Chapter 6. Hearing, Balance, Taste, and Smell

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1640

A team of researchers has generated a developmental map of a key sound-sensing structure in the mouse inner ear. Scientists at the National Institute on Deafness and Other Communication Disorders (NIDCD), part of the National Institutes of Health, and their collaborators analyzed data from 30,000 cells from mouse cochlea, the snail-shaped structure of the inner ear. The results provide insights into the genetic programs that drive the formation of cells important for detecting sounds. The study also sheds light specifically on the underlying cause of hearing loss linked to Ehlers-Danlos syndrome and Loeys-Dietz syndrome. The study data is shared on a unique platform open to any researcher, creating an unprecedented resource that could catalyze future research on hearing loss. Led by Matthew W. Kelley, Ph.D., chief of the Section on Developmental Neuroscience at the NIDCD, the study appeared online in Nature Communications(link is external). The research team includes investigators at the University of Maryland School of Medicine, Baltimore; Decibel Therapeutics, Boston; and King’s College London. “Unlike many other types of cells in the body, the sensory cells that enable us to hear do not have the capacity to regenerate when they become damaged or diseased,” said NIDCD Director Debara L. Tucci, M.D., who is also an otolaryngology-head and neck surgeon. “By clarifying our understanding of how these cells are formed in the developing inner ear, this work is an important asset for scientists working on stem cell-based therapeutics that may treat or reverse some forms of inner ear hearing loss.”

Keyword: Hearing; Development of the Brain
Link ID: 27268 - Posted: 05.29.2020

By Tina Hesman Saey A loss of smell and taste may be one of the clearest indicators of whether someone has COVID-19, a new study suggests. Researchers gleaned the information from nearly 2.5 million people in the United Kingdom and about 170,000 people in the United States who entered whether they were feeling well or experiencing symptoms into a smartphone app from March 24 to April 21. Some of the app users also reported results of PCR diagnostic tests for the SARS-CoV-2 virus, which causes COVID-19 (SN: 3/6/20). Nearly 65 percent of roughly 6,400 U.K. residents who tested positive for the virus described a loss of taste and smell as a symptom, researchers report May 11 in Nature Medicine. And just over 67 percent of the 726 U.S. participants with a positive test also reported losing those senses. Only about 20 percent of all people who tested negative had diminished smell and taste. Using data from the app, a team of scientists led by clinical researchers Claire Steves and Tim Spector, both of King’s College London, devised a formula for determining which symptoms best predict COVID-19. A combination of loss of taste and smell, extreme fatigue, cough and loss of appetite was the best predictor of having a positive result from the PCR test, the team found. Based on those symptoms, the researchers estimate that more than 140,000 of the more than 800,000 app users who reported symptoms probably have COVID-19. © Society for Science & the Public 2000–2020.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27241 - Posted: 05.12.2020

Sandra G. Boodman First she toppled off a ladder. Then Carol Hardy-Fanta tripped on a step outside her western Massachusetts home while gazing at her cellphone. Next she fell three times during a five-mile hike after catching her left foot on a rock or tree root. At first, Hardy-Fanta thought her repeated stumbles had a simple cause: She was distracted. But when she racked up more than 30 falls in a three-year period — some for no apparent reason — she repeatedly asked her doctors whether an undiagnosed medical problem might be causing her to “drop like a log.” The 10 doctors she consulted between 2016 and 2019 — four orthopedists, three neurologists, a rheumatologist, a podiatrist and her internist — reached disparate conclusions. One suggested she was clumsy. Others suspected her problem was primarily orthopedic or could find no clear explanation. It wasn't until September 2019 that a scan revealed what Hardy-Fanta had come to suspect — a diagnosis she said several of her doctors had brushed off. “These are the smartest people,” said Hardy-Fanta, now 71, whose husband is a Boston physician. “They really wanted to help” but appeared to be misled by her symptoms. “If someone’s falling that much, they should really pay attention.” The falls started in 2016, shortly after Hardy-Fanta and her husband sold their house in a Boston suburb and began splitting their time between a condo in the city and what she described as their “dream home” in the Berkshires. Hardy-Fanta had retired as director of a university think tank. Her fourth book on women and politics had just been published. She was in excellent health, which she regarded as a legacy from her mother, who remained mentally sharp and physically able until shortly before her death at age 100. Hardy-Fanta said she was looking forward to traveling with her husband and taking long bike rides along the scenic rural roads that snake through the Berkshires.

