Chapter 17. Learning and Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1421

Nicola Davis The eternal sunshine of a spotless mind has come one step closer, say researchers working on methods to erase memories of fear. The latest study, carried out in mice, unpicks why certain sounds can stir alarming memories, and reveals a new approach to wiping such memories from the brain. The researchers say the findings could be used to either weaken or strengthen particular memories while leaving others unchanged. That, they say, could potentially be used to help those with cognitive decline or post-traumatic stress disorder by removing fearful memories while retaining useful ones, such as the sound of a dog’s bark. “We can use same approach to selectively manipulate only the pathological fear memory while preserving all other adaptive fear memories which are necessary for our daily lives,” said Jun-Hyeong Cho, co-author of the research from the University of California, Riverside. The research is the latest in a string of studies looking at ways to erase unpleasant memories, with previous work by scientists exploring techniques ranging from brain scans and AI to the use of drugs. Published in the journal Neuron by Cho and his colleague Woong Bin Kim, the research reveals how the team used genetically modified mice to examine the pathways between the area of the brain involved in processing a particular sound and the area involved in emotional memories, known as the amygdala. “These mice are special in that we can label or tag specific pathways that convey certain signals to the amygdala, so that we can identify which pathways are really modified as the mice learn to fear a particular sound,” said Cho. “It is like a bundle of phone lines,” he added. “Each phone line conveys certain auditory information to the amygdala.” © 2017 Guardian News and Media Limited

Keyword: Emotions; Learning & Memory
Link ID: 23974 - Posted: 08.18.2017

By WILLIAM GRIMES Marian C. Diamond, a neuroscientist who overturned long-held beliefs by showing that environmental factors can change the structure of the brain and that the brain continues to develop throughout one’s life, died on July 25 at her home in Oakland, Calif. She was 90. Her son Richard Diamond confirmed the death. Dr. Diamond’s most celebrated study was of the preserved brain of Albert Einstein, in the 1980s, but it was her work two decades earlier, at the University of California, Berkeley, that had the most lasting impact. Dr. Diamond was an instructor at Cornell University in the late 1950s when she read a paper in Science magazine showing that rats who navigated mazes quickly had a different brain chemistry than slower rats. They showed much higher levels of acetylcholinesterase, an enzyme that accelerates the transmission of neural signals. “What a thrill I had when my mind jumped immediately to the question, ‘I wonder if the anatomy of these brains would also show a difference in learning ability?’ ” Dr. Diamond wrote in an autobiographical essay for the Society for Neuroscience. She was able to test her theory after joining a team at Berkeley led by Mark R. Rosenzweig, one of the authors of the Science paper. To gauge the effects of environment on performance, Dr. Rosenzweig and his colleagues had begun raising rats in so-called enriched cages, outfitted with ladders and wheels, in the company of other rats. The rats in a control group were raised alone in bare cages. © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 23966 - Posted: 08.17.2017

By Stephen Smith, Playing first-person shooter video games causes some users to lose grey matter in a part of their brain associated with the memory of past events and experiences, a new study by two Montreal researchers concludes. Gregory West, an associate professor of psychology at the Université de Montréal, says the neuroimaging study, published Tuesday in the journal Molecular Psychiatry, is the first to find conclusive evidence of grey matter loss in a key part of the brain as a direct result of computer interaction. "A few studies have been published that show video games could have a positive impact on the brain, namely positive associations between action video games, first-person shooter games, and visual attention and motor control skills," West told CBC News. "To date, no one has shown that human-computer interactions could have negative impacts on the brain — in this case the hippocampal memory system." The four-year study by West and Véronique Bohbot, an associate professor of psychiatry at McGill University, looked at the impact of action video games on the hippocampus, the part of the brain that plays a critical role in spatial memory and the ability to recollect past events and experiences. The neuroimaging study's participants were all healthy 18- to 30-year-olds with no history of playing video games. Brain scans conducted on the participants before and after the experiment looked for differences in the hippocampus between players who favour spatial memory strategies and so-called response learners — that is, players whose way of navigating a game favours a part of the brain called the caudate nucleus, which helps us to form habits. ©2017 CBC/Radio-Canada.

Keyword: Learning & Memory
Link ID: 23938 - Posted: 08.09.2017

By Ben Guarino A sleeping brain can form fresh memories, according to a team of neuroscientists. The researchers played complex sounds to people while they were sleeping, and afterward the sleepers could recognize those sounds when they were awake. The idea that humans can learn while asleep, a concept sometimes called hypnopedia, has a long and odd history. It hit a particularly strange note in 1927, when New York inventor A. B. Saliger debuted the Psycho-phone. He billed the device as an “automatic suggestion machine.” The Psycho-phone was a phonograph connected to a clock. It played wax cylinder records, which Saliger made and sold. The records had names like “Life Extension,” “Normal Weight” or “Mating.” That last one went: “I desire a mate. I radiate love … My conversation is interesting. My company is delightful. I have a strong sex appeal.” Thousands of sleepers bought the devices, Saliger told the New Yorker in 1933. (Those included Hollywood actors, he said, though he declined to name names.) Despite his enthusiasm for the machine — Saliger himself dozed off to “Inspiration” and “Health” — the device was a bust. But the idea that we can learn while unconscious holds more merit than gizmos named Psycho-phone suggest. In the new study, published Tuesday in the journal Nature Communications, neuroscientists demonstrated that it is possible to teach acoustic lessons to sleeping people. © 1996-2017 The Washington Post

