Chapter 19. Language and Hemispheric Asymmetry

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2235

By Bret Stetka For many hours a day they pluck dirt, debris and bugs from each other’s fur. Between grooming sessions they travel in troops to search for food. When ignored by mom, they throw tantrums; when not ignored by zoo-goers, they throw feces. Through these behaviors, monkeys demonstrate they understand the meaning of social interactions with other monkeys. They recognize when their peers are grooming one another and infer social rank from seeing such actions within their group. But it has long been unclear how the brains of our close evolutionary relatives actually process what they observe of these social situations. New findings published Thursday in Science offer a clue. A team of researchers from The Rockefeller University have identified a network in the monkey brain dedicated exclusively to analyzing social interactions. And they believe this network could be akin to human brains’ social circuitry. In the new work—led by Winrich Freiwald, an associate professor of neurosciences and behavior—four rhesus macaques viewed videos of various social and physical interactions while undergoing functional magnetic resonance imaging. (Monkeys love watching TV, so they paid attention.) They were shown clips of monkeys interacting, as well as performing tasks on their own. They also watched videos of various physical interactions among inanimate objects. © 2017 Scientific American

Keyword: Attention; Evolution
Link ID: 23637 - Posted: 05.19.2017

By GRETCHEN REYNOLDS When young athletes sustain concussions, they are typically told to rest until all symptoms disappear. That means no physical activity, reading, screen time, or friends, and little light exposure, for multiple days and, in severe cases, weeks. Restricting all forms of activity after a concussion is known as “cocooning.” But now new guidelines, written by an international panel of concussion experts and published this month in the British Journal of Sports Medicine, question that practice. Instead of cocooning, the new guidelines suggest that most young athletes should be encouraged to start being physically active with a day or two after the injury. “The brain benefits from movement and exercise, including after a concussion,” says Dr. John Leddy, a professor of orthopedics at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, and one of the co-authors of the new guidelines. There has long been controversy, of course, about the best ways to identify and treat sports-related concussions. Twenty years ago, athletes who banged their heads during play were allowed to remain in the practice or game, even if they stumbled, seemed disoriented, or were “seeing stars.” Little was known then about any possible immediate or long-term consequences from head trauma during sports or about the best responses on the sidelines and afterward. Since then, mounting evidence has indicated that sports-related concussions are not benign and require appropriate treatment. The question has been what these appropriate treatments should be. In the early 2000s, dozens of the world’s premier experts on sports-related concussions started meeting to review studies about concussions, with plans to issue a consensus set of guidelines on how best to identify and deal with the condition. © 2017 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 23633 - Posted: 05.18.2017

By DAVE PHILIPPS Three-fifths of troops discharged from the military for misconduct in recent years had a diagnosis of post-traumatic stress disorder, traumatic brain injury or another associated condition, according to a report released Tuesday by the Government Accountability Office. The report, mandated by Congress, for the first time combined military medical and staffing data, as well as data from the Department of Veterans Affairs, to show that tens of thousands of wounded troops were kicked out of the armed forces and severed from benefits designed to ease their transition from service in war. “It is everything many of us believed for years” said Kristopher Goldsmith, a veteran who served in Iraq and was discharged for misconduct after a suicide attempt. He is now an assistant director for policy at Vietnam Veterans of America, a veterans advocacy group based in Washington. “Many people didn’t believe that the problem could be this big. Now I hope Congress will direct the resources to making it right.” From 2011 to 2015, according to the report, nearly 92,000 troops were discharged for misconduct — the military equivalent of being fired. Troops can be discharged for reasons like testing positive for drugs or repeatedly showing up late. And in recent years, as the military was downsized, misconduct discharges surged. Of those discharged, 57,000 had a diagnosis of PTSD, traumatic brain injury (known as T.B.I.) or a related condition. About 9,000 were found to have PTSD or T.B.I. But a majority had a personality disorder or an adjustment disorder — diagnoses that count as pre-existing conditions, not war wounds. Critics of the military’s handling of mental health have long accused the military of using such diagnoses to sidestep safeguards put in place for troops with PTSD. © 2017 The New York Times Company

