Chapter 6. Hearing, Balance, Taste, and Smell

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.

Links 41 - 60 of 1695

By Christina Caron When Laura Drager contracted Covid-19 in July, it was as though someone had suddenly muted her olfactory system. One morning she was sipping her favorite Gatorade (the yellow one), and two hours later the drink was completely flavorless. She immediately lit a candle and blew it out, but she couldn’t smell the smoke. Her sense of smell had disappeared. Now, she said, “everything either tastes like bleach or tastes like nothing.” Over the past few months she has lost 19 pounds. “I don’t have that ‘I’m hungry’ feeling,” said Ms. Drager, 41, who lives in Sevierville, Tenn., about 45 minutes from Knoxville. “I think you forget how much smell and taste is a part of your life until it goes away.” As the coronavirus continues to spread, there are increasing numbers of people who have either lost their senses of smell after contracting Covid or are struggling with parosmia, a disturbing disorder that causes previously normal odors to develop a new, often unpleasant aroma. One meta-analysis published in September found that as many as 77 percent of those who had Covid were estimated to have some form of smell loss as a result of their infections. The recommended treatment for these conditions is smell training. But how exactly do you do it, and why should you bother? © 2021 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27745 - Posted: 03.27.2021

By Alyson Krueger Samantha LaLiberte, a social worker in Nashville, thought she had made a full recovery from Covid-19. But in mid-November, about seven months after she’d been sick, a takeout order smelled so foul that she threw it away. When she stopped by the house of a friend who was cooking, she ran outside and vomited on the front lawn. “I stopped going places, even to my mom’s house or to dinner with friends, because anything from food to candles smelled so terrible,” Ms. LaLiberte, 35, said. “My relationships are strained.” She is dealing with parosmia, a distortion of smell such that previously enjoyable aromas — like that of fresh coffee or a romantic partner — may become unpleasant and even intolerable. Along with anosmia, or diminished sense of smell, it is a symptom that has lingered with some people who have recovered from Covid-19. The exact number of people experiencing parosmia is unknown. One recent review found that 47 percent of people with Covid-19 had smell and taste changes; of those, about half reported developing parosmia. “That means that a rose might smell like feces,” said Dr. Richard Doty, director of the Smell and Taste Center at the University of Pennsylvania. He noted that people typically recover their smell within months. Right now, Ms. LaLiberte can’t stand the scent of her own body. Showering is no help; the smell of her body wash, conditioner and shampoo made her sick. What’s more, she detected the same odor on her husband of eight years. “There is not a whole lot of intimacy right now,” she said. “And it’s not because we don’t want to.” “It’s a much bigger issue than people give it credit for,” said Dr. Duika Burges Watson, who leads the Altered Eating Research Network at Newcastle University in England and submitted a journal research paper on the topic. “It is something affecting your relationship with yourself, with others, your social life, your intimate relationships.” © 2021 The New York Times Company

Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 27742 - Posted: 03.23.2021

By Jake Buehler You might be able to do a mean celebrity impression or two, but can you imitate an entire film’s cast at the same time? A male superb lyrebird (Menura novaehollandiae) can, well almost. During courtship and even while mating, the birds pull off a similar feat, mimicking the calls and wingbeat noises of many bird species at once, a new study shows. The lyrebirds appear to be attempting to recreate the specific ecological soundscape associated with the arrival of a predator, researchers report February 25 in Current Biology. Why lyrebirds do this isn’t yet clear, but the finding is the first time that an individual bird has been observed mimicking the sounds of multiple bird species simultaneously. The uncanny acoustic imitation of multispecies flocks adds a layer of complexity to the male lyrebird’s courtship song yet unseen in birds and raises questions about why its remarkable vocal mimicry skills, which include sounds like chainsaws and camera shutters, evolved in the first place. Superb lyrebirds — native to forested parts of southeastern Australia — have a flair for theatrics. The males have exceptionally long, showy tail feathers that are shaken extensively in elaborate mating dances (SN: 6/6/13). The musical accompaniment to the dance is predominantly a medley of greatest hits of the songs of other bird species, the function of which behavioral ecologist Anastasia Dalziell was studying via audio and video recordings of the rituals.