Keyword: Parkinsons
Link ID: 27216 - Posted: 04.27.2020

By Elizabeth Pennisi Ring-tailed lemurs have a peculiar habit of shaking their tails at potential rivals. New research shows that during the breeding season, a male’s trembling tail may instead be whisking sexy odors toward potential mates. The work is still preliminary, but chemical analyses have revealed the odor is a mixture of three chemicals that seem to pique a female’s interest. The new work “calls attention to the often underappreciated fact” that odors play an important role in primate societies, says Peter Kappeler, a primatologist at the University of Göttingen. Insects often use behavior-altering odors called pheromones to attract mates. So do mice. But biochemist Kazushige Touhara at the University of Tokyo wanted to know whether primates—including humans—use them as well. Some researchers say yes, but the existence of such “sex attractants” remains controversial. Ring-tailed lemurs (Lemur catta), named for their fluffy gray and black tails, are unusual among their fellow primates. Males have glands on their wrists that produce chemicals that quickly vaporize when exposed to air—similar to pheromones. They rub their wrists on their tails to transfer the odors before they vaporize, then shake their tails to broadcast the scent. For most of the year, these lemurs make bitter, leathery smelling chemicals used to keep other males at bay. But during the breeding season, they instead emit a sweet scent, Touhara says. He and his colleagues collected these secretions from the wrist glands with a tiny pipette and analyzed the chemical components. © 2020 American Association for the Advancement of Science.

Keyword: Sexual Behavior; Chemical Senses (Smell & Taste)
Link ID: 27203 - Posted: 04.17.2020

Our ability to study networks within the nervous system has been limited by the tools available to observe large volumes of cells at once. An ultra-fast, 3D imaging technique called SCAPE microscopy, developed through the National Institutes of Health (NIH)’s Brain Research through Advancing Innovative Technologies (BRAIN) Initiative, allows a greater volume of tissue to be viewed in a way that is much less damaging to delicate networks of living cells. In a study published in Science, researchers used SCAPE to watch for the first time how the mouse olfactory epithelium — the part of the nervous system that directly perceives smells — reacted in real time to complex odors. They found that those nerve cells may play a larger and more complex role in interpreting smells than was previously understood. “This is an elegant demonstration of the power of BRAIN Initiative technologies to provide new insights into how the brain decodes information to produce sensations, thoughts, and actions,” said Edmund Talley, Ph.D., program director, National Institute of Neurological Disorders and Stroke (NINDS), a part of NIH. The SCAPE microscope was developed in the laboratory of Elizabeth M.C. Hillman, Ph.D., professor of biomedical engineering and radiology and principal investigator at Columbia’s Zuckerman Institute in New York City. “SCAPE microscopy has been incredibly enabling for studies where large volumes need to be observed at once and in real time,” said Dr. Hillman. “Because the cells and tissues can be left intact and visualized at high speeds in three dimensions, we are able to explore many new questions that could not be studied previously.”

Keyword: Brain imaging; Chemical Senses (Smell & Taste)
Link ID: 27189 - Posted: 04.14.2020

Oliver Wainwright Some whisper gently into the microphone, while tapping their nails along the spine of a book. Others take a bar of soap and slice it methodically into tiny cubes, letting the pieces clatter into a plastic tray. There are those who dress up as doctors and pretend to perform a cranial nerve exam, and the ones who eat food as noisily as they can, recording every crunch and slurp in 3D stereo sound. To an outsider, the world of ASMR videos can be a baffling, kooky place. In a fast-growing corner of the internet, millions of people are watching each other tap, rattle, stroke and whisper their way through hours of homemade videos, with the aim of being lulled to sleep, or in the hope of experiencing “the tingles” – AKA, the autonomous sensory meridian response. “It feels like a rush of champagne bubbles at the top of your head,” says curator James Taylor-Foster. “There’s a mild sense of euphoria and a feeling of deep calm.” Taylor-Foster has spent many hours trawling the weirdest depths of YouTube in preparation for a new exhibition, Weird Sensation Feels Good, at ArkDes, Sweden’s national centre for architecture and design, on what he sees as one of the most important creative movements to emerge from the internet. (Though the museum has been closed due to the coronavirus pandemic, the show will be available to view online.) It will be the first major exhibition about ASMR, a term that was coined a decade ago when cybersecurity expert Jennifer Allen was looking for a word to describe the warm effervescence she felt in response to certain triggers. She had tried searching the internet for things like “tingling head and spine” or “brain orgasm”. In 2009, she hit upon a post on a health message board titled WEIRD SENSATION FEELS GOOD. © 2020 Guardian News & Media Limited

