Chapter 7. Life-Span Development of the Brain and Behavior

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 5789

By Emily Bazelon Scott Leibowitz is a pioneer in the field of transgender health care. He has directed or worked at three gender clinics on the East Coast and the Midwest, where he provides gender-affirming care, the approach the medical community has largely adopted for embracing children and teenagers who come out as transgender. He also helps shape policy on L.G.B.T. issues for the American Academy of Child and Adolescent Psychiatry. As a child and adolescent psychiatrist who is gay, he found it felt natural to work under the L.G.B.T. “umbrella,” as he put it, aware of the overlap as well as the differences between gay and trans identity. It was for all these reasons that Leibowitz was selected, in 2017, to be a leader of a working group of seven clinicians and researchers drafting a chapter on adolescents for a new version of guidelines called the Standards of Care to be issued by the World Professional Association for Transgender Health (WPATH). The guidelines are meant to set a gold standard for the field of transgender health care, and this would be the first update since 2012. What Leibowitz and his co-authors didn’t foresee, when they began, was that their work would be engulfed by two intersecting forces: a significant rise in the number of teenagers openly identifying as transgender and seeking gender care, and a right-wing backlash in the United States against allowing them to medically transition, including state-by-state efforts to ban it. During the last decade, the field of transgender care for youth has greatly shifted. A decade ago, there were a handful of pediatric gender clinics in the United States and a dozen or so more in other countries. The few doctors and therapists who worked in them knew one another, and the big debate was whether kids in preschool or elementary school should be allowed to live fully as the gender they identified as when they strongly and consistently asserted their wishes. Now there are more than 60 comprehensive gender clinics in the United States, along with countless therapists and doctors in private practice who are also seeing young patients with gender-identity issues. The number of young people who identify as transgender nationally is about 300,000, according to a new report by the Williams Institute, a research center at U.C.L.A.’s law school, which is much higher than previous estimates. In countries that collect national data, like the Netherlands and Britain, the number of 13-to-17-year-olds seeking treatment for gender-identity issues has also increased, from dozens to hundreds or thousands a year. © 2022 The New York Times Company

Keyword: Sexual Behavior; Development of the Brain
Link ID: 28375 - Posted: 06.15.2022

by Charles Q. Choi The primordial cells that give rise to most other brain cells do not proliferate in a typical way in autistic people — and that could explain how common traits emerge from a range of genetic origins, according to a new study. The idea that autism disrupts the proliferation of neural precursor cells isn’t new, but until now, few studies had investigated how that difference arises. In the new study, scientists fashioned neural precursor cells out of cord blood cells from five autistic boys ages 4 to 14 and, to serve as controls, either their non-autistic brothers or unrelated non-autistic people. Three of the autistic children have idiopathic cases, in which there is no known genetic cause for their autism; the other two have deletions in 16p11.2, a chromosomal region linked to autism and other neuropsychiatric conditions. Three of the autistic children have macrocephaly, or a large head. Neural precursors from the autistic boys all proliferated in atypical ways, the scientists found. Among children with macrocephaly, this growth was accelerated, leading to 28 to 55 percent more cells than in the non-autistic controls after six days. In contrast, cells from the other two boys, both with idiopathic autism, grew more slowly and more of those cells died, yielding 40 to 65 percent fewer cells than in controls after six days. “Despite the fact that these individuals are genetically distinct, especially the idiopathic individuals, it is amazing they have a common developmental process dysfunction — control of proliferation,” says study co-lead investigator Emanuel DiCicco-Bloom, professor of neuroscience, cell biology and pediatrics at Rutgers University in Piscataway, New Jersey. © 2022 Simons Foundation