Keyword: Sexual Behavior; Animal Communication
Link ID: 27715 - Posted: 02.28.2021

By William Weir There are a few ways we perceive food, and not all are particularly well-understood. We know that much of it happens in the olfactory bulb, a small lump of tissue between the eyes and behind the nose, but how the stimuli arrive at this part of the brain is still being worked out. How these stimuli are processed in the brain plays a major role in our daily life. Fully understanding how our perceptions of food are formed is critical, Fahmeed Hyder said, but getting a clear picture of what our brains do when we smell has been tricky. “Knowing which exact pathways are affected and teaching our brain to appreciate and acknowledge both modes of perception in understanding the flavor is a part of our culture that we haven’t fully exploited yet,” he said. A better understanding of how smells get to our brain would not only tell us a lot about our eating habits, he said, it could even potentially help patients of certain diseases. Hyder, professor of biomedical engineering and radiology & biomedical imaging, has taken a detailed look at the function of the olfactory bulb. It may not be one of the most talked-about regions of the brain, but it helps us make sense of the outside world by taking in molecules from food — known as food volatiles — and then sending these signals further into the brain. It serves a pivotal role as the gateway for chemical stimuli to the rest of the brain — specifically the piriform cortex, amygdala, and hippocampus. To see exactly how it does that, Hyder and his team mapped the activity in the entire olfactory bulb. It’s the first time that this has ever been done for the two independent routes of odor delivery — that is, the orthonasal and retronasal routes. The results were published in NeuroImage. Copyright © 2021 Yale University

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27691 - Posted: 02.15.2021

By Carolyn Gramling The fin whale’s call is among the loudest in the ocean: It can even penetrate into Earth’s crust, a new study finds. Echoes in whale songs recorded by seismic instruments on the ocean floor reveal that the sound waves pass through layers of sediment and underlying rock. These songs can help probe the structure of the crust when more conventional survey methods are not available, researchers report in the Feb. 12 Science. Six songs, all from a single whale that sang as it swam, were analyzed by seismologists Václav Kuna of the Czech Academy of Sciences in Prague and John Nábělek of Oregon State University in Corvallis. They recorded the songs, lasting from 2.5 to 4.9 hours, in 2012 and 2013 with a network of 54 ocean-bottom seismometers in the northeast Pacific Ocean. The songs of fin whales (Balaenoptera physalus) can be up to 189 decibels, as noisy as a large ship. Seismic instruments detect the sound waves of the song, just like they pick up pulses from earthquakes or from air guns used for ship-based surveys. The underwater sounds can also produce seismic echoes: When sound waves traveling through the water meet the ground, some of the waves’ energy converts into a seismic wave (SN: 9/17/20). Those seismic waves can help scientists “see” underground: As the penetrating waves bounce off different rock layers, researchers can estimate the thickness of the layers. Changes in the waves’ speed can also reveal what types of rocks the waves traveled through. © Society for Science & the Public 2000–2021.

Keyword: Hearing; Animal Communication
Link ID: 27686 - Posted: 02.13.2021

By Brooke Jarvis Danielle Reed stopped counting after the 156th email arrived in a single afternoon. It was late March, and her laboratory at the Monell Chemical Senses Center in Philadelphia had abruptly gone into Covid-19 lockdown. For weeks, there had been little to do. Reed, who is famous in her field for helping to discover a new family of receptors that perceive bitter flavors, had spent years studying the way human genetics affect the way we experience smell and taste. It was important but niche science that seemingly had little to do with a dangerous respiratory virus spreading around the globe. And then one Saturday, she checked her email. Reed watched in amazement as the messages proliferated. It wasn’t how many threads there were, though that was overwhelming, but the way they seemed to grow like Hydras, sprouting in all directions. Recipients copied other people they thought might be interested in the discussion, who added more people, who added still others, across a huge range of countries and disciplines. The cascading emails were all responding to the same rather obscure news alert, meant for ear, nose and throat doctors based in Britain. It was titled: “Loss of smell as marker of Covid-19 infection.” The week before, Claire Hopkins, the president of the British Rhinological Society and an author of the alert, was seeing patients in her clinic in London when she noticed something odd. Hopkins, who specializes in nose and sinus diseases, especially nasal polyps, was accustomed to seeing the occasional patient — usually about one per month — whose sense of smell disappeared after a viral infection. Most of the time, such losses were fairly self-explanatory: A stuffy, inflamed nose keeps odorants from reaching the smell receptors at the top of the airway. Sometimes these receptors are also damaged by inflammation and need time to recover. But patients were now arriving with no blockage or swelling, no trouble breathing, no notable symptoms, other than the sudden and mysterious disappearance of their ability to smell. And there were nine of them. © 2021 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27672 - Posted: 01.30.2021