Keyword: Brain Injury/Concussion; Stress
Link ID: 23626 - Posted: 05.17.2017

Nicola Davis Humans can determine a dog’s mood by the sound of its growl, scientists have found, with women showing greater ability than men. While previous studies have found that humans can unpick the context of barks, the latest study investigated whether the same was true of canine grumbles, with some previous research suggesting humans struggle to differentiate between playful and aggressive vocalisations. “It is an important thing that humans are capable [of recognising] the emotional state of another species just based on the vocal characteristics,” said Tamás Faragó, first author of the study from Eötvös Loránd University in Hungary. To tackle the conundrum, Faragó and colleagues used previously captured recordings of 18 dogs growling in three contexts: guarding food from other dogs, playing tug-of-war with humans, and being threatened by the approach of a stranger. The researchers monitored several features, including the length of each growl and its frequency. Two sets of the recordings, which included two growls from each context, were played to 40 adults. Each participant was asked to record their impression of the first set of growls on a sliding scale, rating their perception of the dog for five emotions: fear, aggression, despair, happiness and playfulness. © 2017 Guardian News and Media Limited

Keyword: Animal Communication; Sexual Behavior
Link ID: 23621 - Posted: 05.17.2017

By FERRIS JABR Con Slobodchikoff and I approached the mountain meadow slowly, obliquely, softening our footfalls and conversing in whispers. It didn’t make much difference. Once we were within 50 feet of the clearing’s edge, the alarm sounded: short, shrill notes in rapid sequence, like rounds of sonic bullets. We had just trespassed on a prairie-dog colony. A North American analogue to Africa’s meerkat, the prairie dog is trepidation incarnate. It lives in subterranean societies of neighboring burrows, surfacing to forage during the day and rarely venturing more than a few hundred feet from the center of town. The moment it detects a hawk, coyote, human or any other threat, it cries out to alert the cohort and takes appropriate evasive action. A prairie dog’s voice has about as much acoustic appeal as a chew toy. French explorers called the rodents petits chiens because they thought they sounded like incessantly yippy versions of their pets back home. On this searing summer morning, Slobodchikoff had taken us to a tract of well-trodden wilderness on the grounds of the Museum of Northern Arizona in Flagstaff. Distressed squeaks flew from the grass, but the vegetation itself remained still; most of the prairie dogs had retreated underground. We continued along a dirt path bisecting the meadow, startling a prairie dog that was peering out of a burrow to our immediate right. It chirped at us a few times, then stared silently. “Hello,” Slobodchikoff said, stooping a bit. A stout bald man with a scraggly white beard and wine-dark lips, Slobodchikoff speaks with a gentler and more lilting voice than you might expect. “Hi, guy. What do you think? Are we worth calling about? Hmm?” Slobodchikoff, an emeritus professor of biology at Northern Arizona University, has been analyzing the sounds of prairie dogs for more than 30 years. Not long after he started, he learned that prairie dogs had distinct alarm calls for different predators. Around the same time, separate researchers found that a few other species had similar vocabularies of danger. What Slobodchikoff claimed to discover in the following decades, however, was extraordinary: Beyond identifying the type of predator, prairie-dog calls also specified its size, shape, color and speed; the animals could even combine the structural elements of their calls in novel ways to describe something they had never seen before. No scientist had ever put forward such a thorough guide to the native tongue of a wild species or discovered one so intricate. Prairie-dog communication is so complex, Slobodchikoff says — so expressive and rich in information — that it constitutes nothing less than language.

