and interpreted. Since the dawn of MRI, neuroscientists have worked ceaselessly to find differences between men’s and women’s brains. This research attracts lots of attention because it’s just so easy to try to link any particular brain finding to some gender difference in behavior. But as a neuroscientist long experienced in the field, I recently completed a painstaking analysis of 30 years of research on human brain sex differences. And what I found, with the help of excellent collaborators, is that virtually none of these claims has proven reliable. Except for the simple difference in size, there are no meaningful differences between men’s and women’s brain structure or activity that hold up across diverse populations. Nor do any of the alleged brain differences actually explain the familiar but modest differences in personality and abilities between men and women. © 2010–2021, The Conversation US, Inc.

Keyword: Sexual Behavior; Brain imaging
Link ID: 27784 - Posted: 04.24.2021

by Angie Voyles Askham A dearth of insulation around neuronal projections may explain why some parts of the cerebral cortex can appear thicker in brain scans of autistic people than in those of non-autistic people, according to a new study. Magnetic resonance imaging (MRI) studies show that some autistic children have bigger brains than their non-autistic peers, with much of the overgrowth occurring in the cerebral cortex. The reason for this difference remains unclear, but it seems to reflect an apparent excess of gray matter, which consists of neuronal cell bodies, relative to white matter, composed of neuronal projections. Newly developed neurons in the brains of autistic people may have trouble migrating to the proper place, some researchers have suggested, which could blur the boundary between gray and white matter in some regions and cause the gray matter to look thicker on an MRI scan. But higher levels of myelin, the insulation that surrounds neuronal projections, in non-autistic people could also skew these measures, says lead researcher of the new work, Mallar Chakravarty, associate professor of psychiatry at McGill University in Montreal. Myelin appears brighter on an MRI scan than other tissue, so an abundance of it near the boundary between gray and white matter could make the gray matter appear thinner, he says. © 2021 Simons Foundation

Keyword: Autism; Glia
Link ID: 27783 - Posted: 04.24.2021

By Kelly Servick The most advanced mind-controlled devices being tested in humans rely on tiny wires inserted into the brain. Now researchers have paved the way for a less invasive option. They’ve used ultrasound imaging to predict a monkey’s intended eye or hand movements—information that could generate commands for a robotic arm or computer cursor. If the approach can be improved, it may offer people who are paralyzed a new means of controlling prostheses without equipment that penetrates the brain. “This study will put [ultrasound] on the map as a brain-machine interface technique,” says Stanford University neuroscientist Krishna Shenoy, who was not involved in the new work. “Adding this to the toolkit is spectacular.” Doctors have long used sound waves with frequencies beyond the range of human hearing to create images of our innards. A device called a transducer sends ultrasonic pings into the body, which bounce back to indicate the boundaries between different tissues About a decade ago, researchers found a way to adapt ultrasound for brain imaging. The approach, known as functional ultrasound, uses a broad, flat plane of sound instead of a narrow beam to capture a large area more quickly than with traditional ultrasound. Like functional magnetic resonance imaging (fMRI), functional ultrasound measures changes in blood flow that indicate when neurons are active and expending energy. But it creates images with much finer resolution than fMRI and doesn’t require participants to lie in a massive scanner. The technique still requires removing a small piece of skull, but unlike implanted electrodes that read neurons’ electrical activity directly, it doesn’t involve opening the brain’s protective membrane, notes neuroscientist Richard Andersen of the California Institute of Technology (Caltech), a co-author of the new study. Functional ultrasound can read from regions deep in the brain without penetrating the tissue. © 2021 American Association for the Advancement of Science.

