Chapter 5. Hormones and the Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 744

By Ingfei Chen, Spectrum In October 2010, Lisa and Eugene Jeffers learned that their daughter Jade, then nearly 2 and a half years old, has autism. The diagnosis felt like a double whammy. The parents were soon engulfed by stress from juggling Jade’s new therapy appointments and wrangling with their health insurance provider, but they now had an infant son to worry about, too. Autism runs in families. Would Bradley follow in his big sister’s footsteps? "We were on high alert,” Lisa Jeffers says. “There were times I would call his name, and he wouldn't look.” She says she couldn’t help but think: Is it because he's busy playing or because he has autism? In search of guidance, the parents signed Bradley up for a three-year study at the University of California, Davis (UC Davis) MIND Institute, a half-hour drive from their home near Sacramento. Researchers there wanted answers to some of the same questions the couple had: What are the odds that infants like Bradley—younger brothers or sisters of a child with autism—will be on the spectrum too? Could experts detect autism in these babies early on, so that they might benefit from early intervention? The infant-sibling study at UC Davis is one of more than 20 similar long-running investigations across the United States, Canada and United Kingdom, the first of which began around 2000. These ‘baby sib’ studies, which collectively have followed thousands of children, are among the most ambitious and expensive projects in autism research. Many of the scientists who run them anticipated that by tracking this special population, they would be able to spot signs of autism before age 1, and ultimately create an infant screen for the condition. © 2017 Scientific American

Keyword: Autism; Development of the Brain
Link ID: 23973 - Posted: 08.18.2017

Eric Deggans Like a lot of kids in high school, Sam worries that he doesn't fit in. "I'm a weirdo. That's what everyone says," declares the 18-year-old character at the center of Netflix's new dramatic comedy series Atypical. One reason Sam struggles to fit in: He has autism. As his character explains at the start of the first episode, sometimes he doesn't understand what people mean when they say things. And that makes him feel alone, even when he's not. Sam's family in Atypical is thrown in all sorts of new directions by his quest to date and find a girlfriend. Creator Robia Rashid says she wanted to tell a different kind of coming-of-age story, inspired by recent increases in autism diagnoses. "There are all these young people now who are on the spectrum, who know ... they're on the spectrum," she says. "And [they] are interested in things that every young person is interested in ... independence and finding connections and finding love." On-screen depictions of autism have come a long way since Dustin Hoffman's portrayal of Raymond Babbitt in the 1988 Oscar-winning film Rain Man. Hoffman's Babbitt focused obsessively on watching The People's Court and getting served maple syrup before his pancakes. He could also memorize half the names in a phone book in one reading and count the number of toothpicks on the floor, moments after they spilled out of the box. For Atypical, Rashid says she researched accounts of adults with autism, has several parents of autistic children working in her crew and hired an actor with autism to play a minor role. © 2017 npr

Keyword: Autism
Link ID: 23953 - Posted: 08.12.2017

By GINA KOLATA For middle-aged women struggling with their weight, a recent spate of scientific findings sounds too good to be true. And they may be, researchers caution. Studies in mice indicate that a single hormone whose levels rise at menopause could be responsible for a characteristic redistribution of weight in middle age to the abdomen, turning many women from “pears” to “apples.” At the same time, the hormone may spur the loss of bone. In mouse studies, blocking the hormone solves those problems, increasing the calories burned, reducing abdominal fat, slowing bone loss and even encouraging physical activity. The notion that such a simple intervention could solve two big problems of menopause has received the attention of researchers and has prompted commentaries in prestigious journals like The New England Journal of Medicine and Cell Metabolism. “It’s a super interesting idea,” said Dr. Daniel Bessesen, an obesity expert and professor of medicine at the University of Colorado School of Medicine. With obesity rising, “we definitely need some new ideas.” The work began when Dr. Mone Zaidi, a professor of medicine at the Icahn School of Medicine at Mount Sinai in New York City, became curious about whether a reproductive hormone — F.S.H., or follicle-stimulating hormone — affects bone density. It had long been assumed that the hormone’s role was limited to reproduction. F.S.H. stimulates the production of eggs in women and sperm in men. Researchers knew that blood levels of F.S.H. soar as women’s ovaries start to fail before menopause. At the same time, women rapidly lose bone — even when blood levels of estrogen, which can preserve bone, remain steady. © 2017 The New York Times Company