Keyword: Language; Evolution
Link ID: 23606 - Posted: 05.12.2017

By GINA KOLATA Researchers have traced the cause of a baffling brain disorder to a surprising source: a particular type of bacteria living in the gut. Scientists increasingly suspect that the body’s vast community of bacteria — the microbiome — may play a role in the development of a wide variety of diseases, from obesity to perhaps even autism. The new study, published on Wednesday in Nature, is among the first to suggest convincingly that these bacteria may initiate disease in seemingly unrelated organs, and in completely unexpected ways. Researchers “need to be thinking more broadly about the indirect role of the microbiome” in influencing even diseases that have no obvious link to the gut, said Dr. David Relman, professor of microbiology and immunology at Stanford. The researchers studied hereditary cerebral cavernous malformations — blood-filled bubbles that protrude from veins in the brain and can leak blood or burst at any time. The findings do not point to a cure, but they do suggest a way to prevent these brain defects in children who inherit a mutated gene that can cause them. Researchers warned, though, that it is too soon to say whether the potential treatment — antibiotics, followed by a fecal transplant — will work. “Caution, caution, caution,” urged Dr. Mark Ginsberg, a professor of medicine at the University of California, San Diego, who was not involved in the new study. Still, he added, “The findings are very convincing.” When Dr. Mark Kahn, professor of cardiovascular medicine at the University of Pennsylvania’s Perelman School of Medicine, began this work, the microbiome was the last thing on his mind. © 2017 The New York Times Company

Keyword: Stroke; Epilepsy
Link ID: 23603 - Posted: 05.11.2017

By Agata Blaszczak-Boxe We tend to be worse at telling apart faces of other races than those of our own race, studies have found. Now research shows some people are completely blind to features that make other-race faces distinct. Such an impairment could have important implications for eyewitness testimony in situations involving other-race suspects. The ability to distinguish among members of one's own race varies wildly: some people can tell strangers apart effortlessly, whereas others cannot even recognize the faces of their own family and friends (a condition known as prosopagnosia). Psychologist Lulu Wan of the Australian National University and her colleagues wanted to quantify the distribution of abilities for recognizing other-race faces. They asked 268 Caucasians born and raised in Australia to memorize a series of six Asian faces and conducted the same experiment, involving Caucasian faces, with a group of 176 Asians born and raised in Asia who moved to Australia to attend university. In 72 trials, every participant was then shown sets of three faces and had to point to the one he or she had learned in the memorization task. The authors found that 26 Caucasian and 10 Asian participants—8 percent of the collective study population—did so badly on the test that they met the criteria for clinical-level impairment. “We know that we are poor at recognizing other-race faces,” says Jim Tanaka, a professor of psychology at the University of Victoria in British Columbia, who was not involved in the research. “This study shows just how poor some people are.” Those individuals “would be completely useless in terms of their legal value as an eyewitness,” says study co-author Elinor McKone, a professor of psychology at the Australian National University. The world's legal systems do not, however, take into account individual differences in other-race face recognition, she notes. © 2017 Scientific American

Keyword: Attention
Link ID: 23602 - Posted: 05.11.2017

By Jane C. Hu New evidence suggests that the earliest traces of a language can stay with us into adulthood, even if we no longer speak or understand the language itself. And early exposure also seems to speed the process of relearning it later in life. In the new study, recently published in Royal Society Open Science, Dutch adults were trained to listen for sound contrasts in Korean. Some participants reported no prior exposure to the language; others were born in Korea and adopted by Dutch families before the age of six. All participants said they could not speak Korean, but the adoptees from Korea were better at distinguishing between the contrasts and more accurate in pronouncing Korean sounds. “Language learning can be retained subconsciously, even if conscious memories of the language do not exist,” says Jiyoun Choi, postdoctoral fellow at Hanyang University in Seoul and lead author of the study. And it appears that just a brief period of early exposure benefits learning efforts later; when Choi and her collaborators compared the results of people adopted before they were six months old with results of others adopted after 17 months, there were no differences in their hearing or speaking abilities. “It's exciting that these effects are seen even among adults who were exposed to Korean only up to six months of age—an age before which babbling emerges,” says Janet Werker, a professor of psychology at the University of British Columbia, who was not involved with the research. Remarkably, what we learn before we can even speak stays with us for decades. © 2017 Scientific American,