Keyword: Autism; Genes & Behavior
Link ID: 28363 - Posted: 06.11.2022

by Laura Dattaro Two new studies untangle how various classes of genetic variants underpin the vast differences in traits seen among people diagnosed with autism. The studies were published yesterday in Nature Genetics. “The fundamental question behind this is heterogeneity in autism,” says Varun Warrier, a postdoctoral researcher in Simon Baron-Cohen’s lab at the University of Cambridge in the United Kingdom and an investigator on one of the studies. The presence and intensity of core autism traits and co-occurring conditions vary widely among autistic people. The new studies, from largely independent teams, sought to unravel how different categories of genetic variants — rare, common, inherited and spontaneous — contribute to this heterogeneity. Though the two sets of findings conflict in some ways — potentially because of methodological differences — the papers add to the evidence that common and rare variants contribute to autism’s genetic architecture differently, says Yufeng Shen, associate professor of systems biology at Columbia University, who was not involved in either study. “When we say different, it’s not black and white,” Shen says. “They overlap, but it seems like, qualitatively, they have different contributions.” Warrier and his colleagues analyzed genetic and behavioral data from 12,893 autistic people. The data came from the Autism Genetic Resource Exchange, the Longitudinal European Autism Project, the Simons Simplex Collection and SPARK. (The Simons Simplex Collection and SPARK are funded by the Simons Foundation, Spectrum’s parent organization.) © 2022 Simons Foundation

Keyword: Autism; Genes & Behavior
Link ID: 28356 - Posted: 06.07.2022

Viviane Callier Our human brains can seem like a crowning achievement of evolution, but the roots of that achievement run deep: The modern brain arose from hundreds of millions of years of incremental advances in complexity. Evolutionary biologists have traced that progress back through the branch of the animal family tree that includes all creatures with central nervous systems, the bilaterians, but it is clear that fundamental elements of the nervous system existed much earlier. How much earlier has now been made dramatically clear by a recent discovery by a team of researchers at the University of Exeter in the United Kingdom. They found that the chemical precursors of two important neurotransmitters, or signaling molecules used in nervous systems, appear in all the major animal groups that preceded creatures with central nervous systems. The big surprise, however, is that these molecules are also present in single-celled relatives of animals, called choanoflagellates. This finding shows that animal neuropeptides originated before the evolution of even the very first animals. The discovery “solves a long-standing question about when and how animal neuropeptides evolved,” said Pawel Burkhardt, who studies the evolutionary origin of neurons at the Sars International Center for Marine Molecular Biology in Norway. It also indicates that at least some of the signaling molecules fundamental to the operation of our brains first evolved for an entirely different purpose in organisms that consisted of only a single cell. Animal nervous systems are made of neurons that connect to each other, zipping information across synapses with a variety of small peptide neurotransmitters. These peptides are the language with which neurons speak to each other. All Rights Reserved © 2022

Keyword: Development of the Brain
Link ID: 28354 - Posted: 06.04.2022

By Azeen Ghorayshi Marcia Herman-Giddens first realized something was changing in young girls in the late 1980s, while she was serving as the director for the child abuse team at Duke University Medical Center in Durham, N.C. During evaluations of girls who had been abused, Dr. Herman-Giddens noticed that many of them had started developing breasts at ages as young as 6 or 7. “That did not seem right,” said Dr. Herman-Giddens, who is now an adjunct professor at the University of North Carolina Gillings School of Global Public Health. She wondered whether girls with early breast development were more likely to be sexually abused, but she could not find any data keeping track of puberty onset in girls in the United States. So she decided to collect it herself. A decade later, she published a study of more than 17,000 girls who underwent physical examinations at pediatricians’ offices across the country. The numbers revealed that, on average, girls in the mid-1990s had started to develop breasts — typically the first sign of puberty — around age 10, more than a year earlier than previously recorded. The decline was even more striking in Black girls, who had begun developing breasts, on average, at age 9. The medical community was shocked by the findings, and many were doubtful about a dramatic new trend spotted by an unknown physician assistant, Dr. Herman-Giddens recalled. “They were blindsided,” she said. But the study turned out to be a watershed in the medical understanding of puberty. Studies in the decades since have confirmed, in dozens of countries, that the age of puberty in girls has dropped by about three months per decade since the 1970s. A similar pattern, though less extreme, has been observed in boys. Although it is difficult to tease apart cause and effect, earlier puberty may have harmful impacts, especially for girls. Girls who go through puberty early are at a higher risk of depression, anxiety, substance abuse and other psychological problems, compared with peers who hit puberty later. Girls who get their periods earlier may also be at a higher risk of developing breast or uterine cancer in adulthood. © 2022 The New York Times Company

Keyword: Hormones & Behavior; Development of the Brain
Link ID: 28332 - Posted: 05.21.2022