Keyword: Obesity; Hormones & Behavior
Link ID: 23929 - Posted: 08.08.2017

/ By Deborah Blum I’m hesitating over this one question I want to ask the scientist on the phone, a federal researcher studying the health effects of soy formula on infants. I worry that it’s going to sound slightly Dr. Frankenstein-esque. Finally, I spill it out anyway: “Are we talking about a kind of accidental experiment in altering child development?” The line goes briefly silent. “I’m a little worried about the word ‘experiment,’” replies Jack Taylor, a senior investigator at the National Institute of Environmental Health Sciences, a division of the National Institutes of Health. Taylor and his colleagues in North Carolina have been comparing developmental changes in babies fed soy formula, cow-milk formula, and breastmilk. His group’s most recent paper, “Soy Formula and Epigenetic Modifications,” reported that soy-fed infant girls show some distinct genetic changes in vaginal cells, possibly “associated with decreased expression of an estrogen-responsive gene.” But his first reaction is that my phrasing would, incorrectly, “make it sound like we were giving children a bad drug on purpose.” The research group, he emphasizes, is merely comparing the health of infants after their parents independently choose a preferred feeding method. No one is forcing soy formula on innocent infants. “No, no, that’s not what I meant,” I explain with some hurry. “I wasn’t suggesting that you were experimenting on children.” Rather, I was wondering whether we as a culture, with our fondness for all things soy, have created a kind of inadvertent national study. Soy accounts for about 12 percent of the U.S. formula market and I’ve become increasingly curious about what this means. Because the science does seem to suggest that we are rather casually testing the effect of plant hormones on human development, most effectively by feeding infants a constant diet of a food rich in such compounds. Copyright 2017 Undark

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 23912 - Posted: 08.03.2017

Laura Sanders The company mice keep can change their behavior. In some ways, genetically normal littermates behave like mice that carry an autism-related mutation, despite not having the mutation themselves, scientists report. The results, published July 31 in eNeuro, suggest that the social environment influences behavior in complex and important ways, says neuroscientist Alice Luo Clayton of the Simons Foundation Autism Research Initiative in New York City. The finding comes from looking past the mutated mice to their nonmutated littermates, which are usually not a subject of scrutiny. “People almost never look at it from that direction,” says Clayton, who wasn’t involved in the study. Researchers initially planned to investigate the social behavior of mice that carried a mutation found in some people with autism. Studying nonmutated mice wasn’t part of the plan. “We stumbled into this,” says study coauthor Stéphane Baudouin, a neurobiologist at Cardiff University in Wales. Baudouin and colleagues studied groups of mice that had been genetically modified to lack neuroligin-3, a gene that is mutated in some people with autism. Without the gene, the mice didn’t have Neuroligin-3 in their brains, a protein that helps nerve cells communicate. Along with other behavioral quirks, these mice didn’t show interest in sniffing other mice, as expected. But Baudouin noticed that the behavior of the nonmutated control mice who lived with the neuroligin-3 mutants also seemed off. He suspected that the behavior of the mutated mice might be to blame. |© Society for Science & the Public 2000 - 2017.

Keyword: Autism; Genes & Behavior
Link ID: 23905 - Posted: 08.01.2017

By Daisy Yuhas, When the shy, dark-haired boy met with clinicians for a full psychiatric evaluation two years ago, almost everything about him pointed to autism. W. had not spoken his first words until age 2. He was at least 4 before he could form sentences. As he got older, he was unable to make friends. He struggled to accept changes to his routine and maintain eye contact. And despite having an average intelligence quotient, he was unusually attached to objects; at age 11, he still lugged a bag of stuffed animals with him everywhere he went. But something else was clearly at work, too. “He had these things that he would call day dreams,” recalls Jennifer Foss-Feig, assistant professor of psychiatry at the Icahn School of Medicine at Mount Sinai in New York. When she evaluated W., she noticed that he would often gaze into an empty corner of the room—particularly when he seemed to suspect that she wasn’t paying attention to him. (For privacy reasons, Foss-Feig declined to reveal anything but the child’s first initial.) Occasionally, he would speak to that space, as though someone else were there. His parents, she recalls, were worried. They explained to Foss-Feig that their son had what he called an “imaginary family.” But W.’s invisible playmates weren’t of the usual harmless variety that many children have; they seemed to be a dangerous distraction both at home and at school. On one occasion, he wandered through a busy parking lot, seemingly oblivious to the oncoming traffic. © 2017 Scientific America

