Chapter 2. Functional Neuroanatomy: The Cells and Structure of the Nervous System
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
Nicola Davis Science correspondent Researchers have gained new insight into how and why some people experience depression after finding a particular brain network is far bigger in people living with the condition. The surface of the brain is a communication junction box at which different areas talk to each other to carry out particular processes. But there is a finite amount of space for these networks to share. Now researchers say that in people with depression, a larger part of the brain is involved in the network that controls attention to rewards and threats than in those without depression. “It’s taking up more real estate on the brain surface than we see is typical in healthy controls,” said Dr Charles Lynch, a co-author of the research, from Weill Cornell Medicine in New York. He added that expansion meant the size of other – often neighbouring – brain networks were smaller. Writing in the journal Nature, Lynch and colleagues report how they used precision functional mapping, a new approach to brain imaging that analyses a host of fMRI (functional MRI) scans from each individual. The team applied this method to 141 people with depression and 37 people without it, enabling them to measure accurately the size of each participant’s brain networks. They then took the average size for each group. They found that a part of the brain called the frontostriatal salience network was expanded by 73% on average in participants with depression compared with healthy controls. © 2024 Guardian News & Media Limited
Keyword: Depression; Brain imaging
Link ID: 29468 - Posted: 09.07.2024
By Rodrigo Pérez Ortega Names can be deceiving. One might think “cerebrospinal fluid” only lives in the brain and spinal cord. Indeed, that’s what scientists and doctors have largely believed for centuries. But the clear liquid—which cleans, feeds, and protects the organs it surrounds—also bathes the body’s nerves, researchers report today in Science Advances. “This is one of the [most] important papers in this area,” says Karl Bechter, a clinical neurologist at Ulm University who was not involved in the study. In the past, he and others have suggested instances in which cerebrospinal fluid (CSF) permeates nerves, but he says this is the first study that shows it can travel far throughout the body. The finding could open new ways to deliver drugs to some of the most inaccessible parts of the body. The human body is a bundle of nerves. Besides the head honchos that make up the central nervous system—the brain and spinal cord—kilometers of spindly fibers snake their way throughout our anatomy. Here, they form a peripheral nervous system that fires the signals that allow us to do everything from walking to feeling pain. Yet even though the two systems interface, previous anatomy studies indicated CSF was restricted to the central nervous system. Things changed 2.5 years ago when Edward Scott, a stem cell biologist at the University of Florida, and his surgeon colleague Joe Pessa noticed something strange during a plastic surgery study. Pessa was researching ways to avoid damaging CSF-containing structures and nerves during surgical procedures. When the scientists injected saline into the brain chambers of human cadavers that contained CSF, a peripheral nerve in the wrist swelled up. They then decided to explore further, injecting a fluorescent liquid in live mice’s brain chambers to track where the liquid went. The dye somehow made its way to the sciatic nerve, which runs throughout the back of the leg. Intrigued, the team decided to repeat the experiment in mice using a much finer tracer: nanoparticles of gold. These tiny particles can be detected through both light and electron microscopy and can be tailored to specific sizes.