Keyword: Brain imaging
Link ID: 27741 - Posted: 03.23.2021

By Christa Lesté-Lasserre The famed stallion Black Beauty felt joy, excitement, and even heartbreak—or so he tells us in the 1877 novel that bears his name. Now, scientists say they’ve been able to detect feelings in living animals by getting them straight from the horse’s mouth—or in this case, its head. Researchers have devised a new, mobile headband that detects brain waves in horses, which could eventually be used with other species. “This is a real breakthrough,” says Katherine Houpt, a veterinary behaviorist at Cornell University who was not involved with the work. The device, she says, “gets into the animals’ minds” with objectivity and less guesswork. Ethologist Martine Hausberger had the idea while investigating whether stressed horses had a harder time learning to open a sliding door over a food box. (Spoiler alert: They do.) Hausberger, of the University of Rennes, noticed some of the animals—specifically, those living in cramped spaces—were paying less attention to the lessons. Were they depressed? An electroencephalogram (EEG) could theoretically pick up on such a mental state. Scientists have used the devices, which record waves of electrical impulses in the brain, since the early 1900s to study epilepsy and sleep patterns. More recently, they’ve discovered that certain EEG waves can signal depression, anxiety, and even contentedness in humans. EEG studies in rodents, farm animals, and pets, meanwhile, have revealed how they react to being touched by a human or undergoing anesthesia. But so far, no one had found a way to record brain waves in animals while they move around. © 2021 American Association for the Advancement of Science.

Keyword: Brain imaging
Link ID: 27723 - Posted: 03.11.2021

By Laura Sanders A century ago, science’s understanding of the brain was primitive, like astronomy before telescopes. Certain brain injuries were known to cause specific problems, like loss of speech or vision, but those findings offered a fuzzy view. Anatomists had identified nerve cells, or neurons, as key components of the brain and nervous system. But nobody knew how these cells collectively manage the brain’s sophisticated control of behavior, memory or emotions. And nobody knew how neurons communicate, or the intricacies of their connections. For that matter, the research field known as neuroscience — the science of the nervous system — did not exist, becoming known as such only in the 1960s. Over the last 100 years, brain scientists have built their telescopes. Powerful tools for peering inward have revealed cellular constellations. It’s likely that over 100 different kinds of brain cells communicate with dozens of distinct chemicals. A single neuron, scientists have discovered, can connect to tens of thousands of other cells. Yet neuroscience, though no longer in its infancy, is far from mature. Today, making sense of the brain’s vexing complexity is harder than ever. Advanced technologies and expanded computing capacity churn out torrents of information. “We have vastly more data … than we ever had before, period,” says Christof Koch, a neuroscientist at the Allen Institute in Seattle. Yet we still don’t have a satisfying explanation of how the brain operates. We may never understand brains in the way we understand rainbows, or black holes, or DNA. © Society for Science & the Public 2000–2021.

Keyword: Brain imaging; Learning & Memory
Link ID: 27722 - Posted: 03.06.2021

By Alex Vadukul In the early 1970s, the field of neuroradiology was still in its formative years, and among its early practitioners was Dr. John Bentson, at UCLA Medical Center in Los Angeles. As he helped patients with the aid of new technology like the CT scan and computer imaging, he saw an opportunity for innovation. A subspecialty of radiology, neuroradiology involves diagnosing and treating ailments in the brain, spinal cord and nerves. One tool used in treatment is the combination of an angiographic guidewire and catheter, essentially a slender wire and tube. Inserted through the leg, it can aid with the injection of contrast dye for diagnostic brain imaging and the treatment of aneurysms. At the time, however, guidewires were rigid and at worst could injure a blood vessel. Dr. Bentson decided to design a better type. He conceived of a more supple guidewire that also featured a flexible tip, and after UCLA built an early prototype for him, other neuroradiologists started using his model. Cook Medical began manufacturing the device in 1973, and it’s still in use today, commonly known as a Bentson guidewire. Dr. Bentson died at 83 on Dec. 28 at a hospital in Los Angeles. The cause was complications of Covid-19, his daughter Dr. Erika Drazan said. “He liked to push boundaries if he thought he could help the patient,” she said. “He liked saying that the vessels in the body are just like a tree, and that he could get where he wanted through them by feel.” Thousands of patients have benefited from his innovation, The American Society of Neuroradiology said after his death. John Reinert Bentson was born on May 15, 1937, in Viroqua, Wis., to Carl and Stella (Hagen) Bentson, who were of Norwegian heritage. He was raised on his family’s dairy farm, going to school in the winter on wooden skis. His mother prepared Norwegian fare like lutefisk. © 2021 The New York Times Company