Keyword: Hearing; Attention
Link ID: 27169 - Posted: 04.04.2020

By Mitch Leslie Like many animals, you couldn’t see without proteins called opsins, which dwell in the light-sensitive cells of your eyes. A new study reveals for the first time that fruit flies can also use some of these proteins, nestled at the tip of their nose, to taste noxious molecules in their food. Opsins in our bodies could also serve the same function, researchers speculate. The results are “paradigm shifting,” says sensory biologist Phyllis Robinson of the University of Maryland, Baltimore County, who wasn’t connected to the research. The most famous opsin forms the backbone of rhodopsin, the pigment in eye cells known as rods that allow you to see in low light. Your cone cells, which permit vision in bright light, harbor different opsins. Altogether, researchers have uncovered about 1000 other varieties of the proteins in various animals and microbes since rhodopsin was discovered more than 150 years ago. But the opsin molecular family still offers some surprises, notes neuroscientist Craig Montell of the University of California, Santa Barbara. A handful of studies, including one in 2011 by Montell and his team, have implicated opsins in hearing, touch, and temperature detection. Montell and colleagues wanted to determine whether any opsins play a role in taste—specifically, whether flies use them to detect a bitter molecule they are known to dislike. The researchers set up a taste test for unmodified Drosophila melanogaster fruit flies and for seven strains that had been genetically altered to each lack a different opsin. All of the flies had the choice between two sugar solutions, one of which was spiked with the bitter compound. © 2020 American Association for the Advancement of Science

Keyword: Vision; Chemical Senses (Smell & Taste)
Link ID: 27166 - Posted: 04.03.2020

By Michelle Roberts Health editor, BBC News online A loss of smell or taste may be a sign that you have coronavirus, according to UK researchers. A team at King's College London looked at responses from more than 400,000 people reporting suspected Covid-19 symptoms to an app. But loss of smell and taste are also signs of other respiratory infections, such as the common cold. And experts say fever and cough remain the most important symptoms of the virus to look out for and act upon. If you or someone you live with has a new continuous cough or high temperature, the advice is stay at home to stop the risk of spreading coronavirus to others. Coronavirus: What should I do? What did the study find? The King's College researchers wanted to gather information on possible coronavirus symptoms to help experts better understand and fight the disease. Of those reporting one or more symptoms of coronavirus to the Covid Symptom Tracker app: 53% said they had fatigue or tiredness 29% persistent cough 28% shortness of breath 18% loss of sense of smell or taste 10.5% suffered from fever Of these 400,000 people, 1,702 said they had been tested for Covid-19, with 579 receiving a positive result and 1,123 a negative one. Among the ones who had coronavirus infection confirmed by a positive test, three-fifths (59%) reported loss of smell or taste. © 2020 BBC

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27157 - Posted: 04.01.2020

By Erin Garcia de Jesus Myriad microbes dwell on human tongues — and scientists have now gotten a glimpse at the neighborhoods that bacteria build for themselves. Bacteria grow in thick films, with different types of microbes clustered in patches around individual cells on the tongue’s surface, researchers report online March 24 in Cell Reports. This pattern suggests individual bacterial cells first attach to the tongue cell’s surface and then grow in layers as they form larger clusters — creating miniature environments the different species need to thrive. “It’s amazing, the complexity of the community that they build right there on your tongue,” says Jessica Mark Welch, a microbiologist at the Marine Biological Laboratory in Woods Hole, Mass. Methods to identify microbial communities typically hunt for genetic fingerprints from various types of bacteria (SN: 11/05/09). The techniques can reveal what lives on the tongue, but not how the bacterial community is organized in space, Mark Welch says. So she and her colleagues had people scrape the top of their tongues with plastic scrapers. Then the team tagged various types of bacteria in the tongue gunk with differently colored fluorescent markers to see how the microbial community was structured. Bacterial cells, largely grouped by type in a thick, densely packed biofilm, covered each tongue surface cell. While the overall patchwork appearance of the microbial community was consistent among cells from different samples and people, the specific composition of bacteria varied, Mark Welch says. © Society for Science & the Public 2000–2020.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27141 - Posted: 03.25.2020