Keyword: Language; Development of the Brain
Link ID: 23598 - Posted: 05.10.2017

By Ian Randall René Descartes began with doubt. “We cannot doubt of our existence while we doubt. … I think, therefore I am,” the 17th century philosopher and scientist famously wrote. Now, modern scientists are trying to figure out what made the genius’s mind tick by reconstructing his brain. Scientists have long wondered whether the brains of geniuses (especially the shapes on their surfaces) could hold clues about their owners’ outsized intelligences. But most brains studied to date—including Albert Einstein’s—were actual brains. Descartes’s had unfortunately decomposed by the time scientists wanted to study it. So with techniques normally used for studying prehistoric humans, researchers created a 3D image of Descartes’s brain (above) by scanning the impression it left on the inside of his skull, which has been kept for almost 200 years now in the National Museum of Natural History in Paris. For the most part, his brain was surprisingly normal—its overall dimensions fell within regular ranges, compared with 102 other modern humans. But one part stood out: an unusual bulge in the frontal cortex, in an area which previous studies have suggested may process the meaning of words. That’s not to say this oddity is necessarily indicative of genius, the scientists report online in the Journal of the Neurological Sciences. Even Descartes might agree: “It is not enough to have a good mind,” he wrote. “The main thing is to use it well.” © 2017 American Association for the Advancement of Science

Keyword: Intelligence
Link ID: 23579 - Posted: 05.06.2017

Ian Sample Science editor It isn’t big and it isn’t clever. But the benefits, known to anyone who has moved home, climbed a mountain, or pushed a broken-down car, have finally been confirmed: according to psychologists, swearing makes you stronger. The upside of letting profanities fly emerged from a series of experiments with people who repeated either a swear word or a neutral word as they pounded away on an exercise bike, or performed a simple hand-grip test. When people cursed their way through the half-minute bike challenge, their peak power rose by 24 watts on average, according to the study. In the 10-second grip task, swearers boosted their strength by the equivalent of 2.1kg, researchers found. “In the short period of time we looked at there are benefits from swearing,” said Richard Stephens, a psychologist at Keele University, who presented the results at the British Psychological Society meeting in Brighton. Stephens enrolled 29 people aged about 21 for the cycling test, and 52 people with a typical age of 19 for the hand-grip test. All were asked to choose a swearword to repeat in the studies, based on a term they might utter if they banged their head. For the neutral word, the volunteers were asked to pick a word they might use to describe a table, such as “wooden” or “brown”. © 2017 Guardian News and Media Limited

Keyword: Attention; Language
Link ID: 23575 - Posted: 05.05.2017

Jon Hamilton A little spit may help predict whether a child's concussion symptoms will subside in days or persist for weeks. A test that measures fragments of genetic material in saliva was nearly 90 percent accurate in identifying children and adolescents whose symptoms persisted for at least a month, a Penn State team told the Pediatric Academic Societies Meeting in San Francisco, Calif. In contrast, a concussion survey commonly used by doctors was right less than 70 percent of the time. If the experimental test pans out, "a pediatrician could collect saliva with a swab, send it off to the lab and then be able to call the family the next day," says Steven Hicks, an assistant professor of pediatrics at Penn State Hershey. Hicks helped develop the test and consults for a company that hopes to market concussion tests. A reliable test would help overcome a major obstacle in assessing and treating concussions, which affect more than one million children and adolescents in the U.S. each year. Many of the injuries are related to sports. In most cases, concussion symptoms last only a few days. But up to 25 percent of young patients "go on to have these prolonged headaches, fatigue, nausea, and those symptoms can last sometimes one to four months," Hicks says. And, right now, there's no way to know which kids are going to have long-term problems, he says. "Parents often say that their biggest concern is, 'When is my child going to be back to normal again?' " Hicks says. "And that's something we have a very difficult time predicting." © 2017 npr