Keyword: Brain imaging; Stroke
Link ID: 27689 - Posted: 02.15.2021

By Laura Sanders In the late 1800s, Santiago Ramón y Cajal, a Spanish brain scientist, spent long hours in his attic drawing elaborate cells. His careful, solitary work helped reveal individual cells of the brain that together create wider networks. For those insights, Cajal received a Nobel Prize for physiology or medicine in 1906. Now, a group of embroiderers has traced those iconic cell images with thread, paying tribute to the pioneering drawings that helped us see the brain clearly. The Cajal Embroidery Project was launched in March of 2020 by scientists at the University of Edinburgh. Over a hundred volunteers — scientists, artists and embroiderers — sewed panels that will ultimately be stitched into a tapestry, a project described in the December Lancet Neurology. Catherine Abbott, a neuroscientist at the University of Edinburgh, had the idea while talking with her colleague Jane Haley, who was planning an exhibit of Cajal’s drawings. These meticulous drawings re-created nerve cells, or neurons, and other types of brain cells, including support cells called astrocytes. “I said, off the cuff, ‘Wouldn’t it be lovely to embroider some of them?’” © Society for Science & the Public 2000–2021.

Keyword: Brain imaging
Link ID: 27679 - Posted: 02.08.2021

Catherine S. Woolley, Ph.D. Sex differences in the brain are real, but they are not what you might think. They’re not about who is better at math, reading a map, or playing chess. They’re not about being sensitive or good at multi-tasking, either. Sex differences in the brain are about medicine and about making sure that the benefits of biomedical research are relevant for everyone, both men and women. You may be surprised to learn that most animal research is done in males. This is based on an erroneous view that hormonal cycles complicate studies in female research animals, and an assumption that the sexes are essentially the same down at cellular and molecular levels. But these beliefs are starting to change in neuroscience. New research shows that some fundamental molecular pathways in the brain operate differently in males and females, and not just by a little. In some cases, molecular sex differences are all-or-nothing. Recognition that male and female brains differ at a molecular level has the potential to transform biomedical research. Drugs act on molecular pathways. If those pathways differ between the sexes, we need to know how they differ as early as possible in the long (and expensive) process of developing new medicines and treatments for disease. The bulk of public attention to brain sex differences is focused on structural differences and their purported relationship to behavior or cognition. Yet structural sex differences are actually quite small, and their interpretation is often based on gender stereotypes with little to no scientific justification. © 2021 The Dana Foundation

Keyword: Sexual Behavior; Brain imaging
Link ID: 27650 - Posted: 01.15.2021

Alison Abbott In October 2013, I attended the launch of the Human Brain Project in Lausanne, Switzerland, as correspondent for Nature. I hoped to leave with a better understanding of the exact mission of the baffling billion-euro enterprise, but I was frustrated. Things became clear the following year, when the project fell spectacularly, and very publicly, apart. Noah Hutton’s documentary In Silico captures a sense of what it was like behind the scenes of the project, which was supported with great fanfare by the European Commission. It had been hyped as a quantum leap in understanding how the human brain works. Instead, it left a trail of angry neuroscientists across Europe. Yet aspects of what went so expensively wrong still remain elusive. In Silico is more about the back story of the Human Brain Project (HBP). Hutton was 22 years old when he watched a 2009 talk by Henry Markram, the controversial figure who later became the first director of the HBP. Markham was speaking about the Blue Brain Project, a major initiative he had launched a few years before at one of Europe’s top universities, the Swiss Federal Institute of Technology in Lausanne, with generous funding from the Swiss government. He claimed that he would — with the help of a supercomputer related to the one that beat world chess champion Garry Kasparov in 1997 — simulate an entire rodent brain within a decade. He planned to build it from information about the brain’s tens of millions of individual neurons. © 2020 Springer Nature Limited

Keyword: Brain imaging
Link ID: 27614 - Posted: 12.09.2020

by Laura Dattaro Autistic boys with large brains in early childhood still have large brains in adolescence, according to a new study. Autistic girls, too, have brains that grow differently from those of their non-autistic peers. The findings challenge the long-standing idea that brain enlargement in autism is temporary. Previous studies indicated that young children on the spectrum have larger brains than their non-autistic peers but older people with autism do not. To explain the difference, researchers speculated that a pruning process follows early brain overgrowth. But the changes are a mirage, the researchers behind the new study say: Because having a large brain is associated with a low intelligence quotient (IQ) and severe autism traits, and because older children with such characteristics are often excluded from imaging studies, the prior results reflect only a lack of older participants with large brains. “This whole idea of this early overgrowth followed by normalization is just an artifact of sampling bias,” says lead investigator Christine Wu Nordahl, associate professor of psychiatry and behavioral sciences at the University of California, Davis MIND Institute. “It was sort of like, ‘Wow, why didn’t we ever think about this before?’ But it’s pretty clear that that’s what’s happening.” Autistic and non-autistic children also show different development patterns in their white matter — fibers that connect regions of the brain — in early childhood, a second study from Nordahl’s group shows. Some of the differences correlate with changes in the children’s autism traits over time. © 2020 Simons Foundation