Keyword: Autism; Schizophrenia
Link ID: 23874 - Posted: 07.25.2017

By JANE E. BRODY Problems with estrogen and testosterone, the body’s main sex hormones, tend to attract widespread public interest. But we might all be better off paying more attention to a far more common endocrine disorder: abnormal levels of thyroid hormone. Thyroid disorders can affect a wide range of bodily functions and cause an array of confusing and often misdiagnosed symptoms. Because the thyroid, a small gland in the neck behind the larynx, regulates energy production and metabolism throughout the body, including the heart, brain, skin, bowels and body temperature, too much or too little of its hormones can have a major impact on health and well-being. Yet in a significant number of people with thyroid deficiencies, routine blood tests fail to detect insufficient thyroid hormone, leaving patients without an accurate explanation for their symptoms. These can include excessive fatigue, depression, hair loss, unexplained weight gain, constipation, sleep problems, mental fogginess and anxiety. Women of childbearing age may have difficulty getting pregnant or staying pregnant. Although thyroid disorders are more common in adults, children, whose cognitive and physical development depend on normal thyroid function, are not necessarily spared. In a review article published last year in JAMA Pediatrics, doctors from the Children’s Hospital of Philadelphia pressed primary care doctors to recognize childhood thyroid disease and begin treatment as early as the second week of life to ensure normal development. Hypothyroidism — low hormone levels — in particular is often misdiagnosed, its symptoms resembling those of other diseases or mistaken for “normal” effects of aging. Indeed, the risk of hypothyroidism rises with age. Twenty percent of people over 75, most of them women, lack sufficient levels of thyroid hormone that, among other problems, can cause symptoms of confusion commonly mistaken for dementia. © 2017 The New York Times Company

Keyword: Hormones & Behavior
Link ID: 23866 - Posted: 07.24.2017

By PAM BELLUCK How we look at other people’s faces is strongly influenced by our genes, scientists have found in new research that may be especially important for understanding autism because it suggests that people are born with neurological differences that affect how they develop socially. The study, published on Wednesday in the journal Nature, adds new pieces to the nature-versus-nurture puzzle, suggesting that genetics underlie how children seek out formative social experiences like making eye contact or observing facial expressions. Experts said the study may also provide a road map for scientists searching for genes linked to autism. “These are very convincing findings, novel findings,” said Charles A. Nelson III, a professor of pediatrics and neuroscience at Harvard Medical School and Boston Children’s Hospital, who was not involved in the research. “They seem to suggest that there’s a genetic underpinning that leads to different patterns of brain development, that leads some kids to develop autism.” Dr. Nelson, an expert in child development and autism who was an independent reviewer of the study for Nature, said that while autism is known to have a genetic basis, how specific genes influence autism’s development remains undetermined. The study provides detailed data on how children look at faces, including which features they focus on and when they move their eyes from one place to another. The information, Dr. Nelson said, could help scientists “work out the circuitry that controls these eye movements, and then we ought to be able to work out which genes are being expressed in that circuit.” “That would be a big advance in autism,” he said. In the study, scientists tracked the eye movements of 338 toddlers while they watched videos of motherly women as well as of children playing in a day care center. The toddlers, 18 months to 24 months old, included 250 children who were developing normally (41 pairs of identical twins, 42 pairs of nonidentical twins and 84 children unrelated to each other). There were also 88 children with autism. © 2017 The New York Times Company