Katherine J. Wu In a perfect world, the entrance to every office, restaurant and school would offer a coronavirus test — one with absolute accuracy, and able to instantly determine who was virus-free and safe to admit and who, positively infected, should be turned away. That reality does not exist. But as the nation struggles to regain a semblance of normal life amid the uncontrolled spread of the virus, some scientists think that a quick test consisting of little more than a stinky strip of paper might at least get us close. The test does not look for the virus itself, nor can it diagnose disease. Rather, it screens for one of Covid-19’s trademark signs: the loss of the sense of smell. Since last spring, many researchers have come to recognize the symptom, which is also known as anosmia, as one of the best indicators of an ongoing coronavirus infection, capable of identifying even people who don’t otherwise feel sick. A smell test cannot flag people who contract the coronavirus and never develop any symptoms at all. But in a study that has not yet been published in a scientific journal, a mathematical model showed that sniff-based tests, if administered sufficiently widely and frequently, might detect enough cases to substantially drive transmission down. Daniel Larremore, an epidemiologist at the University of Colorado, Boulder, and the study’s lead author, stressed that his team’s work was still purely theoretical. Although some smell tests are already in use in clinical and research settings, the products tend to be expensive and laborious to use and are not widely available. And in the context of the pandemic, there is not yet real-world data to support the effectiveness of smell tests as a frequent screen for the coronavirus. Given the many testing woes that have stymied pandemic control efforts so far, some experts have been doubtful that smell tests could be distributed widely enough, or made sufficiently cheat-proof, to reduce the spread of infection. © 2021 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27656 - Posted: 01.20.2021

Michael Marshall One treatment for survivors of COVID-19 who have lost their sense of smell is 'smell training', in which they relearn prescribed scents, such as those of roses and lemons.Credit: Christine E. Kelly Early in the COVID-19 pandemic, it emerged that many people infected with the SARS-CoV-2 virus were losing their sense of smell — even without displaying other symptoms. Researchers also discovered that infected people could lose their sense of taste and their ability to detect chemically triggered sensations such as spiciness, called chemesthesis. Almost a year later, some still haven’t recovered these senses, and for a proportion of people who have, odours are now warped: unpleasant scents have taken the place of normally delightful ones. Nature surveys the science behind this potentially long-lasting and debilitating phenomenon. How many people with COVID-19 lose their sense of smell? The exact percentage varies between studies, but most suggest that smell loss is a common symptom. One review published last June1 compiled data from 8,438 people with COVID-19, and found that 41% had reported experiencing smell loss. In another study, published in August2, a team led by researcher Shima T. Moein at the Institute for Research in Fundamental Sciences in Tehran, Iran, administered a smell-identification test to 100 people with COVID-19 in which the subjects sniffed odours and identified them on a multiple-choice basis. Ninety-six per cent of the participants had some olfactory dysfunction, and 18% had total smell loss (otherwise known as anosmia). © 2021 Springer Nature Limited

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27649 - Posted: 01.15.2021

By Roni Caryn Rabin Until March, when everything started tasting like cardboard, Katherine Hansen had such a keen sense of smell that she could recreate almost any restaurant dish at home without the recipe, just by recalling the scents and flavors. Then the coronavirus arrived. One of Ms. Hansen’s first symptoms was a loss of smell, and then of taste. Ms. Hansen still cannot taste food, and says she can’t even tolerate chewing it. Now she lives mostly on soups and shakes. “I’m like someone who loses their eyesight as an adult,” said Ms. Hansen, a realtor who lives outside Seattle. “They know what something should look like. I know what it should taste like, but I can’t get there.” A diminished sense of smell, called anosmia, has emerged as one of the telltale symptoms of Covid-19, the illness caused by the coronavirus. It is the first symptom for some patients, and sometimes the only one. Often accompanied by an inability to taste, anosmia occurs abruptly and dramatically in these patients, almost as if a switch had been flipped. Most regain their senses of smell and taste after they recover, usually within weeks. But in a minority of patients like Ms. Hansen, the loss persists, and doctors cannot say when or if the senses will return. Scientists know little about how the virus causes persistent anosmia or how to cure it. But cases are piling up as the coronavirus sweeps across the world, and some experts fear that the pandemic may leave huge numbers of people with a permanent loss of smell and taste. The prospect has set off an urgent scramble among researchers to learn more about why patients are losing these essential senses, and how to help them. “Many people have been doing olfactory research for decades and getting little attention,” said Dr. Dolores Malaspina, professor of psychiatry, neuroscience, genetics and genomics at Icahn School of Medicine at Mount Sinai in New York. “Covid is just turning that field upside down.” © 2021 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27642 - Posted: 01.09.2021