By Eva Frederick They’re the undertakers of the bee world: a class of workers that scours hives for dead comrades, finding them in the dark in as little as 30 minutes, despite the fact that the deceased haven’t begun to give off the typical odors of decay. A new study may reveal how they do it. “The task of undertaking is fascinating” and the new work is “pretty cool,” says Jenny Jandt, a behavioral ecologist at the University of Otago, Dunedin, who was not involved with the study. Wen Ping, an ecologist at the Chinese Academy of Sciences’s Xishuangbanna Tropical Botanical Garden, wondered whether a specific type of scent molecule might help undertaker bees find their fallen hive mates. Ants, bees, and other insects are covered in compounds called cuticular hydrocarbons (CHCs), which compose part of the waxy coating on their cuticles (the shiny parts of their exoskeletons) and help prevent them from drying out. While the insects are alive, these molecules are continually released into the air and are used to recognize fellow hive members. Wen speculated that less of the pheromones were being released into the air after a bee died and its body temperature decreased. When he used chemical methods of detecting gases to test this hypothesis, he confirmed that cooled dead bees were indeed emitting fewer volatile CHCs than living bees. © 2020 American Association for the Advancement of Science.

Keyword: Chemical Senses (Smell & Taste); Animal Communication
Link ID: 27138 - Posted: 03.24.2020

By Roni Caryn Rabin A mother who was infected with the coronavirus couldn’t smell her baby’s full diaper. Cooks who can usually name every spice in a restaurant dish can’t smell curry or garlic, and food tastes bland. Others say they can’t pick up the sweet scent of shampoo or the foul odor of kitty litter. Anosmia, the loss of sense of smell, and ageusia, an accompanying diminished sense of taste, have emerged as peculiar telltale signs of Covid-19, the disease caused by the coronavirus, and possible markers of infection. On Friday, British ear, nose and throat doctors, citing reports from colleagues around the world, called on adults who lose their senses of smell to isolate themselves for seven days, even if they have no other symptoms, to slow the disease’s spread. The published data is limited, but doctors are concerned enough to raise warnings. “We really want to raise awareness that this is a sign of infection and that anyone who develops loss of sense of smell should self-isolate,” Prof. Claire Hopkins, president of the British Rhinological Society, wrote in an email. “It could contribute to slowing transmission and save lives.” She and Nirmal Kumar, president of ENT UK, a group representing ear, nose and throat doctors in Britain, issued a joint statement urging health care workers to use personal protective equipment when treating any patients who have lost their senses of smell, and advised against performing nonessential sinus endoscopy procedures on anyone, because the virus replicates in the nose and the throat and an exam can prompt coughs or sneezes that expose the doctor to a high level of virus. Two ear, nose and throat specialists in Britain who have been infected with the coronavirus are in critical condition, Dr. Hopkins said. Earlier reports from Wuhan, China, where the coronavirus first emerged, had warned that ear, nose and throat specialists as well as eye doctors were infected and dying in large numbers, Dr. Hopkins said. © 2020 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27135 - Posted: 03.23.2020

Amy Schleunes Preti was a leading expert on human odors who sought to understand the chemistry of odor in the underarm and the behavior aspects of human scents, and an ambassador to patients suffering from rare metabolic diseases who provided communities worldwide with knowledge about their condition and how to cope with it. Preti was also dedicated to using odor biomarkers to detect cancer in its early stages, contributing both research and money to the cause, according to a Monell Center press release. Born on October 7, 1944 in Brooklyn, New York, Preti received a bachelor’s degree in chemistry from the Polytechnic Institute of Brooklyn in 1966. He then went on to MIT, where he earned a PhD in chemistry in 1971. His thesis was titled, “A Study of the Organic Compounds in the Lunar Crust and in Terrestrial Model Systems,” according to the Monell Center’s statement. Preti coauthored a paper published in Science on the same topic, and reportedly saved a vial of “moon dust” that he sometimes showed off to visitors to his lab. Upon completing his doctorate in 1971, he immediately accepted a postdoc at Monell and later become a member of the Monell Chemical Senses Center and an adjunct professor at the University of Pennsylvania School of Medicine. While Preti and his colleagues investigated a range of odors in different species—anal sac emissions from dogs, scent marks by marmoset monkeys, urine from guinea pigs and mice—Preti’s main focus was on the meaning of human odors. He studied the scents of human underarms and melanoma cells as well as the odors associated with generalized stress. Along with his collaborator, Charles Wysocki, Preti published papers on how human physiology and behavior are affected by body odor. Preti was skeptical of human pheromones and their associated hype, telling The Scientist in 2018, “I am not compelled by any studies that are out there that say there is an active steroid component from the underarm that causes [sexual attraction].” © 1986–2020 The Scientist