Keyword: Brain Injury/Concussion
Link ID: 23567 - Posted: 05.04.2017

By Mo Costandi The world is an unpredictable place. But the brain has evolved a way to cope with the everyday uncertainties it encounters—it doesn’t present us with many of them, but instead resolves them as a realistic model of the world. The body’s central controller predicts every contingency, using its stored database of past experiences, to minimize the element of surprise. Take vision, for example: We rarely see objects in their entirety but our brains fill in the gaps to make a best guess at what we are seeing—and these predictions are usually an accurate reflection of reality. The same is true of hearing, and neuroscientists have now identified a predictive textlike brain mechanism that helps us to anticipate what is coming next when we hear someone speaking. The findings, published this week in PLoS Biology, advance our understanding of how the brain processes speech. They also provide clues about how language evolved, and could even lead to new ways of diagnosing a variety of neurological conditions more accurately. The new study builds on earlier findings that monkeys and human infants can implicitly learn to recognize artificial grammar, or the rules by which sounds in a made-up language are related to one another. Neuroscientist Yukiko Kikuchi of Newcastle University in England and her colleagues played sequences of nonsense speech sounds to macaques and humans. Consistent with the earlier findings, Kikuchi and her team found both species quickly learned the rules of the language’s artificial grammar. After this initial learning period the researchers played more sound sequences—some of which violated the fabricated grammatical rules. They used microelectrodes to record responses from hundreds of individual neurons as well as from large populations of neurons that process sound information. In this way they were able to compare the responses with both types of sequences and determine the similarities between the two species’ reactions. © 2017 Scientific American,

Keyword: Language; Attention
Link ID: 23558 - Posted: 05.01.2017

Irina Zhorov On July 17, 2014 Kurt Hinrichs, of Gladstone, Mo., went to bed early. As often happens, he woke in the middle of the night. When he tried to get out of bed, he crashed to the floor, which woke his wife, Alice. "At first it was like, 'What's going on?' " Alice says. "Are you dreaming? Are you sleepwalking?" Kurt wasn't responding to anything Alice asked him, so she called 911. "I [was] thinking, 'this is a nightmare,' " Kurt says. By the time the ambulance arrived, just a few minutes later, Kurt wasn't speaking and his entire right side was paralyzed. Paramedics recognized that Kurt was having a stroke. When they wheeled Kurt out of the house, Alice thought he might never come home again. And if he did, he would be bedridden or in a wheelchair. "I really didn't have a lot of hope that my husband would be normal again, ever," she says. Speeding towards St. Luke's Hospital in Kansas City, Mo., Kurt realized this was no nightmare. He was awake, "but there was something major and massively wrong with me," Kurt says. About 800,000 people suffer strokes every year in the U.S. Most of them are ischemic strokes, caused by a clot which blocks a vessel supplying blood to the brain. If blood can't reach the brain, cells are deprived of oxygen and start to die. © 2017 npr

Keyword: Stroke
Link ID: 23557 - Posted: 05.01.2017

By Vicky Hallett Anything can happen while you’re performing karaoke at a dive bar in Scotland. As Lauren Marks found out 10 years ago at age 27, that includes having an aneurysm rupture in your brain. After being rushed to the hospital, the American actress/writer underwent emergency surgery that saved her life. But she lost two things that night: a single black high heel and much of her ability to use language. “A Stitch of Time,” her memoir that focuses on the year that followed, offers a deeply personal — and often surprising — perspective on aphasia, the medical term for this kind of communication disorder. The initial sensation, which Marks describes as “The Quiet,” was pleasurable. “The smallest of activities would enthrall me,” she writes. “Dressing myself, I was awed by the orbital distance between cloth and flesh. Brushing my teeth, I was enchanted by the stiffness of the bristles and the sponginess of my gums.” The Quiet, she explains, was what temporarily replaced her inner monologue. It was as muted as her external speech, which was initially limited to about 40 words. Beginning soon after she was stricken, Marks kept a journal, which she describes as initially “this confetti of fractured words.” Today, Marks can’t imagine what compelled her to scribble down “cathrene prussia horse-donk.” On the same page, she also wrote “speshul,” “Tibet” and “chorus.” © 1996-2017 The Washington Post