By Matthew Hutson Somehow, even in a room full of loud conversations, our brains can focus on a single voice in something called the cocktail party effect. But the louder it gets—or the older you are—the harder it is to do. Now, researchers may have figured out how to fix that—with a machine learning technique called the cone of silence. Computer scientists trained a neural network, which roughly mimics the brain’s wiring, to locate and separate the voices of several people speaking in a room. The network did so in part by measuring how long it took for the sounds to hit a cluster of microphones in the room’s center. When the researchers tested their setup with extremely loud background noise, they found that the cone of silence located two voices to within 3.7º of their sources, they reported this month at the online-only Conference on Neural Information Processing Systems. That compares with a sensitivity of only 11.5º for the previous state-of-the-art technology. When the researchers trained their new system on additional voices, it managed the same trick with eight voices—to a sensitivity of 6.3º—even if it had never heard more than four at once. Such a system could one day be used in hearing aids, surveillance setups, speakerphones, or laptops. The new technology, which can also track moving voices, might even make your Zoom calls easier, by separating out and silencing background noise, from vacuum cleaners to rambunctious children. © 2020 American Association for the Advancement of Science.

Keyword: Hearing
Link ID: 27628 - Posted: 12.19.2020

By Paula Span By now, we were supposed to be swiftly approaching the day when we could walk into a CVS or Walgreens, a Best Buy or Walmart, and walk out with a pair of quality, affordable hearing aids approved by the Food and Drug Administration. Hearing aids, a widely needed but dauntingly expensive investment, cost on average $4,700 a pair. (Most people need two.) So in 2017, Congress passed legislation allowing the devices to be sold directly to consumers, without a prescription from an audiologist. The next step was for the F.D.A. to issue draft regulations to establish safety and effectiveness benchmarks for these over-the-counter devices. Its deadline: August 2020. A public comment period would follow, and then — right about now — the agency would be preparing its final rule, to take effect in May 2021. So by next summer, people with what is known as “perceived mild to moderate hearing loss” might need to spend only one-quarter of today’s price or less, maybe far less. And then we could have turned down the TV volume and stopped making dinner reservations for 5:30 p.m., when restaurants are mostly empty and conversations are still audible. “These regulations are going to help a lot of people,” said Dr. Vinay Rathi, an otolaryngologist at Massachusetts Eye and Ear. “There could be great potential for innovation.” So, where are the new rules? This long-sought alternative to the current state of hearing aid services has been delayed, perhaps one more victim of the pandemic. Of course, the agency has other crucial matters to address just now. Although the office charged with hearing aid regulations is not the one assessing Covid-19 vaccines, an F.D.A. spokesman said via email that it was dealing with “an unprecedented volume of emergency use authorizations” for diagnostics, ventilators and personal protective equipment. © 2020 The New York Times Company

Keyword: Hearing
Link ID: 27626 - Posted: 12.15.2020

Sam Wollaston A single-storey building in a lonely rural business park, a few miles from Milton Keynes on a grey autumn day. It looks like a location for a bleak thriller: where a kidnap victim is held, perhaps, or the scene of a final shootout. Inside, though, something kind of cool is happening. In a brightly lit room, four inverted metal cups have been placed on the red carpet, each containing a small glass jar. One of these contains a smell: a “training odour”. Into the room bursts Billy, followed by Jess. Billy is a labrador, and Jess his human trainer. Billy bounces about the place, clearly super excited. He sniffs at everything – furniture, people, the cups – wagging ferociously. When he sniffs at the cup that contains the smell, another trainer, Jayde, indicates success with a clicking noise. Billy is rewarded with his favourite toy, a well-chewed rubber ball, and a chorus of “good boy”. So far, so unremarkable. Dogs have excellent noses, everyone knows that. They are estimated to be at least 10,000 times better than ours. It’s not immediately clear just how good Billy is. Did he really find the smell, or did Jayde just click when he sniffed the right cup? To be fair to Billy, he’s young, 18 months old, and this is only his second session. The trainers – Jess, Jayde and Mark – have high hopes for him. And after a couple more goes, it becomes clear that he is definitely finding the right cup, quickly. He is also clearly enjoying the game. What Billy lacks in refinement, he makes up for in youthful enthusiasm and exuberance, and he learns fast. Which is good news: this is just the first stage for Billy, who is on a fast-track training course to learn to sniff out Covid-19. He’s not working with the actual virus, of course, but a training sample, which will teach him to do that job. © 2020 Guardian News & Media Limited