Keyword: Autism; Brain imaging
Link ID: 27598 - Posted: 11.30.2020

By Lindsay Gray When Herbert Weinstein stood trial for the murder of his wife in 1992, his attorneys were struck by the measured calm with which he recounted her death and the events leading up to it. He made no attempt to deny that he was culpable, and yet his stoicism in the face of his wildly uncharacteristic actions led his defense to suspect that he might not be. Weinstein underwent neuroimaging tests, which confirmed what his attorneys had suspected: a cyst had impinged upon large parts of Weinstein’s frontal lobe, the seat of impulse control in the brain. On these grounds, they reasoned he should be found not guilty by reason of insanity, despite Weinstein’s free admission of guilt. Guilt is difficult to define, but it pervades every aspect of our lives, whether we’re chastising ourselves for skipping a workout, or serving on the jury of a criminal trial. Humans seem to be hardwired for justice, but we’re also saddled with a curious compulsion to diagram our own emotional wiring. This drive to assign a neurochemical method to our madness has led to the generation of vast catalogs of neuroimaging studies that detail the neural underpinnings of everything from anxiety to nostalgia. In a recent study, researchers now claim to have moved us one step closer to knowing what a guilty brain looks like. Since guilt carries different weight depending on context or culture, the authors of the study chose to define it operationally as the awareness of having harmed someone else. A series of functional magnetic resonance imaging (fMRI) experiments across two separate cohorts, one Swiss and one Chinese, revealed what they refer to as a “guilt-related brain signature” that persists across groups. Since pervasive guilt is a common feature in severe depression and PTSD, the authors suggest that a neural biomarker for guilt could offer more precise insight into these conditions and, potentially, their treatment. But brain-based biomarkers for complex human behaviors also lend themselves to the more ethically fraught discipline of neuroprediction, an emergent branch of behavioral science that combines neuroimaging data and machine learning to forecast how an individual is likely to act based on how their brain scans compare to those of other groups. © 2020 Scientific American,

Keyword: Stress; Brain imaging
Link ID: 27591 - Posted: 11.21.2020

Researchers at the National Eye Institute (NEI) have decoded brain maps of human color perception. The findings, published today in Current Biology, open a window into how color processing is organized in the brain, and how the brain recognizes and groups colors in the environment. The study may have implications for the development of machine-brain interfaces for visual prosthetics. NEI is part of the National Institutes of Health. “This is one of the first studies to determine what color a person is seeing based on direct measurements of brain activity,” said Bevil Conway, Ph.D., chief of NEI’s Unit on Sensation, Cognition and Action, who led the study. “The approach lets us get at fundamental questions of how we perceive, categorize, and understand color.” The brain uses light signals detected by the retina’s cone photoreceptors as the building blocks for color perception. Three types of cone photoreceptors detect light over a range of wavelengths. The brain mixes and categorizes these signals to perceive color in a process that is not well understood. To examine this process, Isabelle Rosenthal, Katherine Hermann, and Shridhar Singh, post-baccalaureate fellows in Conway’s lab and co-first authors on the study, used magnetoencephalography or “MEG,” a 50-year-old technology that noninvasively records the tiny magnetic fields that accompany brain activity. The technique provides a direct measurement of brain cell activity using an array of sensors around the head. It reveals the millisecond-by-millisecond changes that happen in the brain to enable vision. The researchers recorded patterns of activity as volunteers viewed specially designed color images and reported the colors they saw.