Keyword: Autism; Vision
Link ID: 23832 - Posted: 07.13.2017

By Jessica Wright, Spectrum on July 11, 2017 Treatment with the hormone oxytocin improves social skills in some children with autism, suggest results from a small clinical trial. The results appeared today in the Proceedings of the National Academy of Sciences1. Oxytocin, dubbed the ‘love hormone,’ enhances social behavior in animals. This effect makes it attractive as a potential autism treatment. But studies in people have been inconsistent: Some small trials have shown that the hormone improves social skills in people with autism, and others have shown no benefit. This may be because only a subset of people with autism respond to the treatment. In the new study, researchers tried to identify this subset. The same team showed in 2014 that children with relatively high blood levels of oxytocin have better social skills than do those with low levels2. In their new work, the researchers examined whether oxytocin levels in children with autism alter the children’s response to treatment with the hormone. They found that low levels of the hormone prior to treatment are associated with the most improvement in social skills. “We need to be thinking about a precision-medicine approach for autism,” says Karen Parker, associate professor of psychiatry at Stanford University in California, who co-led the study. “There’s been a reasonable number of failed [oxytocin] trials, and the question is: Could they have failed because all of the kids, by blind, dumb luck, had really high baseline oxytocin levels?” The study marks the first successful attempt to find a biological marker that predicts response to the therapy. © 2017 Scientific American,

Keyword: Autism; Hormones & Behavior
Link ID: 23826 - Posted: 07.12.2017

By Nicholette Zeliadt Researchers have known that genes contribute to autism since the 1970s, when a team found that identical twins often share the condition. Since then, scientists have been racking up potential genetic culprits in autism, a process that DNA-decoding technologies have accelerated in the past decade. As this work has progressed, scientists have unearthed a variety of types of genetic changes that can underlie autism. The more scientists dig into DNA, the more intricate its contribution to autism seems to be. How do researchers know genes contribute to autism? Since the first autism twin study in 1977, several teams have compared autism rates in twins and shown that autism is highly heritable. When one identical twin has autism, there is about an 80 percent chance that the other twin has it, too. The corresponding rate for fraternal twins is around 40 percent. However, genetics clearly does not account for all autism risk. Environmental factors also contribute to the condition, although researchers disagree on the relative contributions of genes and environment. Some environmental risk factors for autism, such as exposure to a maternal immune response in the womb or complications during birth, may work with genetic factors to produce autism or intensify its features. Is there such a thing as an autism gene? Not really. There are several conditions associated with autism that stem from mutations in a single gene, including fragile X and Rett syndromes. But less than 1 percent of non-syndromic cases of autism stem from mutations in any single gene. © 1996-2017 The Washington Post

Keyword: Autism; Genes & Behavior
Link ID: 23794 - Posted: 07.01.2017

Cassie Martin Long typecast as the strong silent type, bones are speaking up. In addition to providing structural support, the skeleton is a versatile conversationalist. Bones make hormones that chat with other organs and tissues, including the brain, kidneys and pancreas, experiments in mice have shown. “The bone, which was considered a dead organ, has really become a gland almost,” says Beate Lanske, a bone and mineral researcher at Harvard School of Dental Medicine. “There’s so much going on between bone and brain and all the other organs, it has become one of the most prominent tissues being studied at the moment.” At least four bone hormones moonlight as couriers, recent studies show, and there could be more. Scientists have only just begun to decipher what this messaging means for health. But cataloging and investigating the hormones should offer a more nuanced understanding of how the body regulates sugar, energy and fat, among other things. Of the hormones on the list of bones’ messengers — osteocalcin, sclerostin, fibroblast growth factor 23 and lipocalin 2 — the last is the latest to attract attention. Lipocalin 2, which bones unleash to stem bacterial infections, also works in the brain to control appetite, physiologist Stavroula Kousteni of Columbia University Medical Center and colleagues reported in the March 16 Nature. After mice eat, their bone-forming cells absorb nutrients and release a hormone called lipocalin 2 (LCN2) into the blood. LCN2 travels to the brain, where it gloms on to appetite-regulating nerve cells, which tell the brain to stop eating, a recent study suggests. © Society for Science & the Public 2000 - 2017.