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27622 - Posted: 12.12.2020

By Jason Castro To be an expectant mother, or the anxious partner of one, is to be keenly, even agonizingly aware of how chemicals affect a developing life. The basic advice is well known, and obsessively followed: Alcohol in strict moderation, and no nicotine at all. Don’t mess with mercury. Folic acid is your friend. More protein and less caffeine. Stay away from BPA, PBCs and PFA, and generally make an enemy of the unpronounceable. But, if we take the results of a provocative recent paper seriously, there may be another important, and deeply underappreciated chemical influence at work: a man’s odor. The research, by a team headed by Noam Sobel of the Weizmann Institute of Science, suggests that there is a relationship between women’s response to “social odors” contained in male sweat and the heartbreaking condition of unexplained repeated pregnancy loss (uRPL). Specifically, in blind smell-tests, these scientists observed that women who had experienced uRPL were significantly better at identifying their spouse’s odor than age-matched controls. Additionally, their brains responded differently to nonspouse odors and they displayed unique olfactory neuroanatomy. Taken in the context of a large body of literature on chemosignaling in nonhuman animals, these results make it conceivable that the human nose could also communicate with the womb and may even influence a pregnancy. So far, the results are strictly correlative, and in no way point to male odor as some kind of pheromonal smoking gun that explains pregnancy loss. Hypothetically, it could also be true that women experiencing uRPL have, on average, larger middle toes, larger whites of their eyes, thinner wrists and a proclivity for wearing purple socks. None of these would give one pause or prompt a serious search for some kind of causal link to pregnancy loss. Yet this particular link between smell and pregnancy loss is intriguing because of how prevalent and robust it is in other mammals, including primates. Many miscarriages still have unexplained causes, which makes any lead, correlative or not, a particularly interesting and worthwhile area of research. © 2020 Scientific American

Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 27619 - Posted: 12.09.2020

David Cox Seven years ago, rhinology surgeon Peter Andrews found himself performing an operation that would go on to change the course of his career. Andrews was operating on a patient who had broken his nose many decades earlier after being struck by a cricket ball. The procedure was delicate: straightening the septum – the thin wall of cartilage that separates the nostrils – and in the process improving his breathing, which had become more laboured in later life. But it had a surprising outcome. As well being able to breathe more freely, Andrews’s patient found he could smell again for the first time in 40 years, a remarkable turn of events that provided the medical community with a new insight into our sense of smell, and its capacity to regenerate. Being able to smell is actually a result of a complex neurological process. Smell-specific nerve cells known as olfactory neurons, located high in the nasal cavity, detect molecules in the air such as those released by a perfume, or smoke particles from something burning. They then convey this information via a long nerve fibre running up through the skull, to a part of the brain that makes sense of it all. This network is one of the most adaptable in the entire central nervous system. To keep functioning, it completely regenerates every six weeks, shedding existing olfactory neurons, and creating new ones from scratch. “That’s quite a feat in itself, because those neurons then have to reconnect up into the brain tissue,” says Andrews. But sometimes things can happen that impair its ability to regenerate. An estimated 5% of the general population is believed to have anosmia, the medical term for temporary or permanent smell loss. Anosmia can occur as part of the ageing process, but also in those of all ages due to factors ranging from broken noses to viral infections. © 2020 Guardian News & Media Limited