Keyword: Brain imaging; Biomechanics
Link ID: 29465 - Posted: 09.07.2024
By R. Douglas Fields It is late at night. You are alone and wandering empty streets in search of your parked car when you hear footsteps creeping up from behind. Your heart pounds, your blood pressure skyrockets. Goose bumps appear on your arms, sweat on your palms. Your stomach knots and your muscles coil, ready to sprint or fight. Now imagine the same scene, but without any of the body’s innate responses to an external threat. Would you still feel afraid? Experiences like this reveal the tight integration between brain and body in the creation of mind — the collage of thoughts, perceptions, feelings and personality unique to each of us. The capabilities of the brain alone are astonishing. The supreme organ gives most people a vivid sensory perception of the world. It can preserve memories, enable us to learn and speak, generate emotions and consciousness. But those who might attempt to preserve their mind by uploading its data into a computer miss a critical point: The body is essential to the mind. How is this crucial brain-body connection orchestrated? The answer involves the very unusual vagus nerve. The longest nerve in the body, it wends its way from the brain throughout the head and trunk, issuing commands to our organs and receiving sensations from them. Much of the bewildering range of functions it regulates, such as mood, learning, sexual arousal and fear, are automatic and operate without conscious control. These complex responses engage a constellation of cerebral circuits that link brain and body. The vagus nerve is, in one way of thinking, the conduit of the mind. Nerves are typically named for the specific functions they perform. Optic nerves carry signals from the eyes to the brain for vision. Auditory nerves conduct acoustic information for hearing. The best that early anatomists could do with this nerve, however, was to call it the “vagus,” from the Latin for “wandering.” The wandering nerve was apparent to the first anatomists, notably Galen, the Greek polymath who lived until around the year 216. But centuries of study were required to grasp its complex anatomy and function. This effort is ongoing: Research on the vagus nerve is at the forefront of neuroscience today. © 2024.Simons Foundation
Keyword: Emotions; Obesity
Link ID: 29454 - Posted: 08.28.2024
By Holly Barker Machine-learning models can predict a neuron’s location based on recorded bursts of activity, a new preprint suggests. The findings may provide novel insights into how the brain integrates signals from different regions, the researchers say. The algorithm—trained on electrode recordings of neurons in mice—appeared to learn a cell’s whereabouts from its interspike interval, the sequence of delays between blips of activity. And after deciphering the spike pattern from one mouse, the tool predicted neuronal locations based on recordings from another rodent. That conservation between animals suggests the information serves some useful brain function, or at least doesn’t get in the way, says lead investigator Keith Hengen, assistant professor of biology at Washington University in St. Louis. Although more research is needed, the anatomical information embedded in interspike intervals could—in theory—provide contextual information for neuronal computations. For example, the brain might process signals from thalamic neurons differently from those in the hippocampus, says study investigator Aidan Schneider, a graduate student in Hengen’s lab. Schneider and his colleagues trained the model using tens of thousands of Neuropixels probe recordings from 58 awake mice, published by the Allen Institute. When Schneider’s team presented the algorithm with fresh data, it could decipher whether a given neuron resided in the hippocampus, midbrain, thalamus or visual cortex 89 percent of the time, once the team removed noise from the data. (Random guesses would be correct 25 percent of the time.) But the tool was less able to pinpoint specific substructures within those regions. It’s a great example of the kinds of insights that labs poring over huge datasets can produce, says Drew Headley, assistant professor of molecular and behavioral neuroscience at Rutgers University, who was not involved in the study. But the findings may simply echo published reports of variations in spiking activity across different brain regions, he says. © 2024 Simons Foundation
Keyword: Brain imaging
Link ID: 29452 - Posted: 08.28.2024
By Michael Eisenstein An analysis of almost 50,000 brain scans1 has revealed five distinct patterns of brain atrophy associated with ageing and neurodegenerative disease. The analysis has also linked the patterns to lifestyle factors such as smoking and alcohol consumption, as well as to genetic and blood-based markers associated with health status and disease risk. The work is a “methodological tour de force” that could greatly advance researchers’ understanding of ageing, says Andrei Irimia, a gerontologist at the University of Southern California in Los Angeles, who was not involved in the work. “Prior to this study, we knew that brain anatomy changes with ageing and disease. But our ability to grasp this complex interaction was far more modest.” The study was published on 15 August in Nature Medicine. Ageing can induce not only grey hair, but also changes in brain anatomy that are visible on magnetic resonance imaging (MRI) scans, with some areas shrivelling or undergoing structural alterations over time. But these transformations are subtle. “The human eye is not able to perceive patterns of systematic brain changes” associated with this decline, says Christos Davatzikos, a biomedical-imaging specialist at the University of Pennsylvania in Philadelphia and an author of the paper. Previous studies have shown that machine-learning methods can extract the subtle fingerprints of ageing from MRI data. But these studies were often limited in scope and most included data from a relatively small number of people. © 2024 Springer Nature Limited