By Benjamin Mueller Five years ago, Tal Iram, a young neuroscientist at Stanford University, approached her supervisor with a daring proposal: She wanted to extract fluid from the brain cavities of young mice and to infuse it into the brains of older mice, testing whether the transfers could rejuvenate the aging rodents. Her supervisor, Tony Wyss-Coray, famously had shown that giving old animals blood from younger ones could counteract and even reverse some of the effects of aging. But the idea of testing that principle with cerebrospinal fluid, the hard-to-reach liquid that bathes the brain and spinal cord, struck him as such a daunting technical feat that trying it bordered on foolhardy. “When we discussed this initially, I said, ‘This is so difficult that I’m not sure this is going to work,’” Dr. Wyss-Coray said. Dr. Iram persevered, working for a year just to figure out how to collect the colorless liquid from mice. On Wednesday, she reported the tantalizing results in the journal Nature: A week of infusions of young cerebrospinal fluid improved the memories of older mice. The finding was the latest indication that making brains resistant to the unrelenting changes of older age might depend less on interfering with specific disease processes and more on trying to restore the brain’s environment to something closer to its youthful state. “It highlights this notion that cerebrospinal fluid could be used as a medium to manipulate the brain,” Dr. Iram said. Turning that insight into a treatment for humans, though, is a more formidable challenge, the authors of the study said. The earlier studies about how young blood can reverse some signs of aging have led to recent clinical trials in which blood donations from younger people were filtered and given to patients with Alzheimer’s or Parkinson’s disease. But exactly how successful those treatments might be, much less how widely they can be used, remains unclear, scientists said. And the difficulties of working with cerebrospinal fluid are steeper than those involved with blood. Infusing the fluid of a young human into an older patient is probably not possible; extracting the liquid generally requires a spinal tap, and scientists say that there are ethical questions about how to collect enough cerebrospinal fluid for infusions. © 2022 The New York Times Company

Keyword: Development of the Brain; Learning & Memory
Link ID: 28327 - Posted: 05.14.2022

Neuroscience researchers have found a master gene that controls the development of special sensory cells in the ears – potentially opening the door to reversing hearing loss. A team led by Jaime García-Añoveros of Northwestern University, US, established that a gene called Tbx2 controls the development of ear hair cells in mice. The findings of their study are published today in Nature. What are hair cells? Hair cells are the sensory cells in our ears that detect sound and then transmit a message to our brains. They are so named because they have tiny hairlike structures called stereocilia. “The ear is a beautiful organ,” says García-Añoveros. “There is no other organ in a mammal where the cells are so precisely positioned.” Hair cells are found in a structure called the organ of Corti, in the cochlea in the inner ear. The organ of Corti sits on top of the basilar membrane. Sound waves are funnelled through our ear canal and cause the eardrum (also known as the tympanic membrane) and ossicles (tiny bones called the malleus, incus and stapes) to vibrate. The vibrations, or waves, are transmitted through fluid in the cochlea, causing the basilar membrane to move as well. When the basilar membrane moves, the stereocilia tilt, causing ion channels in the hair cell membrane to open. This stimulates the hair cell to release neurotransmitter chemicals, which will transmit the sound signal to the brain via the auditory nerve.

Keyword: Hearing; Regeneration
Link ID: 28319 - Posted: 05.07.2022

by Rachel Zamzow Inflammation may inflate or thin out brain regions tied to autism and schizophrenia, researchers report in a new study. The findings add nuance to the long-held hypothesis that immune activation elevates the risk for neurodevelopmental conditions. Autism, for example, is associated with prenatal exposure to infection, previous studies show. Taking a different approach, the new work focuses on how a genetic predisposition to inflammation affects brain development in the general population, says John Williams, research fellow at the University of Birmingham in the United Kingdom, who conducted the work with lead researcher Rachel Upthegrove, professor of psychiatry and youth mental health at the university. By pinpointing where inflammation leaves its mark in the brain, the findings serve as a guidepost for future studies of people with neuropsychiatric conditions, he says. “We think that it points to something that’s fairly transdiagnostic.” For their analyses, the team drew on brain imaging and genetic data from 10,828 women and 9,860 men in the general population who participated in the UK Biobank. They explored how 1,436 possible structural changes in the brain track with having single-nucleotide variants previously shown to increase circulating levels of five inflammatory molecules — interleukin 1 (IL-1), IL-2, IL-6, C-reactive protein and brain-derived neurotrophic factor. Three variants thought to boost IL-6 were associated with 33 structural changes, most notably increased volume in the middle temporal gyrus and fusiform gyrus, and decreased cortical thickness in the superior frontal gyrus — all brain areas implicated in autism. Variants associated with other inflammatory molecules did not track with brain changes, the researchers found. © 2022 Simons Foundation