Keyword: Hormones & Behavior
Link ID: 23762 - Posted: 06.22.2017

By Lenny Bernstein A mother’s fever during pregnancy, especially in the second trimester, is associated with a higher risk that her child will be diagnosed with autism spectrum disorder, researchers reported Tuesday. Three or more fevers after 12 weeks of gestation may be linked to an even greater risk of the condition. The study by researchers at Columbia University’s Mailman School of Public Health adds support for the theory that infectious agents that trigger a pregnant woman’s immune response may disrupt a fetus’s brain development and lead to disorders such as autism. “Fever seems to be the driving force here,” not the infection itself, said Mady Hornig, director of translational research at the school’s Center for Infection and Immunity. Fever can be part of the body’s immune response to an infection, and molecules produced by a mother’s immune system may be crossing into the baby’s neurological system at a critical time, she said. The research, published in the journal Molecular Psychiatry, comes at a time when the scientifically discredited theory that some childhood vaccines cause autism has gained new attention. President Trump has promoted this myth, energizing some anti-vaccine groups. Some families say that their children developed autism after vaccinations. The timing is a coincidence, however; symptoms of autism typically become clear at around two years of age, which happens to be the age when children get certain vaccines. © 1996-2017 The Washington Post

Keyword: Autism
Link ID: 23737 - Posted: 06.13.2017

By RICHARD SANDOMIR Isabelle Rapin, a Swiss-born child neurologist who helped establish autism’s biological underpinnings and advanced the idea that autism was part of a broad spectrum of disorders, died on May 24 in Rhinebeck, N.Y. She was 89. The cause was pneumonia, said her daughter Anne Louise Oaklander, who is also a neurologist. “Calling her one of the founding mothers of autism is very appropriate,” said Dr. Thomas Frazier II, a clinical psychologist and chief science officer of Autism Speaks, an advocacy group for people with autism and their families. “With the gravity she carried, she moved us into a modern understanding of autism.” Dr. Rapin (pronounced RAP-in) taught at the Albert Einstein College of Medicine in the Bronx and over a half-century there built a reputation for rigorous scholarship. She retired in 2012 but continued working at her office and writing journal papers. The neurologist Oliver Sacks, a close friend and colleague, called her his “scientific conscience.” In his autobiography, “On the Move: A Life” (2015), Dr. Sacks wrote: “Isabelle would never permit me, any more than she permitted herself, any loose, exaggerated, uncorroborated statements. ‘Give me the evidence,’ she always says.” Dr. Rapin’s focus on autism evolved from her studies of communications and metabolic disorders that cause mental disabilities and diminish children’s ability to navigate the world. For decades she treated deaf children, whose difficulties in communicating limited their path to excelling in school and forced some into institutions. “Communications disorders were the overarching theme of my mother’s career,” Dr. Oaklander said in an interview. In a short biography written for the Journal of Child Neurology in 2001, Dr. Rapin recalled a critical moment in her work on autism. “After evaluating hundreds of autistic children,” she wrote, “I became convinced that the report by one-third of parents of autistic preschoolers, of a very early language and behavioral regression, is real and deserving of biologic investigation.” © 2017 The New York Times Company

Keyword: Autism
Link ID: 23727 - Posted: 06.12.2017

By Anil Ananthaswamy A machine-learning algorithm has analysed brain scans of 6-month-old children and predicted with near-certainty whether they will show signs of autism when they reach the age of 2. The finding means we may soon be able to intervene before symptoms appear, although whether that would be desirable is a controversial issue. “We have been trying to identify autism as early as possible, most importantly before the actual behavioural symptoms of autism appear,” says team member Robert Emerson of the University of North Carolina at Chapel Hill. Previous work has identified that bundles of nerve fibres in the brain develop differently in infants with older siblings with autism from how they do in infants without this familial risk factor. The changes in these white matter tracts in the brain are visible at 6 months. For the new study, Emerson and his team did fMRI brain scans of 59 sleeping infants, all of whom were aged 6 months and had older siblings with autism, which means they are more likely to develop autism themselves. The scans collected data from 230 brain regions, showing the 26,335 connections between them. When the team followed-up with the children at the age of 2, 11 had been diagnosed with an autism-like condition. The team used the brain scans from when the babies were 6 months old and behavioural data from when the children were 2 years old to train a machine-learning program to identify any brain connectivity patterns that might be linked to later signs of autism, such as repetitive behaviour, difficulties with language, or problems relating socially to others. © Copyright New Scientist Ltd.