Keyword: Development of the Brain; Brain imaging
Link ID: 29446 - Posted: 08.21.2024
By Tina Hesman Saey A mind-bending parasite may one day deliver drugs to the brain. Toxoplasma gondii is a single-celled parasite that famously makes mice lose their fear of cats, but also can cause deadly foodborne illnesses (SN: 1/14/20). Now, researchers have engineered the parasite to deliver large therapeutic proteins to the brains of mice and into human brain cells grown in lab dishes, an international team of scientists reports July 29 in Nature Microbiology. Such proteins and the genes that produce them are often too big for viruses — the most common courier for gene therapy — to carry (SN: 10/20/23). If the parasite can be made safe for human use, the technique may eventually help treat a variety of neurological conditions. While critics doubt that the parasitic villain can ever be turned into a helpful hero, some researchers are intrigued by the idea. Microbes such as bacteria and parasites are usually viewed as bad guys, says Sara Molinari, a bacterial synthetic biologist at the University of Maryland in College Park who was not involved with the work. But microbes have evolved “pretty sophisticated relationships with our bodies,” she says. “The idea that we can leverage this relationship to instruct them to do good things for us is actually groundbreaking.” Current methods of delivering therapies to the brain often produce unpredictable results or have a hard time penetrating the protective shield known as the blood-brain barrier, says Shahar Bracha, a bioengineer and neuroscientist at MIT (SN: 5/2/23). © Society for Science & the Public 2000–2024.
Keyword: Brain imaging; Drug Abuse
Link ID: 29414 - Posted: 07.31.2024
By Laura Dattaro When John Tuthill was a postdoctoral researcher at Harvard Medical School, he worked just down the hall from Wei-Chung Allen Lee, who was developing new technology to image and map cell connections in the central nervous system. Lee wanted to use his technique in the fruit fly Drosophila, but he knew that other groups were already making such images of the fly brain. So Tuthill, who was studying touch stimuli in Drosophila, suggested Lee pivot to map the fly’s ventral nerve cord (VNC) instead. A decade later, Tuthill, Lee and colleagues have published a map of the connections among motor neurons in a female fly’s VNC, which is analogous to the spinal cord in mammals. The diagram, published on 26 June in Nature, details roughly 45 million synapses that connect nearly 15,000 neurons, and is the second such connectome to be released. A different team, at Howard Hughes Medical Institute’s Janelia Research Campus, published a male fly’s VNC connectome to eLife’s preprint server in June 2023. (The team posted an updated, reviewed preprint on 23 May 2024.) “The connectome is only useful if you can connect it to the muscles,” says Tuthill, associate professor of neuroscience at the University of Washington. “The output of the connectome is the activity of motor neurons.” With connectomes from both a male and a female fly, researchers are starting to look for differences not only between individuals, but between the sexes. An initial comparison of the two connectomes, posted to bioRxiv on 28 June by members of both teams, including Tuthill and Lee, identified circuits that appear to control sex-specific behaviors, including male courtship songs and the female extension of an organ used to deposit eggs. © 2024 Simons Foundation
Keyword: Brain imaging
Link ID: 29407 - Posted: 07.27.2024
By Phie Jacobs Is there really such a thing as a “male” or “female” brain? Sex certainly seems to affect a person’s risk of developing various psychiatric and other brain-related conditions—but scientists aren’t entirely sure why. Attention-deficit/hyperactivity disorder for example, is more commonly diagnosed in individuals who were assigned male at birth (AMAB), whereas those assigned female at birth (AFAB) are more likely to exhibit symptoms of anxiety. It’s unclear, however, whether these differences are actually driven by sex, or have more to do with how people are perceived and treated based on their sex or gender. Now, new research suggests sex and gender are associated with distinct brain networks. Published today in Science Advances, the findings draw on brain imaging data from nearly 5000 children to reveal that gender and sex aren’t just distinct from one another in society—they also play unique roles in biology. In science, the term “biological sex” encompasses a variety of genetic, hormonal, and anatomical characteristics. People are typically assigned “male” or “female” as their sex at birth, although the medical establishment in recent years has begun to acknowledge that sex doesn’t always fall neatly into binary categories. Indeed, about 0.05% of children born in the United States are assigned intersex at birth. Gender, by contrast, has more to do with a person’s attitudes, feelings, and behavior—and may not always align with the sex they were assigned at birth. These nuances often go unrecognized in neuroscience, says Sheila Shanmugan, a reproductive psychiatrist at the University of Pennsylvania who wasn’t involved in the new study. Sex and gender-based differences in the brain “have historically been understudied,” she explains, “and terms describing each are often conflated.” © 2024 American Association for the Advancement of Science.