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27618 - Posted: 12.09.2020

By Mekado Murphy Creating an audioscape for a movie about a musician losing his hearing is more complicated than it may seem. The filmmakers behind the new drama “Sound of Metal” wanted to take audiences into the experience of its lead character, Ruben (Riz Ahmed), a punk-metal drummer who is forced to look at his life differently as he goes deaf. Judging by the overwhelmingly positive reviews, the filmmakers pulled off that difficult feat. In The New York Times, Jeannette Catsoulis raved about “an extraordinarily intricate sound design that allows us to borrow Ruben’s ears.” The film (streaming on Amazon) often places us in Ruben’s aural perspective as he navigates his new reality. (It’s worth watching with headphones or a good sound system.) “I had many conversations with people who have lost their hearing and not two people’s experience is the same,” said Darius Marder, the film’s co-writer and director. “But one thing that’s pretty much true for all people who are deaf is that they don’t lose sound entirely. It isn’t silence.” Instead, Marder and his sound designer, Nicolas Becker, wanted to capture those low-frequency vibrations and other tones. The approach was adjusted for different moments in Ruben’s experience. In separate Zoom interviews, Marder and Becker focused on three scenes as they spoke about some of the techniques and ideas they used to tap into Ruben’s aural experience, including putting microphones inside skulls and mouths. If the first times there’s a notable change in Ruben’s hearing comes before a show, as he is setting up the merchandise table with his bandmate and girlfriend, Lou (Olivia Cooke). At one point, he experiences a high-pitched ringing, then voices are muffled. Ahmed’s response in that moment isn’t just acting. The filmmakers had custom-fit earpieces made for the actor so they could feed him a high-frequency sound they had created. © 2020 The New York Times Company

Keyword: Hearing
Link ID: 27606 - Posted: 12.05.2020

Terry Gross Food science writer Harold McGee was in the middle of writing Nose Dive, his book about the science of smell, when he woke up one morning and realized that he couldn't smell his own coffee. Loss of smell has since become associated with COVID-19. In McGee's case, it was the byproduct of a sinus infection. McGee remembers feeling panicked. "I have friends in the kind of clinical side of taste and smell research. And so I immediately contacted them to find out what I could do and why this had happened," he says. "And they basically said, 'You're going to have to wait and see.' " Over the course of a few months, McGee's sense of smell gradually returned. But he still remembers what it was like to live in an odorless world. "It's the kind of thing where you don't notice something until it's gone," he says. "I spent less and less time cooking. There was no point in going out to restaurants because I wasn't really going to enjoy it." McGee's new book is about how smell is essential to our sense of taste, why things smell the way they do and the ways different chemicals combine to create surprising (and sometimes distasteful) odors. "One of the great pleasures of delving into smells in general was discovering over and over again that things that we enjoy in foods are actually found elsewhere in the world," he says. "And in as unlikely places as cat pee and human sweat, for example." © 2020 npr

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27583 - Posted: 11.16.2020

By Jonathan Lambert Octopus arms have minds of their own. Each of these eight supple yet powerful limbs can explore the seafloor in search of prey, snatching crabs from hiding spots without direction from the octopus’ brain. But how each arm can tell what it’s grasping has remained a mystery. Now, researchers have identified specialized cells not seen in other animals that allow octopuses to “taste” with their arms. Embedded in the suckers, these cells enable the arms to do double duty of touch and taste by detecting chemicals produced by many aquatic creatures. This may help an arm quickly distinguish food from rocks or poisonous prey, Harvard University molecular biologist Nicholas Bellono and his colleagues report online October 29 in Cell. The findings provide another clue about the unique evolutionary path octopuses have taken toward intelligence. Instead of being concentrated in the brain, two-thirds of the nerve cells in an octopus are distributed among the arms, allowing the flexible appendages to operate semi-independently (SN: 4/16/15). “There was a huge gap in knowledge of how octopus [arms] actually collect information about their environment,” says Tamar Gutnick, a neurobiologist who studies octopuses at Hebrew University of Jerusalem who was not involved in the study. “We’ve known that [octopuses] taste by touch, but knowing it and understanding how it’s actually working is a very different thing.” Working out the specifics of how arms sense and process information is crucial for understanding octopus intelligence, she says. “It’s really exciting to see someone taking a comprehensive look at the cell types involved,” and how they work. © Society for Science & the Public 2000–2020

Keyword: Chemical Senses (Smell & Taste); Evolution
Link ID: 27560 - Posted: 10.31.2020