Keyword: Autism; Brain imaging
Link ID: 23722 - Posted: 06.08.2017

By LISA SANDERS, M.D. She didn’t have any urgent medical problems, the woman told Dr. Lori Bigi. She was there because she had moved to Pittsburgh and needed a primary-care doctor. Bigi, an internist at the University of Pittsburgh Medical Center, quickly eyed her new patient. She was 31 and petite, just over five feet tall and barely 100 pounds. And she looked just as she described herself, pretty healthy. Doctors often rely on patients’ sense of their well-being, especially when their assessment matches their appearance. But as Dr. Bigi was reminded that day, patients aren’t always right. The patient did say that she had seen her old doctor for awful headaches she got occasionally. They felt like an ice pick through the top of her head, the patient explained, which, at least initially, usually came on while she was going to the bathroom. The headache didn’t last long, but it was intensely painful. Her previous doctor thought it was a type of migraine. He prescribed medication, but it didn’t help. Now her main problem was anxiety, and she saw a psychiatrist for that. Sudden Panic Anxiety is common enough, and because the patient was seeing a specialist, Bigi wasn’t planning to spend much time discussing it. But then the doctor saw that in addition to taking an antidepressant — a recommended treatment for anxiety — the patient was on a sedating medication called clonazepam. It wasn’t a first-line medication for anxiety, and this tiny woman was taking a huge dose of it. The young woman explained that for most of her life, she was not a particularly anxious person. Then, two years earlier, she started experiencing episodes of total panic for seemingly no reason. At the time she chalked it up to a new job — she worked in a research lab — and the pressures associated with a project they had recently started. But the anxiety never let up. © 2017 The New York Times Company

Keyword: Stress; Hormones & Behavior
Link ID: 23721 - Posted: 06.08.2017

Baby teeth from children with autism contain more toxic lead and less of the essential nutrients zinc and manganese, compared to teeth from children without autism, according to an innovative study funded by the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health. The researchers studied twins to control genetic influences and focus on possible environmental contributors to the disease. The findings, published June 1 in the journal Nature Communications, suggest that differences in early-life exposure to metals, or more importantly how a child’s body processes them, may affect the risk of autism. The differences in metal uptake between children with and without autism were especially notable during the months just before and after the children were born. The scientists determined this by using lasers to map the growth rings in baby teeth generated during different developmental periods. The researchers observed higher levels of lead in children with autism throughout development, with the greatest disparity observed during the period following birth. They also observed lower uptake of manganese in children with autism, both before and after birth. The pattern was more complex for zinc. Children with autism had lower zinc levels earlier in the womb, but these levels then increased after birth, compared to children without autism. The researchers note that replication in larger studies is needed to confirm the connection between metal uptake and autism.

Keyword: Autism; Neurotoxins
Link ID: 23698 - Posted: 06.02.2017

Hannah Devlin Science correspondent “Love looks not with the eyes, but with the mind. And therefore is winged Cupid painted blind,” Shakespeare wrote. Now scientists have pinpointed the specific patterns of brain activity that accompany romance, offering a new explanation for why love sends our judgement haywire. As a relationship takes root, the study found, the brain’s reward circuit goes into overdrive, rapidly increasing the value placed on spending time with one’s love interest. This, at least, was the case in the prairie vole, scientists’ animal model of choice for studying the neuroscience of love. Elizabeth Amadei, who co-led the work at Emory University in Atlanta, said: “As humans, we know the feelings we get when we view images of our romantic partners, but, until now, we haven’t known how the brain’s reward system works to lead to those feelings.” In order to get more direct access to what is happening in the brain, Amadei and colleagues turned to the North American voles, which as a species have almost perfected monogamy. They mate for life, share nest-building duties and have an equal role in raising their young – although, like humans, voles have the occasional “extramarital” fling. Using electrical probes, the scientists recorded directly from the brains of female voles as they encountered a potential partner, mated for the first time and began to show signs of having formed a lifelong bond, indicated by “huddling” behaviour.