Keyword: Sexual Behavior; Brain imaging
Link ID: 29393 - Posted: 07.13.2024
By Erin Garcia de Jesús In spring 2022, a handful of red foxes in Wisconsin were behaving oddly. Veterinary pathologist Betsy Elsmo learned that a local wildlife rehabilitation center was caring for foxes with neurological symptoms like seizures, tremors, uncoordinated movements and lethargy. But tests for common pathogens like canine distemper virus and rabies that typically cause the symptoms came back negative. Then a red fox kit tested positive for influenza A. This group of viruses includes seasonal flus that cause respiratory disease in people and many other strains that commonly circulate among animals such as waterfowl and other birds. “I was surprised,” says Elsmo, of the University of Wisconsin–Madison. “And to be honest, at first I kind of wrote it off.” That is, until a veterinary technician at the rehab center sent Elsmo a study describing cases of avian influenza in red foxes in the Netherlands. Examinations of the Wisconsin kit’s tissues under the microscope revealed lesions in the brain, lung and heart that matched what had been seen in the Netherlands animals. “And I thought, I think it is [bird flu],” she recalls. Additional testing confirmed the diagnosis in the kit and the other foxes, Elsmo and colleagues reported in the December 2023 Emerging Infectious Diseases. The animals had contracted a lethal strain of H5N1 avian influenza that emerged in late 2020 in Europe and has since spread around the world. At the time infections were discovered in the Wisconsin red foxes, bird flu was expanding its incursion into North America. Since H5N1 arrived on North American shores in December 2021, it has infected animals as wide-ranging as polar bears, skunks, sea lions, bottlenosed dolphins and cows (SN: 7/8/24). And one unwelcome revelation of the ongoing outbreak is the virus’s propensity to invade the brains of myriad mammals. © Society for Science & the Public 2000–2024.
Keyword: Stress
Link ID: 29392 - Posted: 07.13.2024
By Tyler Sloan If I ask you to picture a group of “neurons firing,” what comes to mind? For most people, it’s a few isolated neurons flashing in synchrony. This type of minimalist representation of neurons is common within neuroscience, inspired in part by Santiago Ramón y Cajal’s elegant depictions of the nervous system. His work left a deep mark on our intuitions, but the method he used—Golgi staining—highlights just 1 to 5 percent of neurons. More than a century later, researchers have mapped out brain connectivity in such detail that it easily becomes overwhelming; I vividly recall an undergraduate neurophysiology lecture in which the professor showed a wiring diagram of the primary visual cortex to make the point that it was too complex to understand. We’ve reached a point where simple wiring diagrams no longer suffice to represent what we’re learning about the brain. Advances in experimental and computational neuroscience techniques have made it possible to map brains in more detail than ever before. The wiring diagram for the whole fly brain, for example, mapped at single-synapse resolution, comprises 2.7 million cell-to-cell connections and roughly 150 million synapses. Building an intuitive understanding of this type of complexity will require new tools for representing neural connectivity in a way that is both meaningful and compact. To do this, we will have to embrace the elaborate and move beyond the single neuron to a more “maximalist” approach to visualizing the nervous system. I spent my Ph.D. studying the spinal cord, where commissural growth cones are depicted as pioneers on a railhead extending through uncharted territory. The watershed moment for me was seeing a scanning electron micrograph of the developing spinal cord for the first time and suddenly understanding the growth cone’s dense environment—its path was more like squeezing through a crowded concert than wandering across an empty field. I realized how poor my own intuitions were, which nudged me toward learning the art of 3D visualization. © 2024 Simons Foundation
Keyword: Brain imaging; Development of the Brain
Link ID: 29385 - Posted: 07.09.2024