Keyword: Autism; Genes & Behavior
Link ID: 28317 - Posted: 05.07.2022

By James Gorman Don’t judge a book by its cover. Don’t judge a dog by its breed. After conducting owner surveys for 18,385 dogs and sequencing the genomes of 2,155 dogs, a group of researchers reported a variety of findings in the journal Science on Thursday, including that for predicting some dog behaviors, breed is essentially useless, and for most, not very good. For instance, one of the clearest findings in the massive, multifaceted study is that breed has no discernible effect on a dog’s reactions to something it finds new or strange. This behavior is related to what the nonscientist might call aggression and would seem to cast doubt on breed stereotypes of aggressive dogs, like pit bulls. One thing pit bulls did score high on was human sociability, no surprise to anyone who has seen internet videos of lap-loving pit bulls. Labrador retriever ancestry, on the other hand, didn’t seem to have any significant correlation with human sociability. This is not to say that there are no differences among breeds, or that breed can’t predict some things. If you adopt a Border collie, said Elinor Karlsson of the Broad Institute and the University of Massachusetts Chan Medical School, an expert in dog genomics and an author of the report, the probability that it will be easier to train and interested in toys “is going to be higher than if you adopt a Great Pyrenees.” But for any given dog you just don’t know — on average, breed accounts for only about 9 percent of the variations in any given dog’s behavior. And no behaviors were restricted to any one breed, even howling, though the study found that behavior was more strongly associated with breeds like Siberian huskies than with other dogs. And yet, in what might seem paradoxical at first, the researchers also found that behavior patterns are strongly inherited. The behaviors they studied had a 25 percent heritability, a complex measure which indicates the influence of genes, but depends on the group of animals studied. But with enough dogs, heritability is a good measure of what’s inherited. In comparing whole genomes, they found several genes that clearly influence behavior, including one for how friendly dogs are. © 2022 The New York Times Company

Keyword: Genes & Behavior; Aggression
Link ID: 28309 - Posted: 04.30.2022

By Laura Sanders Young kids’ brains are especially tuned to their mothers’ voices. Teenagers’ brains, in their typical rebellious glory, are most decidedly not. That conclusion, described April 28 in the Journal of Neuroscience, may seem laughably obvious to parents of teenagers, including neuroscientist Daniel Abrams of Stanford University School of Medicine. “I have two teenaged boys myself, and it’s a kind of funny result,” he says. But the finding may reflect something much deeper than a punch line. As kids grow up and expand their social connections beyond their family, their brains need to be attuned to that growing world. “Just as an infant is tuned into a mom, adolescents have this whole other class of sounds and voices that they need to tune into,” Abrams says. He and his colleagues scanned the brains of 7- to 16-year-olds as they heard the voices of either their mothers or unfamiliar women. To simplify the experiment down to just the sound of a voice, the words were gibberish: teebudieshawlt, keebudieshawlt and peebudieshawlt. As the children and teenagers listened, certain parts of their brains became active. Previous experiments by Abrams and his colleagues have shown that certain regions of the brains of kids ages 7 to 12 — particularly those parts involved in detecting rewards and paying attention — respond more strongly to mom’s voice than to a voice of an unknown woman. “In adolescence, we show the exact opposite of that,” Abrams says. In these same brain regions in teens, unfamiliar voices elicited greater responses than the voices of their own dear mothers. The shift from mother to other seems to happen between ages 13 and 14. Society for Science & the Public 2000–2022.