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 23692 - Posted: 06.01.2017

Elle Hunt About 150 years ago, and “almost a lifetime” either side, Charles Darwin was beleaguered by the problem of the peacock’s tail. Just the sight of a feather, he wrote in April 1860, “makes me sick!” The plumage of the male bird represented a hole in his theory of evolution. According to Victorian thinking, beauty was divine creation: God had designed the peacock for his own and humankind’s delight. In, On The Origin of Species, published the previous year, Darwin had challenged the dominant theory of creationism, arguing that man had been made not in God’s image but as a result of evolution, with new species formed over generations in response to their environment. But beauty, and a supposed aesthetic sense in animals (“We must suppose [that peahens] admire [the] peacock’s tail, as much as we do,” he wrote), took Darwin the best part of his life to justify – not least because the theory he eventually landed upon went against the grain of his entire worldview. Sexual selection was of strategic importance to Darwin, says Evelleen Richards, an honorary professor in history and philosophy of science at the University of Sydney: it was a naturalistic account for aesthetic differences between male and female animals of the same species, shoring up his defence of natural selection.

Keyword: Evolution; Sexual Behavior
Link ID: 23642 - Posted: 05.22.2017

By Hannah Furfaro, Children whose fathers are highly intelligent are at a 31 percent higher risk of autism than those whose fathers are of average intelligence, according to unpublished results presented today at the 2017 International Meeting for Autism Research in San Francisco, California. The work supports observations that date back to the 1940s, when Leo Kanner and Hans Asperger noted in separate reports that the fathers of children with autism tended to be highly intelligent and in several cases worked in technical fields. A 2012 study also showed that children from regions in the Netherlands where high-tech jobs are prevalent are more likely to have autism than those who live in other regions. In the new study, lead investigator Renee Gardner, assistant professor at Karolinska Institutet in Stockholm, set out to investigate whether the historical lore has validity. She and her colleagues matched medical records for 309,803 children whose fathers were conscripted into the Swedish military with their father’s scores on the technical portion of the Swedish intelligence quotient (IQ) test. They found a one-third higher risk of autism in children whose fathers’ IQ scores are 111 or higher than in those whose fathers’ scores cluster around 100. The researchers controlled for possible confounding factors such as families’ socioeconomic status and parental age, education level and history of inpatient psychiatric treatment. IQ indicators: They found the opposite relationship between a father’s IQ and his child’s chances of having intellectual disability or attention deficit hyperactivity disorder (ADHD). In particular, children of men with an IQ of 75 or below had a four-and-a-half times higher risk of intellectual disability. The chance of ADHD was 65 percent higher than average for children whose fathers had an IQ in that low range. © 2017 Scientific American

Keyword: Autism; Intelligence
Link ID: 23614 - Posted: 05.15.2017

By Ann Griswold, Much of what Stephen Shore knows about romance he learned in the self-help aisle of a bookstore near the Amherst campus of the University of Massachusetts. In college, Shore, who has autism, began to wonder if women spoke a language he didn’t understand. Maybe that would explain the perplexing behavior of a former massage student with whom he traded shiatsu sessions, who eventually told him she had been hoping for more than a back rub. Or the woman he met in class one summer, who had assumed she was his girlfriend because they spent most nights cooking, and often shared a bed. Looking back, other people’s signs of romantic interest seemed to almost always get lost in translation. Shore turned to the self-help shelves to learn the unspoken language of love: He pored over chapters on body language, facial expression and nonverbal communication. By the time he met Yi Liu, a woman in his graduate-level music theory class at Boston University, he was better prepared. On a summer day in 1989, as they sat side by side on the beach, Liu leaned over and kissed Shore on the lips. She embraced him, then held his hand as they looked out at the sea. “Based on my research,” he says, “I knew that if a woman hugs you, kisses you and holds your hand all at the same time, she wants to be your girlfriend; you better have an answer right away.” The couple married a year later, on a sunny afternoon in June 1990. Shore was diagnosed with autism around age 3, about a year after he lost his few words and began throwing tantrums. Doctors advised his parents to place him in an institution. Instead, they immersed him in music and movement activities, and imitated his sounds and behavior to help him become aware of himself and others. He began speaking again at 4 and eventually recovered some of the social skills he had lost. © 2017 Scientific American

Keyword: Autism; Sexual Behavior
Link ID: 23586 - Posted: 05.06.2017