Keyword: Vision; Brain imaging
Link ID: 27588 - Posted: 11.21.2020

In a 2009 TED Talk, Israeli neuroscientist Henry Markram made a shocking claim: he was going to create a machine version of human brain within 10 years. The project was catnip to filmmaker Noah Hutton, who began documenting Markram's quest. Ultimately, Hutton followed Markram for a decade — but the scientist's lofty goal remains conspicuously incomplete. The resulting film, In Silico, finally makes its world premiere as part of the online version of the DOC NYC film festival on November 11. The film traces Markram’s journey with the Human Brain Project, from the project’s inception to its $1.4 billion in funding from the European Commission — and how it failed to meet its 10-year goal by 2019. Following a neuroscientist for a decade reveals a lot of highs and lows. Hutton presents the controversies by interviewing both the Human Brain Project team and its critics, including Princeton neuroscientist Sebastian Seung, researcher Zach Mainen at the Champalimaud Centre for the Unknown based in Portugal, and experimental cognitive psychologist Stanislas Dehane, who is professor at Collège de France in Paris. The film also features candid interviews with neuroscientists Christof Koch, who head's up the Allen Institute's MindScope Program, Harvard University's Jeremy R. Knowles Professor of Molecular and Cellular Biology Jeff W. Lichtman, and Stanford University neuroscience adjunct professor David Eagleman. Neuroscientists Idan Segev of Hebrew University in Israel, Cori Bargmann, Torsten N. Weisel Professor of Genetics and Genomics and Neuroscience and Behavior at Rockefeller University, and Cold Spring Harbor Lab professor Anne Churchland.

Keyword: Brain imaging
Link ID: 27577 - Posted: 11.14.2020

By Sundas Hashmi It was the afternoon of Jan. 31. I was preparing for a dinner party and adding final touches to my cheese platter when everything suddenly went dark. I woke up feeling baffled in a hospital bed. My husband filled me in: Apparently, I had suffered a massive seizure a few hours before our guests were to arrive at our Manhattan apartment. Our children’s nanny found me and I was rushed to the hospital. That had been three days earlier. My husband and I were both mystified: I was 37 years old and had always been in excellent health. In due course, a surgeon dropped by and told me I had a glioma, a type of brain tumor. It was relatively huge but operable. I felt sick to my stomach. Two weeks later, I was getting wheeled to the operating theater. I wouldn’t know the pathology until much later. I said my goodbyes to everyone — most importantly to my children, Sofia, 6, and Nyle, 2 — and prepared to die. But right before the surgery, in a very drugged state, I asked the surgeon to please get photos of me and my brother from my husband. I wanted the surgeon to see them. My brother had died two decades earlier from a different kind of brain tumor — a glioblastoma. I was 15 at the time, and he was 18. He died within two years of being diagnosed. Those two years were the worst period of my life. Doctors in my home country of Pakistan refused to take him, saying his case was fatal. So, my parents gathered their savings and flew him to Britain, where he was able to get a biopsy (his tumor was in an inoperable location) and radiation. Afterward, we had to ask people for donations so he could get the gamma knife treatment in Singapore that my parents felt confident would save him. In the end, nothing worked, and he died, taking 18 years of memories with him. © 2020 The New York Times Company

Keyword: Glia
Link ID: 27536 - Posted: 10.21.2020

Adrian Owen DR. ADRIAN OWEN: Imagine this scenario. You've unfortunately had a terrible accident. You're lying in a hospital bed and you're aware—you're aware but you're unable to respond, but the doctors and your relatives don't know that. You have to lie there, listening to them deciding whether to let you live or die. I can think of nothing more terrifying. Communication is at the very heart of what makes us human. It's the basis of everything. What we're doing is we're returning the ability to communicate to some patients who seem to have lost that forever. The vegetative state is often referred to as a state of wakefulness without awareness. Patients open their eyes, they'll just gaze around the room. They'll have sleeping and waking cycles, but they never show any evidence of having any awareness. So, typically, the way that we assess consciousness is through command following. We ask somebody to do something, say, squeeze our hand, and if they do it, you know that they're conscious. The problem in the vegetative state is that these patients by definition can produce no movements. And the question I asked is, well, could somebody command follow with their brain? It was that idea that pushed us into a new realm of understanding this patient population. When a part of your brain is involved in generating a thought or performing an action, it burns energy in the form of glucose, and it's replenished through blood flow. As blood flows to that part of the brain, we're able to see that with the FMRI scanner. I think one of the key insights was the realization that we could simply get somebody to lie in the scanner and imagine something and, based on the pattern of brain activity, we will be able to work out what it is they were thinking. We had to find something that produces really a quite distinct pattern of activity that was more or less the same for everybody. So, we came up with two tasks. One task, imagine playing tennis, produces activity in the premotor cortex in almost every healthy person we tried this in. A different task, thinking about moving from room to room in your house, produces an entirely different pattern of brain activity; particularly, it involves a part of the brain known as the parahippocampal gyrus. And again, it's very consistent across different people.