Keyword: Language; Development of the Brain
Link ID: 28307 - Posted: 04.30.2022

Carrie Arnold Playing the mating game is risky. Organisms must cope with the existential risk that swiping right on the wrong choice could doom future generations to a lifetime of bad genes. They also have to contend with more immediate burdens and risks: Participants need to gather resources for courting and summon energy to pursue a potential partner. Animals engaged in amorous activities also make easy targets for predators. Small wonder, then, that when times are good, the roundworm Caenorhabditis elegans doesn’t bother with the process. As a mostly hermaphroditic species (with a few males thrown in for variety), a C. elegans worm usually self-fertilizes its eggs until its sperm stash is depleted late in life; only then does it produce a pheromone to attract males and stay in the reproductive game. But when environmental conditions become stressful, the worms become sexually attractive much sooner. For them, sex is the equivalent of a Hail Mary pass — a desperate gamble that if their offspring are more genetically diverse, some will fare better under the new, rougher conditions. Scientists thought this stress-induced shift was purely fleeting. But recently when scientists at Tel Aviv University raised C. elegans in too-warm conditions for more than 10 generations, they discovered that the worms continued to be sexually attractive for several more generations after they were moved to cooler surroundings. It’s an observation that highlights how inheritance does not always reduce to a simple accounting of the genes in organisms, and it may point to a mechanism that works in tandem with traditional natural selection in shaping the evolution of some organisms. As the new paper in Developmental Cell shows, the cause of this trait wasn’t a genetic change to the worm’s DNA but rather an inherited “epigenetic” change that influenced how the DNA was used. The researchers — senior author Oded Rechavi, a biologist at Tel Aviv University, first author Itai Toker (now a postdoctoral fellow at Columbia University) and their colleagues — identified a small RNA molecule that can be passed between generations to signal for production of the pheromone. In effect, this heritable RNA molecule improves the odds that the worms will evolve in stressful times. All Rights Reserved © 2022

Keyword: Sexual Behavior; Epigenetics
Link ID: 28299 - Posted: 04.23.2022

Grace Browne In early February 2016, after reading an article featuring a couple of scientists at the Massachusetts Institute of Technology who were studying how the brain reacts to music, a woman felt inclined to email them. “I have an interesting brain,” she told them. EG, who has requested to go by her initials to protect her privacy, is missing her left temporal lobe, a part of the brain thought to be involved in language processing. EG, however, wasn’t quite the right fit for what the scientists were studying, so they referred her to Evelina Fedorenko, a cognitive neuroscientist, also at MIT, who studies language. It was the beginning of a fruitful relationship. The first paper based on EG’s brain was recently published in the journal Neuropsychologia, and Fedorenko’s team expects to publish several more. For EG, who is in her fifties and grew up in Connecticut, missing a large chunk of her brain has had surprisingly little effect on her life. She has a graduate degree, has enjoyed an impressive career, and speaks Russian—a second language–so well that she has dreamed in it. She first learned her brain was atypical in the autumn of 1987, at George Washington University Hospital, when she had it scanned for an unrelated reason. The cause was likely a stroke that happened when she was a baby; today, there is only cerebro-spinal fluid in that brain area. For the first decade after she found out, EG didn't tell anyone other than her parents and her two closest friends. “It creeped me out,” she says. Since then, she has told more people, but it's still a very small circle that is aware of her unique brain anatomy. © Condé Nast Britain 2022.

Keyword: Development of the Brain; Language
Link ID: 28295 - Posted: 04.20.2022

Rachel Zamzow Andrew Whitehouse never expected his work as an autism researcher to put him in danger. But that’s exactly what happened soon after he and his colleagues reported in 2020 that few autism interventions used in the clinic are backed by solid evidence. Within weeks, a range of clinicians, therapy providers and professional organizations had threatened to sue Whitehouse or had issued complaints about him to his employer. Some harassed his family, too, putting their safety at risk, he says. For Whitehouse, professor of autism research at the Telethon Kids Institute and the University of Western Australia in Perth, the experience came as a shock. “It’s so absurd that just a true and faithful reading of science leads to this,” he says. “It’s an untold story.” In fact, Whitehouse’s findings were not outliers. Another 2020 study—the Autism Intervention Meta-Analysis, or Project AIM for short—plus a string of reviews over the past decade also highlight the lack of evidence for most forms of autism therapy. Yet clinical guidelines and funding organizations have continued to emphasize the efficacy of practices such as applied behavior analysis (ABA). And early intervention remains a near-universal recommendation for autistic children at diagnosis. The field urgently needs to reassess those claims and guidelines, says Kristen Bottema-Beutel, associate professor of special education at Boston College in Massachusetts, who worked on Project AIM. “We need to understand that our threshold of evidence for declaring something evidence-based is rock-bottom low,” she says. “It is very unlikely that those practices actually produce the changes that we’re telling people they do.” © 1986–2022 The Scientist.