By Sara Reardon By eavesdropping on the brains of living people, scientists have created the highest-resolution map yet of the neurons that encode the meanings of various words1. The results hint that, across individuals, the brain uses the same standard categories to classify words — helping us to turn sound into sense. The study is based on words only in English. But it’s a step along the way to working out how the brain stores words in its language library, says neurosurgeon Ziv Williams at the Massachusetts Institute of Technology in Cambridge. By mapping the overlapping sets of brain cells that respond to various words, he says, “we can try to start building a thesaurus of meaning”. The brain area called the auditory cortex processes the sound of a word as it enters the ear. But it is the brain’s prefrontal cortex, a region where higher-order brain activity takes place, that works out a word’s ‘semantic meaning’ — its essence or gist. Previous research2 has studied this process by analysing images of blood flow in the brain, which is a proxy for brain activity. This method allowed researchers to map word meaning to small regions of the brain. But Williams and his colleagues found a unique opportunity to look at how individual neurons encode language in real time. His group recruited ten people about to undergo surgery for epilepsy, each of whom had had electrodes implanted in their brains to determine the source of their seizures. The electrodes allowed the researchers to record activity from around 300 neurons in each person’s prefrontal cortex. © 2024 Springer Nature Limited
Keyword: Language; Brain imaging
Link ID: 29383 - Posted: 07.06.2024
By Paula Span About a month ago, Judith Hansen popped awake in the predawn hours, thinking about her father’s brain. Her father, Morrie Markoff, was an unusual man. At 110, he was thought to be the oldest in the United States. His brain was unusual, too, even after he recovered from a stroke at 99. Although he left school after the eighth grade to work, Mr. Markoff became a successful businessman. Later in life, his curiosity and creativity led him to the arts, including photography and sculpture fashioned from scrap metal. He was a healthy centenarian when he exhibited his work at a gallery in Los Angeles, where he lived. At 103, he published a memoir called “Keep Breathing.” He blogged regularly, pored over The Los Angeles Times daily, discussed articles in Scientific American and followed the national news on CNN and “60 Minutes.” Now he was nearing death, enrolled in home hospice care. “In the middle of the night, I thought, ‘Dad’s brain is so great,’” said Ms. Hansen, 82, a retired librarian in Seattle. “I went online and looked up ‘brain donation.’” Her search led to a National Institutes of Health web page explaining that its NeuroBioBank, established in 2013, collected post-mortem human brain tissue to advance neurological research. Through the site, Ms. Hansen contacted the nonprofit Brain Donor Project. It promotes and simplifies donations through a network of university brain banks, which distribute preserved tissue to research teams. Tish Hevel, the founder of the project, responded quickly, putting Ms. Hansen and her brother in touch with the brain bank at the University of California, Los Angeles. Brain donors may have neurological and other diseases, or they may possess healthy brains, like Mr. Markoff’s. “We’re going to learn so much from him,” Ms. Hevel said. “What is it about these superagers that allows them to function at such a high level for so long?” © 2024 The New York Times Company
Keyword: Development of the Brain; Brain imaging
Link ID: 29379 - Posted: 07.06.2024
By Adolfo Plasencia Recently, a group of Australian researchers demonstrated a “mind-reading” system called BrainGPT. The system can, according to its creators, convert thoughts (recorded with a non-invasive electrode helmet) into words that are displayed on a screen. Essentially, BrainGPT connects a multitasking EEG encoder to a large language model capable of decoding coherent and readable sentences from EEG signals. Is the mind, the last frontier of privacy, still a safe place to think one’s thoughts? I spoke with Harvard-based behavioral neurologist Alvaro Pascual-Leone, a leader in the study of neuroplasticity and noninvasive brain stimulation, about what it means and how we can protect ourselves. The reality is that the ability to read the brain and influence activity is already here. It’s no longer only in the realm of science fiction. Now, the question is, what exactly can we access and manipulate in the brain? Consider this example: If I instruct you to move a hand, I can tell if you are preparing to move, say, your right hand. I can even administer a precise “nudge” to your brain and make you move your right hand faster. And you would then claim, and fully believe, that you moved it yourself. However, I know that, in fact, it was me who moved it for you. I can even force you to move your left hand—which you were not going to move—and lead you to rationalize why you changed your mind when in fact, our intervention led to that action you perceive as your choice. We have done this experiment in our laboratory. In humans, we can modify brain activity by reading and writing in the brain, so to speak, though we can affect only very simple things right now. In animals, we can do much more complex things because we have much more precise control of the neurons and their timing. But the capacity for that modulation of smaller circuits progressively down to individual neurons in humans is going to come, including much more selective modification with optogenetic alternatives—that is, using light to control the activity of neurons. © 2024 NautilusNext Inc.,