By Lucy Hicks Ogre-faced spiders might be an arachnophobe’s worst nightmare. The enormous eyes that give them their name allow them to see 2000 times better than we can at night. And these creepy crawlers are lightning-fast predators, snatching prey in a fraction of a second with mini, mobile nets. Now, new research suggests these arachnids use their legs not only to scuttle around, but also to hear. In light of their excellent eyesight, this auditory skill “is a surprise,” says George Uetz, who studies the behavioral ecology of spiders at the University of Cincinnati and wasn’t involved in the new research. Spiders don’t have ears—generally a prerequisite for hearing. So, despite the vibration-sensing hairs and receptors on most arachnids’ legs, scientists long thought spiders couldn’t hear sound as it traveled through the air, but instead felt vibrations through surfaces. The first clue they might be wrong was a 2016 study that found that a species of jumping spider can sense vibrations in the air from sound waves. Enter the ogre-faced spider. Rather than build a web and wait for their prey, these fearsome hunters “take a much more active role,” says Jay Stafstrom, a sensory ecologist at Cornell University. The palm-size spiders hang upside down from small plants on a silk line and create a miniweb across their four front legs, which they use as a net to catch their next meal. The spiders either lunge at bugs wandering below or flip backward to ensnare flying insects’ midair. © 2020 American Association for the Advancement of Science.

Keyword: Hearing; Evolution
Link ID: 27559 - Posted: 10.31.2020

By Nicholas Bakalar Long-term exposure to noise may be linked to an increased risk for Alzheimer’s disease and other forms of dementia. Researchers did periodic interviews with 5,227 people 65 and older participating in a study on aging. They assessed them with standard tests of orientation, memory and language, and tracked average daytime noise levels in their neighborhoods for the five years preceding the cognitive assessments. About 11 percent had Alzheimer’s disease, and 30 percent had mild cognitive impairment, which often progresses to full-blown dementia. Residential noise levels varied widely, from 51 to 78 decibels, or from the level of a relatively quiet suburban neighborhood to that of an urban setting near a busy highway. The study is in Alzheimer’s & Dementia. After controlling for education, race, smoking, alcohol consumption, neighborhood air pollution levels and other factors, they found that each 10 decibel increase in community noise level was associated with a 36 percent higher likelihood of mild cognitive impairment, and a 29 percent increased risk for Alzheimer’s disease. The associations were strongest in poorer neighborhoods, which also had higher noise levels. The reasons for the connection are unknown, but the lead author, Jennifer Weuve, an associate professor of epidemiology at Boston University, suggested that excessive noise can cause sleep deprivation, hearing loss, increased heart rate, constriction of the blood vessels and elevated blood pressure, all of which are associated with an increased risk for dementia. © 2020 The New York Times Company

Keyword: Alzheimers; Hearing
Link ID: 27551 - Posted: 10.28.2020

By Stephani Sutherland Many of the symptoms experienced by people infected with SARS-CoV-2 involve the nervous system. Patients complain of headaches, muscle and joint pain, fatigue and “brain fog,” or loss of taste and smell—all of which can last from weeks to months after infection. In severe cases, COVID-19 can also lead to encephalitis or stroke. The virus has undeniable neurological effects. But the way it actually affects nerve cells still remains a bit of a mystery. Can immune system activation alone produce symptoms? Or does the novel coronavirus directly attack the nervous system? Some studies—including a recent preprint paper examining mouse and human brain tissue—show evidence that SARS-CoV-2 can get into nerve cells and the brain. The question remains as to whether it does so routinely or only in the most severe cases. Once the immune system kicks into overdrive, the effects can be far-ranging, even leading immune cells to invade the brain, where they can wreak havoc. Some neurological symptoms are far less serious yet seem, if anything, more perplexing. One symptom—or set of symptoms—that illustrates this puzzle and has gained increasing attention is an imprecise diagnosis called “brain fog.” Even after their main symptoms have abated, it is not uncommon for COVID-19 patients to experience memory loss, confusion and other mental fuzziness. What underlies these experiences is still unclear, although they may also stem from the body-wide inflammation that can go along with COVID-19. Many people, however, develop fatigue and brain fog that lasts for months even after a mild case that does not spur the immune system to rage out of control. Another widespread symptom called anosmia, or loss of smell, might also originate from changes that happen without nerves themselves getting infected. Olfactory neurons, the cells that transmit odors to the brain, lack the primary docking site, or receptor, for SARS-CoV-2, and they do not seem to get infected. Researchers are still investigating how loss of smell might result from an interaction between the virus and another receptor on the olfactory neurons or from its contact with nonnerve cells that line the nose. © 2020 Scientific American,

Keyword: Learning & Memory; Chemical Senses (Smell & Taste)
Link ID: 27547 - Posted: 10.24.2020