Keyword: Autism
Link ID: 28291 - Posted: 04.20.2022

By Apoorva Mandavilli A small biotech company that trumpeted an exciting new treatment for Alzheimer’s disease is now under fire for irregularities in its research results, after several studies related to its work were retracted or questioned by scientific journals. The company, Cassava Sciences, based in Austin, Texas, announced last summer that its drug, simufilam, improved cognition in Alzheimer’s patients in a small clinical trial, describing it as the first such advance in treatment of the disease. Cassava later initiated a larger trial. The drug’s potential garnered enormous attention from investors. Alzheimer’s disease affects roughly six million Americans, a number that is expected to double by 2050, and an effective treatment would be lucrative. Cassava’s stock soared, by more than 1,500 percent at one point. The company was worth nearly $5 billion last summer. But many scientists have been deeply skeptical of the company’s claims, asserting that Cassava’s studies were flawed, its methods opaque and its results improbable. Families of some trial participants have said they see improvements. But critics noted that the trial reporting better cognition due to simufilam lacked a placebo group, and asserted that the Alzheimer’s patients were not followed long enough to confirm that any improvements in cognition were genuine. Some experts went further, accusing the company of manipulating its scientific results. In response to the allegations, in December The Journal of Neuroscience published “expressions of concern” regarding two brain studies authored by the company’s chief collaborator, Hoau-Yan Wang, a professor at the City University of New York. One was co-written by Lindsay H. Burns, chief scientist at Cassava. The journal editors also noted errors in the images accompanying the latter study. (An “expression of concern” indicates that the editors have reason to question the integrity and accuracy of a paper.) © 2022 The New York Times Company

Keyword: Alzheimers
Link ID: 28290 - Posted: 04.20.2022

Joan L. Luby, M.D., John N. Constantino, M.D., Deanna M. Barch, Ph.D. Numerous studies of children in the US across decades have shown striking correlations between poverty and less-than-optimal physical and mental health and developmental outcomes. Trauma, poor health care, inadequate nutrition, and increased exposures to psychosocial stress and environmental toxins—all of which have significant negative developmental impact—are likely to be involved. The effects of elevated stress on child-caregiver relationships appear to be particularly detrimental, unsurprising in that nurturing and supportive caregiver relationships are foundational for healthy development in early childhood. For adults whose job options are unconducive to their role as parents (such as working multiple jobs or night shift hours), or for whom family support is unavailable, or for those do not have the material resources they need, the resulting stress may result in sleep disruption, depression, and anxiety—all of which translate to poor developmental trajectories for their children. Other health and developmental risks often associated with poverty include lead and other pollutants in air and water, poor nutrition (often related to living in “food desert” areas where healthy foods such as fresh fruits and vegetables are scarce), neighborhood violence, and trauma. “Toxic stress” that exceeds a child’s ability to adapt can occur when the burden of stressful life experience overwhelms the brain’s regulatory capacity, or when the compensatory abilities of brain and body are compromised. A lack of cognitive stimulation (due to such factors as the absence of books and educational materials in the home, poor immersion in language, and a lack of after school or other enrichment activities) or disruption of sleep and circadian rhythms (by neighborhood noise or parents’ irregular work schedules) is likely to impact brain development and emotional and behavioral regulation when these systems are rapidly developing. © 2022 The Dana Foundation.