Keyword: Brain imaging
Link ID: 29377 - Posted: 07.03.2024
Jon Hamilton About 170 billion cells are in the brain, and as they go about their regular tasks, they produce waste — a lot of it. To stay healthy, the brain needs to wash away all that debris. But how exactly it does this has remained a mystery. Now, two teams of scientists have published three papers that offer a detailed description of the brain's waste-removal system. Their insights could help researchers better understand, treat and perhaps prevent a broad range of brain disorders. The papers, all published in the journal Nature, suggest that during sleep, slow electrical waves push the fluid around cells from deep in the brain to its surface. There, a sophisticated interface allows the waste products in that fluid to be absorbed into the bloodstream, which takes them to the liver and kidneys to be removed from the body. One of the waste products carried away is amyloid, the substance that forms sticky plaques in the brains of patients with Alzheimer's disease. This illustration demonstrates how the thin film of sensors could be applied to the brain during surgery. There's growing evidence that in Alzheimer's disease, the brain's waste-removal system is impaired, says Jeffrey Iliff, who studies neurodegenerative diseases at the University of Washington but was not a part of the new studies. The new findings should help researchers understand precisely where the problem is and perhaps fix it, Iliff says. "If we restore drainage, can we prevent the development of Alzheimer's disease?" he asks. The new studies come more than a decade after Iliff and Dr. Maiken Nedergaard, a Danish scientist, first proposed that the clear fluids in and around the brain are part of a system to wash away waste products. The scientists named it the glymphatic system, a nod to the body's lymphatic system, which helps fight infection, maintain fluid levels and filter out waste products and abnormal cells. © 2024 npr
Keyword: Sleep
Link ID: 29369 - Posted: 06.26.2024
By Miryam Naddaf Researchers have developed a four-dimensional model of spinal-cord injury in mice, which shows how nearly half a million cells in the spinal cord respond over time to injuries of varying severity. The model, known as a cell atlas, could help researchers to resolve outstanding questions and develop new treatments for people with spinal-cord injury (SCI). “If you know what every single cell on the spinal cord is doing in response to injury, you could use that knowledge to develop tailor-made and mechanism-based therapies,” says Mark Anderson, a neurobiologist at the Swiss Federal Institute of Technology in Geneva, Switzerland, who worked on the atlas. “Things don’t need to be a shot in the dark.” Anderson and his colleagues used machine-learning algorithms to build the atlas by mapping data from RNA sequencing and other cell-biology techniques. They described the work in a Nature paper published today1 and have made the entire atlas available through an online platform. The atlas is a valuable resource for testing hypotheses about SCI, says Binhai Zheng, who studies spinal-cord regeneration at the University of California, San Diego. “There are a lot of hidden treasures.” The researchers examined sections of the spinal cord, sampled from 52 injured and uninjured mice at 1, 4, 7, 14, 30 and 60 days after injury. Their analysis involved 18 experimental SCI conditions, including different types of injury and levels of severity. They used RNA-sequencing tools to explore how 482,825 cells responded to injury over time. © 2024 Springer Nature Limited
Keyword: Brain imaging; Brain Injury/Concussion
Link ID: 29368 - Posted: 06.26.2024