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27133 - Posted: 03.23.2020

By Maria Temming When it comes to identifying scents, a “neuromorphic” artificial intelligence beats other AI by more than a nose. The new AI learns to recognize smells more efficiently and reliably than other algorithms. And unlike other AI, this system can keep learning new aromas without forgetting others, researchers report online March 16 in Nature Machine Intelligence. The key to the program’s success is its neuromorphic structure, which resembles the neural circuitry in mammalian brains more than other AI designs. This kind of algorithm, which excels at detecting faint signals amidst background noise and continually learning on the job, could someday be used for air quality monitoring, toxic waste detection or medical diagnoses. The new AI is an artificial neural network, composed of many computing elements that mimic nerve cells to process scent information (SN: 5/2/19). The AI “sniffs” by taking in electrical voltage readouts from chemical sensors in a wind tunnel that were exposed to plumes of different scents, such as methane or ammonia. When the AI whiffs a new smell, that triggers a cascade of electrical activity among its nerve cells, or neurons, which the system remembers and can recognize in the future. Like the olfactory system in the mammal brain, some of the AI’s neurons are designed to react to chemical sensor inputs by emitting differently timed pulses. Other neurons learn to recognize patterns in those blips that make up the odor’s electrical signature. © Society for Science & the Public 2000–2020

Keyword: Chemical Senses (Smell & Taste); Robotics
Link ID: 27126 - Posted: 03.17.2020

Laura Reiley A study published in the journal Cell Metabolism by a group of Yale researchers found that the consumption of the common artificial sweetener sucralose (which is found in Splenda, Zerocal, Sukrana, SucraPlus and other brands) in combination with carbohydrates can swiftly turn a healthy person into one with high blood sugar. From whole grain English muffins to reduced-sugar ketchup, sucralose is found in thousands of baked goods, condiments, syrups and other consumer packaged goods — almost all of them containing carbs. The finding, which researchers noted has yet to be replicated in other studies, raises new questions about the use of artificial sweeteners and their effects on weight gain and overall health. In the Yale study, researchers took 60 healthy-weight individuals and separated them into three groups: A group that consumed a regular-size beverage containing the equivalent of two packets of sucralose sweetener, a second group that consumed a beverage sweetened with table sugar at the equivalent sweetness, and a third control group that had a beverage with the artificial sweetener as well as a carbohydrate called maltodextrin. The molecules of maltodextrin don’t bind to taste receptors in the mouth and are impossible to detect. While the sensation of the third group’s beverage was identical to the Splenda-only group, only this group exhibited significant adverse health effects. The artificial sweetener by itself seemed to be fine, the researchers discovered, but that changed when combined with a carbohydrate. Seven beverages over two weeks and the previously healthy people in this group became glucose intolerant, a metabolic condition that results in elevated blood glucose levels and puts people at an increased risk for diabetes.

Keyword: Obesity; Chemical Senses (Smell & Taste)
Link ID: 27113 - Posted: 03.12.2020