Keyword: Development of the Brain; Brain imaging
Link ID: 28288 - Posted: 04.16.2022

by Peter Hess Two separate sets of neurons govern the social difficulties and repetitive behaviors associated with mutations in TSHZ3, a top autism candidate gene, according to a new mouse study. The results could help advance a circuit-level understanding of autism, says co-lead investigator Laurent Fasano, senior researcher at the French National Center for Scientific Research and Aix-Marseille University in Marseille, France. “Although we know that the results obtained with animal models will not necessarily be transposable to humans, we hope that our results will stimulate additional studies that will benefit autistic people.” In the new work, Fasano and his colleagues homed in on cortical projection neurons, which connect the cerebral cortex to other brain regions, and striatal cholinergic interneurons, which produce the chemical messenger acetylcholine in the striatum. Together, these cell types form part of the corticostriatal circuit, the dysfunction of which has been implicated in autism. “Whereas many studies have linked defective development and function of the corticostriatal pathway to autism, there is little evidence for an implication of striatal cholinergic interneurons,” says co-lead investigator Lydia Kerkerian-Le Goff, senior researcher at the French National Center for Scientific Research and Aix-Marseille University. Picking out specific cell types in the corticostriatal circuit and linking them to distinct autism-related behaviors is important, says Michael Ragozzino, professor of behavioral neuroscience at the University of Illinois Chicago, who was not involved in the study. The study’s results suggest that repetitive behaviors and social deficits, autism’s core traits, have different neurobiological roots, he says. “This may also suggest that different therapeutics may need to be developed to effectively treat both symptom domains.” © 2022 Simons Foundation

Keyword: Autism
Link ID: 28284 - Posted: 04.16.2022

Max Kozlov When neuroscientist Jakob Seidlitz took his 15-month-old son to the paediatrician for a check-up last week, he left feeling unsatisfied. There wasn’t anything wrong with his son — the youngster seemed to be developing at a typical pace, according to the height and weight charts the physician used. What Seidlitz felt was missing was an equivalent metric to gauge how his son’s brain was growing. “It is shocking how little biological information doctors have about this critical organ,” says Seidlitz, who is based at the University of Pennsylvania in Philadelphia. Soon, he might be able to change that. Working with colleagues, Seidlitz has amassed more than 120,000 brain scans — the largest collection of its kind — to create the first comprehensive growth charts for brain development. The charts show visually how human brains expand quickly early in life and then shrink slowly with age. The sheer magnitude of the study, published in Nature on 6 April1, has stunned neuroscientists, who have long had to contend with reproducibility issues in their research, in part because of small sample sizes. Magnetic resonance imaging (MRI) is expensive, meaning that scientists are often limited in the number of participants they can enrol in experiments. “The massive data set they assembled is extremely impressive and really sets a new standard for the field,” says Angela Laird, a cognitive neuroscientist at Florida International University in Miami. Even so, the authors caution that their database isn’t completely inclusive — they struggled to gather brain scans from all regions of the globe. The resulting charts, they say, are therefore just a first draft, and further tweaks would be needed to deploy them in clinical settings. If the charts are eventually rolled out to paediatricians, great care will be needed to ensure that they are not misinterpreted, says Hannah Tully, a paediatric neurologist at the University of Washington in Seattle. “A big brain is not necessarily a well-functioning brain,” she says. © 2022 Springer Nature Limited

Keyword: Development of the Brain; Brain imaging
Link ID: 28277 - Posted: 04.09.2022

By Lenny Bernstein Researchers have found variations in a small number of genes that appear to dramatically increase the likelihood of developing schizophrenia in some people. The interplay of a wide array of other genes is implicated for most people with schizophrenia, a severe brain disorder characterized by hallucinations, delusions and inability to function. But for some who possess mutations in the 10 genes identified in the new study, published Wednesday in the journal Nature, the likelihood of developing the disease can be 10, 20 and even 50 times greater. The discovery could one day lead to advances in diagnosis of, and therapy for, the disease, according to the lead author of the study, Tarjinder Singh, of the Broad Institute at MIT and Harvard, which led an effort that involved years of work by dozens of research institutions worldwide. “This is the biological clue that leads to better therapies,” Singh said in an interview. “But the key thing is, we haven’t had any meaningful clues for the longest time.” Ken Duckworth, chief medical officer for the National Alliance on Mental Illness, a nationwide advocacy group, said the study is an important development in the neuroscience that underlies schizophrenia. But he said it is difficult to predict how soon such basic research would pay off for people living with the disease. “This is a big step forward for science that may pay a long-term return for people with schizophrenia and the people who live with them,” Duckworth said. But, he said, “if this is a 17-inning game and they’ve gotten us from the first to the second inning, how does this help someone today?” Less than 1 percent of the U.S. population is believed to have schizophrenia, which is generally treated with an array of powerful antipsychotic medications. The disease reduces life expectancy by about 15 years, according to the new research. Scientists have long recognized a hereditary component to the disease, along with other factors such as environment. The work of isolating these genes could not have been accomplished even 10 or 15 years ago, Singh said, before the sequencing of the human genome and the spread of technology that allows such genetic detective work to be conducted in laboratories around the world. © 1996-2022 The Washington Post