Hannah Devlin Science correspondent A UK teenager with severe epilepsy has become the first person in the world to be fitted with a brain implant aimed at bringing seizures under control. Oran Knowlson’s neurostimulator sits under the skull and sends electrical signals deep into the brain, reducing his daytime seizures by 80%. His mother, Justine, said that her son had been happier, chattier and had a much better quality of life since receiving the device. “The future looks hopeful, which I wouldn’t have dreamed of saying six months ago,” she said. Martin Tisdall, a consultant paediatric neurosurgeon who led the surgical team at Great Ormond Street hospital (Gosh) in London, said: “For Oran and his family, epilepsy completely changed their lives and so to see him riding a horse and getting his independence back is absolutely astounding. We couldn’t be happier to be part of their journey.” Oran, who is 13 and lives in Somerset, had the surgery in October as part of a trial at Gosh in partnership with University College London, King’s College hospital and the University of Oxford. Oran has Lennox-Gastaut syndrome, external, a treatment-resistant form of epilepsy which he developed at the age of three. Between then and having the device fitted, he hasn’t had a single day without a seizure and sometimes suffered hundreds in a day. He often lost consciousness and would stop breathing, needing resuscitation. This means Oran needed round-the-clock care, as seizures could happen at any time of day, and he was at a significantly increased risk of sudden unexpected death in epilepsy (Sudep). © 2024 Guardian News & Media Limited
Keyword: Epilepsy; Robotics
Link ID: 29367 - Posted: 06.24.2024
Jon Hamilton A flexible film bristling with tiny sensors could make surgery safer for patients with a brain tumor or severe epilepsy. The experimental film, which looks like Saran wrap, rests on the brain’s surface and detects the electrical activity of nerve cells below. It’s designed to help surgeons remove diseased tissue while preserving important functions like language and memory. “This will enable us to do a better job,” says Dr. Ahmed Raslan, a neurosurgeon at Oregon Health and Science University who helped develop the film. The technology is similar in concept to sensor grids already used in brain surgery. But the resolution is 100 times higher, says Shadi Dayeh, an engineer at the University of California, San Diego, who is leading the development effort. In addition to aiding surgery, the film should offer researchers a much clearer view of the neural activity responsible for functions including movement, speech, sensation, and even thought. “We have these complex circuits in our brains,” says John Ngai, who directs the BRAIN Initiative at the National Institutes of Health, which has funded much of the film’s development. “This will give us a better understanding of how they work.” Mapping an ailing brain The film is intended to improve a process called functional brain mapping, which is often used when a person needs surgery to remove a brain tumor or tissue causing severe epileptic seizures. © 2024 npr
Keyword: Brain imaging; Epilepsy
Link ID: 29357 - Posted: 06.13.2024
Hannah Devlin Science correspondent A 10-minute brain scan could detect dementia several years before people develop noticeable symptoms, a study suggests. Scientists used a scan of “resting” brain activity to identify whether people would go on to develop dementia, with an estimated 80% accuracy up to nine years before people received a diagnosis. If the findings were confirmed in a larger cohort, the scan could become a routine procedure in memory clinics, scientists said. “We’ve known for a long time that the function of the brain starts to change many years before you get dementia symptoms,” said Prof Charles Marshall, who led the work at Queen Mary University of London. “This could help us to be more precise at identifying those changes using an MRI scan that you could do on any NHS scanner.” The research comes as a new generation of Alzheimer’s drugs are on the horizon. The UK’s Medicines and Healthcare products Regulatory Agency (MHRA) is assessing lecanemab, made by Eisai and Biogen, and donanemab, made by Eli Lilly, and both drugs are widely expected to be licensed this year. “Predicting who is going to get dementia in the future will be vital for developing treatments that can prevent the irreversible loss of brain cells that causes the symptoms of dementia,” Marshall said. The researchers used functional MRI (fMRI) scans from 1,100 UK Biobank volunteers to detect changes in the brain’s “default mode network” (DMN). The scan measures correlations in brain activity between different regions while the volunteer lies still, not doing any particular task. The network, which reflects how effectively different regions are communicating with each other, is known to be particularly vulnerable to Alzheimer’s disease. © 2024 Guardian News & Media Limited
Keyword: Alzheimers; Brain imaging