By Jonathan Lambert To a sea turtle, plastic debris might smell like dinner. As the plastic detritus of modern human life washes into oceans, marine creatures of all kinds interact with and sometimes eat it (SN: 11/13/19). Recent research suggests that this is no accident. Plastic that’s been stewing in the ocean emits a chemical that, to some seabirds and fish, smells a lot like food (SN: 11/9/16). That chemical gas, dimethyl sulfide, is also produced by phytoplankton, a key food source for many marine animals. Now, scientists have determined that loggerhead sea turtles may also confuse the smell of plastic with food, according to a study published March 9 in Current Biology. Over two weeks in January 2019, 15 captive loggerheads in tanks were exposed at the water surface to a slew of scents, including the largely neutral scent of water as a control, of food such as shrimp and of new and ocean-soaked plastic. The turtles (Caretta caretta) largely ignored smells of water and clean plastic. But when the scientists puffed air containing scents of either food or ocean-stewed plastic, the reptiles increased their sniffing above water — a typical foraging behavior. In fact, those responses to food and ocean-soaked plastic were indistinguishable to the researchers, suggesting that the plastic can induce foraging behavior in sea turtles, the team says. That might explain why sea turtles get entangled in or eat plastic, which can be harmful. Along with previous research, this study expands the breadth of marine life that may confuse plastic with food. © Society for Science & the Public 2000–2020

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27111 - Posted: 03.12.2020

Jon Hamilton A song fuses words and music. Yet the human brain can instantly separate a song's lyrics from its melody. And now scientists think they know how this happens. A team led by researchers at McGill University reported in Science Thursday that song sounds are processed simultaneously by two separate brain areas – one in the left hemisphere and one in the right. "On the left side you can decode the speech content but not the melodic content, and on the right side you can decode the melodic content but not the speech content," says Robert Zatorre, a professor at McGill University's Montreal Neurological Institute. The finding explains something doctors have observed in stroke patients for decades, says Daniela Sammler, a researcher at the Max Planck Institute for Cognition and Neurosciences in Leipzig, Germany, who was not involved in the study. "If you have a stroke in the left hemisphere you are much more likely to have a language impairment than if you have a stroke in the right hemisphere," Sammler says. Moreover, brain damage to certain areas of the right hemisphere can affect a person's ability to perceive music. By subscribing, you agree to NPR's terms of use and privacy policy. NPR may share your name and email address with your NPR station. See Details. This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply. The study was inspired by songbirds, Zatorre says. Studies show that their brains decode sounds using two separate measures. One assesses how quickly a sound fluctuates over time. The other detects the frequencies in a sound. © 2020 npr

Keyword: Hearing; Language
Link ID: 27082 - Posted: 02.28.2020

By Virginia Morell Dogs’ noses just got a bit more amazing. Not only are they up to 100 million times more sensitive than ours, they can sense weak thermal radiation—the body heat of mammalian prey, a new study reveals. The find helps explain how canines with impaired sight, hearing, or smell can still hunt successfully. “It’s a fascinating discovery,” says Marc Bekoff, an ethologist, expert on canine sniffing, and professor emeritus at the University of Colorado, Boulder, who was not involved in the study. “[It] provides yet another window into the sensory worlds of dogs' highly evolved cold noses.” The ability to sense weak, radiating heat is known in only a handful of animals: Black fire beetles, certain snakes, and one species of mammal, the common vampire bat, all of which use it to hunt prey. Most mammals have naked, smooth skin on the tip of their noses around the nostrils, an area called the rhinarium. But dogs’ rhinaria are moist, colder than the ambient temperature, and richly endowed with nerves—all of which suggests an ability to detect not just smell, but heat. To test the idea, researchers at Lund University in Sweden and Eotvos Lorand University in Hungary trained three pet dogs to choose between a warm (31 C degrees) and an ambient-temperature object, each placed 1.6 meters away. The dogs weren’t able to see or smell the difference between these objects. (Scientists could only detect the difference by touching the surfaces.) After training, the dogs were tested on their skill in double-blind experiments; all three successfully detected the objects emitting weak thermal radiation, the scientists reveal today in Scientific Reports. © 2020 American Association for the Advancement of Science

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27081 - Posted: 02.28.2020

By Jillian Kramer Scientists often test auditory processing in artificial, silent settings, but real life usually comes with a background of sounds like clacking keyboards, chattering voices and car horns. Recently researchers set out to study such processing in the presence of ambient sound—specifically the even, staticlike hiss of white noise. Their result is counterintuitive, says Tania Rinaldi Barkat, a neuroscientist at the University of Basel: instead of impairing hearing, a background of white noise made it easier for mice to differentiate between similar tones. Barkat is senior author of the new study, published last November in Cell Reports. It is easy to distinguish notes on opposite ends of a piano keyboard. But play two side by side, and even the sharpest ears might have trouble telling them apart. This is because of how the auditory pathway processes the simplest sounds, called pure frequency tones: neurons close together respond to similar tones, but each neuron responds better to one particular frequency. The degree to which a neuron responds to a certain frequency is called its tuning curve. The researchers found that playing white noise narrowed neurons’ frequency tuning curves in mouse brains. “In a simplified way, white noise background—played continuously and at a certain sound level—decreases the response of neurons to a tone played on top of that white noise,” Barkat says. And by reducing the number of neurons responding to the same frequency at the same time, the brain can better distinguish between similar sounds. © 2020 Scientific American,