Keyword: Stroke; Language
Link ID: 23556 - Posted: 05.01.2017

By Dave A. Chokshi, In medicine, we speak of “seeing patients” when we are rounding in the hospital or caring for those who come to our clinics. But what about those people who may be sick but do not seek care? What is our responsibility to the patients we do not see? This question takes on greater urgency in the current political climate, as patients face the threat of losing health insurance. Renewed efforts to repeal and replace the Affordable Care Act leave millions wondering whether they will be covered. For me, as a physician practicing in the safety net, abstract numbers evoke the very real stories of my uninsured patients. One of my patients, whom I’ll call Elsa, had not seen a doctor since immigrating to the United States 15 years ago. That abruptly changed one morning: She awoke to find the room spinning around her and, terrifyingly, she could not articulate the words to explain to her husband what was going on. She was having a stroke. There are many reasons that patients like Elsa may not seek care – until they have no choice. Although she felt no symptoms before her stroke, Elsa was one of about 13 million U.S. adults with undiagnosed high blood pressure. I wondered if making her aware of her blood pressure would have been enough to avoid her suffering. But even if high blood pressure may sit atop the list of problems I write out, from his or her perspective it may not crack the top five. Food security, job stability, child care and affordable housing understandably feel more urgent. Time and again, I have learned that taking care of my patients starts by trying to walk a mile in their shoes. © 2017 Scientific American

Keyword: Stroke; Schizophrenia
Link ID: 23555 - Posted: 05.01.2017

Bruce Bower NEW ORLEANS — A relatively small brain can pack a big evolutionary punch. Consider Homo naledi, a famously puzzling fossil species in the human genus. Despite having a brain only slightly larger than a chimpanzee’s, H. naledi displays key humanlike neural features, two anthropologists reported April 20 at the annual meeting of the American Association of Physical Anthropologists. Those brain characteristics include a region corresponding to Broca’s area, which spans parts of the right and left sides of the brain in present-day people. The left side is typically involved in speech and language. “It looks like Homo naledi’s brain evolved a huge amount of shape change that supported social emotions and advanced communication of some type,” said Shawn Hurst of Indiana University Bloomington, who presented the new findings. “We can’t say for sure whether that included language.” Frontal brain locations near Broca’s area contribute to social emotions such as empathy, pride and shame. As interactions within groups became more complex in ancient Homo species, neural capacities for experiencing social emotions and communicating verbally blossomed, Hurst suspects. Scientists don’t know how long ago H. naledi inhabited Africa’s southern tip. If H. naledi lived 2 million or even 900,000 years ago, as some researchers have suggested (SN: 8/6/16, p. 12), humanlike brains with a language-related area would be shocking. A capacity for language is thought to have emerged in Homo over the last few hundred thousand years at most. |© Society for Science & the Public 2000 - 2017.

Keyword: Evolution
Link ID: 23541 - Posted: 04.26.2017

By CATHERINE SAINT LOUIS In her 30s, Sophie Marat, now 42, used to record herself reading poetry aloud, then play it back to hear if she sounded like a woman. Ms. Marat, who is transgender, had spent years trying to remake her voice in private by speaking in a higher pitch but ultimately felt that her efforts were hopeless. “I was feeling like changing my voice to match my gender identity was almost impossible,” she said. “It was terrible.” Ms. Marat’s transition from male to female has been a gradual evolution. She had come out to friends and family back home in Mexico, then began to wear skirts to work as a software engineer in Manhattan. Still, her confidence would falter with everyday tasks like ordering takeout. “It was really painful to speak on the phone,” she said, “because they would reply, ‘O.K., sir.’” That was before she started her weekly sessions with a voice therapist at New York University’s speech-language-hearing clinic, one of a growing number of programs that cater to transgender clients seeking to retrain their voices. Just as some transgender women and men choose to take hormones or have surgery, or choose neither, some seek to feminize or masculinize their voices. Many say they want a voice that matches their appearance or that the change allows them to escape unwanted attention. There’s also a growing recognition among health professionals who have transgender patients that altering one’s voice can improve quality of life and reduce distress. After eight months, she had raised her pitch, worked on moving her resonance forward and finishing phrases with an open ending, rather than bluntly. “This isn’t just a sidebar,” said Sandy Hirsch, a Seattle-based speech language pathologist who was a co-author of the pioneering textbook on transgender voice and communication therapy. “It’s an integral part of care for transgender people as they transition.” © 2017 The New York Times Company