Link ID: 29349 - Posted: 06.08.2024
By Gemma Conroy Researchers have developed biodegradable, wireless sensors that can monitor changes in the brain following a head injury or cancer treatment, without invasive surgery. In rats and pigs, the soft sensors performed just as well as conventional wired sensors for up to a month after being injected under the skull. The gel-based sensors measure key health markers, including temperature, pH and pressure. “It is quite likely this technology will be useful for people in medical settings,” says study co-author Yueying Yang, a biomedical engineer at Huazhong University of Science and Technology (HUST) in Wuhan, China. The findings were published today in Nature1. “It’s a very comprehensive study,” says Christopher Reiche, who develops implantable microdevices at the University of Utah in Salt Lake City. For years, scientists have been developing brain sensors that can be implanted inside the skull. But many of these devices rely on wires to transmit data to clinicians. The wires are difficult to insert and remove, and create openings in the skin for viruses and bacteria to enter the body. Wireless sensors offer a solution to this problem, but are thwarted by their limited communication range and relatively large size. Developing sensors that can access and monitor the brain is “extremely difficult”, says Omid Kavehei, a biomedical engineer who specializes in neurotechnology at the University of Sydney in Australia. To overcome these challenges, Yang and her colleagues created a set of 2-millimetre cube-shaped sensors out of hydrogel, a soft, flexible material that’s often used in tissue regeneration and drug delivery. The gel sensors change shape under different temperatures, pressures and pH conditions, and respond to vibrations caused by variations in blood flow in the brain. When the sensors are implanted under the skull and scanned with an ultrasound probe — a tool that is already used to image the human brain in clinics — these changes are detectable in the form of ultrasonic waves that pass through the skull. The tiny gel-cubes completely dissolve in saline solution after around four months, and begin to break down in the brain after five weeks. © 2024 Springer Nature Limited
Keyword: Brain Injury/Concussion; Brain imaging
Link ID: 29346 - Posted: 06.06.2024
By Rebecca Horne The drawings and photographs of Santiago Ramón y Cajal are familiar to any neuroscientist—and probably anyone even remotely interested in the field. Most people who take a cursory look at his iconic images might assume that he created them using only direct observation. But that’s not the case, according to a paper published in March 2024 by Dawn Hunter, visual artist and associate professor of art at the University of South Carolina, and her colleagues. For instance, the Golgi-stained tissue Ramón y Cajal drew contained neurons that were cut in half—so he painstakingly reconstructed the cells by drawing from elements in multiple slides. And he also fleshed out his illustrations using educated guesses and classical drawing principles, such as contrast and occlusion. In this way, Ramón y Cajal’s art training was essential to his research, Hunter says. She came across Ramón y Cajal’s drawings while creating illustrations for a neuroscience textbook. “The first time I saw his work, out of pure inspiration, I decided to draw it,” she says. “It was in those moments of drawing that I realized his process was more profound and conceptually layered than merely retracing pencil lines with ink. Examining Ramón y Cajal’s work through the act of drawing is a more active experience than viewing his work as a gallery visitor or in a textbook.” In 2015, Hunter installed her drawings and paintings alongside original Ramón y Cajal works in an ongoing exhibition at the U.S. National Institutes of Health (NIH). That effort led to a Fulbright fellowship to Spain in 2017, providing her access to the Legado Cajal archives at the Instituto Cajal National Archives, which contain thousands of Ramón y Cajal artifacts. Hunter spoke to The Transmitter about her research in Spain and her realizations about how Ramón y Cajal worked as an artist and as a scientist. The Transmitter: What do you think your work contributes that is new? Dawn Hunter: It spells out the connection to [Ramón y Cajal’s] art training. There are some things that to me as a painter are obvious to zero in on that nobody’s really talked about. For example, Ramón y Cajal’s copying of the Renaissance painter Rafael’s entire portfolio. That in itself is a profound thing. © 2024 Simons Foundation
Keyword: Brain imaging
Link ID: 29338 - Posted: 06.04.2024