Keyword: Hearing
Link ID: 27074 - Posted: 02.26.2020

By Kim Tingley Hearing loss has long been considered a normal, and thus acceptable, part of aging. It is common: Estimates suggest that it affects two out of three adults age 70 and older. It is also rarely treated. In the U.S., only about 14 percent of adults who have hearing loss wear hearing aids. An emerging body of research, however, suggests that diminished hearing may be a significant risk factor for Alzheimer’s disease and other forms of dementia — and that the association between hearing loss and cognitive decline potentially begins at very low levels of impairment. In November, a study published in the journal JAMA Otolaryngology — Head and Neck Surgery examined data on hearing and cognitive performance from more than 6,400 people 50 and older. Traditionally, doctors diagnose impairment when someone experiences a loss in hearing of at least 25 decibels, a somewhat arbitrary threshold. But for the JAMA study, researchers included hearing loss down to around zero decibels in their analysis and found that they still predicted correspondingly lower scores on cognitive tests. “It seemed like the relationship starts the moment you have imperfect hearing,” says Justin Golub, the study’s lead author and an ear, nose and throat doctor at the Columbia University Medical Center and NewYork-Presbyterian. Now, he says, the question is: Does hearing loss actually cause the cognitive problems it has been associated with and if so, how? Preliminary evidence linking dementia and hearing loss was published in 1989 by doctors at the University of Washington, Seattle, who compared 100 patients with Alzheimer’s-like dementia with 100 demographically similar people without it and found that those who had dementia were more likely to have hearing loss, and that the extent of that loss seemed to correspond with the degree of cognitive impairment. But that possible connection wasn’t rigorously investigated until 2011, when Frank Lin, an ear, nose and throat doctor at Johns Hopkins School of Medicine, and colleagues published the results of a longitudinal study that tested the hearing of 639 older adults who were dementia-free and then tracked them for an average of nearly 12 years, during which time 58 had developed Alzheimer’s or another cognitive impairment. They discovered that a subject’s likelihood of developing dementia increased in direct proportion to the severity of his or her hearing loss at the time of the initial test. The relationship seems to be “very, very linear,” Lin says, meaning that the greater the hearing deficit, the greater the risk a person will develop the condition. © 2020 The New York Times Company

Keyword: Hearing; Alzheimers
Link ID: 27057 - Posted: 02.20.2020

By Katherine Kornei Imagine a frog call, but with a metallic twang—and the intensity of a chainsaw. That’s the “boing” of a minke whale. And it’s a form of animal communication in danger of being drowned out by ocean noise, new research shows. By analyzing more than 42,000 minke whale boings, scientists have found that, as background noise intensifies, the whales are losing their ability to communicate over long distances. This could limit their ability to find mates and engage in important social contact with other whales. Tyler Helble, a marine acoustician at the Naval Information Warfare Center Pacific, and colleagues recorded minke whale boings over a 1200-square-kilometer swathe of the U.S. Navy’s Pacific Missile Range Facility near the Hawaiian island of Kauai from 2012 to 2017. By measuring when a single boing arrived at various underwater microphones, the team pinpointed whale locations to within 10 to 20 meters. The researchers then used these positions, along with models of how sound propagates underwater, to calculate the intensity of each boing when it was emitted. The team compared these measurements with natural ambient noise, including waves, wind, and undersea earthquakes (no military exercises were conducted nearby during the study period). They found that minke whale boings grew louder in louder conditions. That’s not surprising—creatures across the animal kingdom up their volume when there’s background noise. (This phenomenon, dubbed the Lombard effect, holds true for humans, too—think of holding a conversation at a loud concert.) © 2019 American Association for the Advancement of Science.

Keyword: Animal Communication; Hearing
Link ID: 27051 - Posted: 02.19.2020