Keyword: Sexual Behavior; Language
Link ID: 23539 - Posted: 04.26.2017

By Virginia Morell Humpback whales are known for their operatic songs that carry across the seas. Their calves, however, whisper, uttering soft squeaks and grunts to their mothers (which you can hear above). Now, a new study suggests that loud calf voices can also attract some unwanted visitors: male humpbacks, who might separate the pair by trying to mate with the mother, and killer whales, who dine on young humpbacks. To record their sounds, scientists placed temporary tagging devices on eight humpback whale mothers and calves in the Exmouth Gulf off Western Australia, where the young whales spend months suckling to gain enough weight for their annual migrations to the Antarctic or Arctic. After listening to the recordings, scientists say the calves’ careful whispers are not cries for food, as previously thought. Instead, they may help them stay in close contact with their mothers when swimming. And, say researchers, writing today in Functional Ecology, the low decibel sounds help keep would-be predators away from the “nursery.” © 2017 American Association for the Advancement of Science

Keyword: Animal Communication
Link ID: 23534 - Posted: 04.26.2017

By Cormac McCarthy I call it the Kekulé Problem because among the myriad instances of scientific problems solved in the sleep of the inquirer Kekulé’s is probably the best known. He was trying to arrive at the configuration of the benzene molecule and not making much progress when he fell asleep in front of the fire and had his famous dream of a snake coiled in a hoop with its tail in its mouth—the ouroboros of mythology—and woke exclaiming to himself: “It’s a ring. The molecule is in the form of a ring.” Well. The problem of course—not Kekulé’s but ours—is that since the unconscious understands language perfectly well or it would not understand the problem in the first place, why doesnt it simply answer Kekulé’s question with something like: “Kekulé, it’s a bloody ring.” To which our scientist might respond: “Okay. Got it. Thanks.” Why the snake? That is, why is the unconscious so loathe to speak to us? Why the images, metaphors, pictures? Why the dreams, for that matter. A logical place to begin would be to define what the unconscious is in the first place. To do this we have to set aside the jargon of modern psychology and get back to biology. The unconscious is a biological system before it is anything else. To put it as pithily as possibly—and as accurately—the unconscious is a machine for operating an animal. All animals have an unconscious. If they didnt they would be plants. We may sometimes credit ours with duties it doesnt actually perform. Systems at a certain level of necessity may require their own mechanics of governance. Breathing, for instance, is not controlled by the unconscious but by the pons and the medulla oblongata, two systems located in the brainstem. Except of course in the case of cetaceans, who have to breathe when they come up for air. An autonomous system wouldnt work here. The first dolphin anesthetized on an operating table simply died. (How do they sleep? With half of their brain alternately.) But the duties of the unconscious are beyond counting. Everything from scratching an itch to solving math problems. © 2017 NautilusThink Inc,

Keyword: Language; Consciousness
Link ID: 23525 - Posted: 04.22.2017

By Jia Naqvi The rate of stroke among young people has apparently been rising steadily since 1995, according to a study published this week. Hospitalization rates for stroke increased for women between the ages of 18 and 44, and nearly doubled for men in that age range from 1995 through 2012. Using more-detailed data for 2003 through 2012, the researchers found that rates of hospitalizations for acute ischemic stroke increased by nearly 42 percent for men 35 to 44, while rates for women of the same age group increased by 30 percent over the same time, the study published in the JAMA, the Journal of the American Medical Association. Across all adults, including those in older age ranges, stroke was the fifth leading cause of death in 2013. Overall mortality rates from strokes have significantly decreased over the past 50 years due to multiple factors, including better treatment for hypertension and increased use of aspirin, even as incidence of acute ischemic stroke among young adults has been on the rise. The study also looked at stroke risk factors and whether there were any changes in their prevalence from 2003 to 2012. The likelihood of having three or more of five common risk factors — diabetes, hypertension, lipid disorders, obesity and tobacco use — doubled in men and women hospitalized for acute ischemic strokes. © 1996-2017 The Washington Post=

Keyword: Stroke; Development of the Brain
Link ID: 23496 - Posted: 04.17.2017