Keyword: Schizophrenia; Genes & Behavior
Link ID: 28274 - Posted: 04.09.2022

By Jessica Contrera The carpet cleaner heaves his machine up the stairs, untangles its hoses and promises to dump the dirty water only in the approved toilet. Another day scrubbing rugs for less than $20 an hour. Another Washington area house with overflowing bookshelves and walls covered in travel mementos from places he would love to go one day. But this was not that day. “Tell me about this stain,” 46-year-old Vaughn Smith asks his clients. “Well,” says one of the homeowners, “Schroeder rubbed his bottom across it.” Vaughn knows just what to do about that, and the couple, Courtney Stamm and Kelly Widelska, know they can trust him to do it. They’d been hiring him for years, once watching him erase even a splattered Pepto Bismol stain. But this time when Vaughn called to confirm their January appointment, he quietly explained that there was something about himself that he’d never told them. That he rarely told anyone. And well, a reporter was writing a story about it. Could he please bring her along? Now as they listen to Vaughn discuss the porousness of wool, and the difference between Scotchgard and sanitizer, they can’t help but look at him differently. Once the stool stain is solved, Kelly just has to ask. “So, how many languages do you speak?” “Oh goodness,” Vaughn says. “Eight, fluently.” “Eight?” Kelly marvels. “Eight,” Vaughn confirms. English, Spanish, Bulgarian, Czech, Portuguese, Romanian, Russian and Slovak. “But if you go by like, different grades of how much conversation,” he explains, “I know about 25 more.” Vaughn glances at me. He is still underselling his abilities. By his count, it is actually 37 more languages, with at least 24 he speaks well enough to carry on lengthy conversations. He can read and write in eight alphabets and scripts. He can tell stories in Italian and Finnish and American Sign Language. He’s teaching himself Indigenous languages, from Mexico’s Nahuatl © 1996-2022 The Washington Post

Keyword: Language; Autism
Link ID: 28269 - Posted: 04.06.2022

Hannah Devlin Science correspondent The largest genetic study of Alzheimer’s to date has provided compelling evidence linking the disease to disruption in the brain’s immune system. The study, using the genomes of 100,000 people with Alzheimer’s and 600,000 healthy people, identified 75 genes linked to an increased risk of the disease, including 42 that had not previously been implicated. The findings suggest degeneration in the brains of dementia patients could be spurred on by “over-aggressive” activity in the brain’s immune cells, called microglia. Prof Julie Williams, the director of the UK Dementia Research Institute at Cardiff University and a co-author of the study, said the findings could help reignite efforts to find an effective treatment. “This is an enormous clue to what’s going wrong,” she said. “Eight or nine years ago we weren’t working on the immune system. The genetics has refocused us.” The study, the largest of its kind to date, also allowed scientists to devise a genetic risk score that could predict which patients with cognitive impairment would, within three years of first showing symptoms, go on to develop Alzheimer’s. The score is not intended for clinical use at the moment, but could be used when recruiting people for clinical trials of drugs aimed at treating the disease in the earliest stages. Alzheimer’s disease is the most common cause of dementia, which affects more than 850,000 people in the UK. Despite the huge burden of the disease, there have been no new drugs for it in the past two decades, with the exception of Aducanumab, controversially licensed in the US but unavailable in Europe and the UK. Previous research has shown that while lifestyle factors such as smoking, exercise and diet influence Alzheimer’s risk, 60%-80% of the disease risk is based on genetics. However, Williams said, drug development was heavily influenced by the study of families with rare genetic mutations causing early onset Alzheimer’s. © 2022 Guardian News & Media Limited

Keyword: Alzheimers; Genes & Behavior
Link ID: 28267 - Posted: 04.06.2022