Keyword: Consciousness; Brain imaging
Link ID: 27513 - Posted: 10.07.2020

by Angie Voyles Askham Autistic people share some brain structure differences with people who have other neuropsychiatric conditions, including schizophrenia and attention deficit hyperactivity disorder (ADHD), according to a massive new brain-imaging study1. These shared differences stem from the atypical development of one particular type of neuron, the findings suggest. The results provide “further evidence that our understanding of autism can really be advanced by explicitly studying autism in the context of other disorders,” says Armin Raznahan, chief of the Section on Developmental Neurogenomics at the U.S. National Institute of Mental Health in Bethesda, Maryland, who was not involved in the study. The researchers looked at brain scans from 28,321 people to identify structural changes associated with any of six conditions: autism, ADHD, bipolar disorder, major depressive disorder, obsessive-compulsive disorder and schizophrenia. The team found that the brains of people with these conditions differ from controls in a specific way: They have similar patterns of thickness across the cortex, the brain’s outer layer. The cortical regions with the biggest differences in thickness are typically rich in a particular type of excitatory neuron. “We were able to put our fingers on what might be behind that commonality,” says lead researcher Tomas Paus, professor of psychology and psychiatry at the University of Toronto in Canada. “That was very exciting.” The work combined data from 145 cohorts within the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium, an international group of researchers who collect and analyze brain-scan data in a standardized way so that they can pool their results. © 2020 Simons Foundation

Keyword: Autism; Brain imaging
Link ID: 27503 - Posted: 10.03.2020

By Rebekah Tuchscherer Call it neuroscience on the go. Scientists have developed a backpack that tracks and stimulates brain activity as people go about their daily lives. The advance could allow researchers to get a sense of how the brain works outside of a laboratory—and how to monitor diseases such as Parkinson’s and post-traumatic stress disorder in real-world settings. The technology is “an inspiring demonstration of what’s possible” with portable neuroscience equipment, says Timothy Spellman, a neurobiologist at Weill Cornell Medicine who was not involved with the work. The backpack and its vast suite of tools, he says, could broaden the landscape for neuroscience research to study the brain while the body is in motion. Typically, when scientists want to scan the brain, they need a lot of room—and a lot of money. Functional magnetic resonance imaging (fMRI) scanners, which detect activity in various regions of the brain, are about the size of a pickup truck and can cost more than $1 million. And patients must stay still in the machine for about 1 hour to ensure a clear, readable scan. © 2020 American Association for the Advancement of Science.

Keyword: Brain imaging
Link ID: 27479 - Posted: 09.19.2020

By Tanya Lewis During Musk’s demonstration, he strolled near a pen containing several pigs, some of which had Neuralink implants. One animal, named Gertrude, had hers for two months. The device’s electrodes were situated in a part of Gertrude’s cortex that connected to neurons in her snout. And for the purposes of the demo, her brain signals were converted to audible bleeps that became more frequent as she sniffed around the pen and enjoyed some tasty treats. Musk also showed off a pig whose implant had been successfully removed to show that the surgery was reversible. Some of the other displayed pigs had multiple implants. Neuralink implantable device Neuralink implantable device, v0.9. Credit: Neuralink Neuralink, which was founded by Musk and a team of engineers and scientists in 2016, unveiled an earlier, wired version of its implant technology in 2019. It had several modules: the electrodes were connected to a USB port in the skull, which was intended to be wired to an external battery and a radio transmitter that were located behind the ear. The latest version consists of a single integrated implant that fits in a hole in the skull and relays data through the skin via a Bluetooth radio. The wireless design makes it seem much more practical for human use but limits the bandwidth of data that can be sent, compared with state-of-the-art brain-computer interfaces. The company’s goal, Musk said in the demo, is to “solve important spine and brain problems with a seamlessly implanted device”—a far cry from his previously stated, much more fantastic aim of allowing humans to merge with artificial intelligence. This time Musk seemed more circumspect about the device’s applications. As before, he insisted the demonstration was purely intended as a recruiting event to attract potential staff. Neuralink’s efforts build on decades of work from researchers in the field of brain-computer interfaces. Although technically impressive, this wireless brain implant is not the first to be tested in pigs or other large mammals.] © 2020 Scientific American,

Keyword: Robotics; Movement Disorders
Link ID: 27457 - Posted: 09.07.2020