Keyword: Sleep; Learning & Memory
Link ID: 23936 - Posted: 08.09.2017

By JOHN SCHWARTZ The studio for what is arguably the world’s most successful online course is tucked into a corner of Barb and Phil Oakley’s basement, a converted TV room that smells faintly of cat urine. (At the end of every video session, the Oakleys pin up the green fabric that serves as the backdrop so Fluffy doesn’t ruin it.) This is where they put together “Learning How to Learn,” taken by more than 1.8 million students from 200 countries, the most ever on Coursera. The course provides practical advice on tackling daunting subjects and on beating procrastination, and the lessons engagingly blend neuroscience and common sense. Dr. Oakley, an engineering professor at Oakland University in Rochester, Mich., created the class with Terrence Sejnowski, a neuroscientist at the Salk Institute for Biological Studies, and with the University of California, San Diego. Prestigious universities have spent millions and employ hundreds of professionally trained videographers, editors and producers to create their massive open online courses, known as MOOCs. The Oakleys put together their studio with equipment that cost $5,000. They figured out what to buy by Googling “how to set up a green screen studio” and “how to set up studio lighting.” Mr. Oakley runs the camera and teleprompter. She does most of the editing. The course is free ($49 for a certificate of completion — Coursera won’t divulge how many finish). “It’s actually not rocket science,” said Dr. Oakley — but she’s careful where she says that these days. When she spoke at Harvard in 2015, she said, “the hackles went up”; she crossed her arms sternly by way of grim illustration. This is home-brew, not Harvard. And it has worked. Spectacularly. The Oakleys never could have predicted their success. Many of the early sessions had to be trashed. “I looked like a deer in the headlights,” Dr. Oakley said. She would flub her lines and moan, “I just can’t do this.” Her husband would say, “Come on. We’re going to have lunch, and we’re going to come right back to this.” But he confessed to having had doubts, too. “We were in the basement, worrying, ‘Is anybody even going to look at this?’” © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 23917 - Posted: 08.05.2017

By Stefania De Vito, Sergio Della Sala On Saturday, December 4, 1926, a green Morris Cowley stood abandoned in a roadside ditch near the city of Guildford, England. The car belonged to the renowned author Agatha Christie, who had apparently disappeared without a trace. But 11 days later she turned up in a hotel in Harrogate, a spa town in Yorkshire about 240 miles north of Guildford. Christie was unable to explain what had transpired during the intervening time period; nor is this mysterious episode mentioned in her autobiography. Unlike those in her many books, this mystery remains unsolved. Is it possible that Christie suffered from what is called retrograde amnesia as a result of an automobile accident, and was no longer capable of remembering the event? Was she, by disappearing, perhaps exacting revenge on her unfaithful husband? Or was this just a clever public relations ploy aimed at promoting her latest novel? The drama began in April 1926, when Christie’s mother died. According to Christie’s biographer Janet Morgan, the death hit her very hard. At the time her husband, Col. Archibald Christie, known as Archie, was on a business trip to Spain. On returning, he informed his psychologically fragile wife that he had fallen in love with a woman named Nancy Neele. For awhile the Christies stayed together for their daughter’s sake, even moving together to Styles, her house in Sunningdale, Berkshire. All the while, however, Archie maintained his affair with Nancy. © 2017 Scientific American

Keyword: Learning & Memory
Link ID: 23911 - Posted: 08.03.2017

By Harrison Smith Marian Diamond, a pathbreaking neuroscientist whose research — including a study of Albert Einstein’s preserved brain — showed that the body’s three-pound seat of consciousness was a dynamic structure of beautiful complexity, capable of development even in old age, died July 25 at an assisted-living community in Oakland, Calif. She was 90. A daughter, Ann Diamond, confirmed her death but did not know the cause. Dr. Diamond, a professor emerita of integrative biology at the University of California at Berkeley, was for decades known on campus as the woman with the hat box. Inside the container, decorated on the outside with a floral print and carried by a bright blue string, was a preserved human brain. It was the crucial prop for a lesson she spent a half century teaching: that the brain was, as she once wrote, “the most complex mass of protoplasm on this earth and, perhaps, in our galaxy.” Dr. Diamond was considered a foundational figure in modern neuroscience. Crucially, she provided the first hard evidence demonstrating the brain’s plasticity — its ability to develop, to grow, even in adulthood. “In doing so,” her colleague George Brooks said in a statement, “she shattered the old paradigm of understanding the brain as a static and unchangeable entity that simply degenerated as we age.” Her breakthrough occurred in the early 1960s, when — building on the work of psychologist Donald O. Hebb — she began studying the brains of lab rats. Rats that were raised alone, in small and desolate cages, had more trouble navigating a maze than did rats that were raised in “enriched” cages, with toys and rat playmates. © 1996-2017 The Washington Post

Keyword: Learning & Memory
Link ID: 23898 - Posted: 08.01.2017

By CADE METZ SAN FRANCISCO — Dawn Jewell recently treated a patient haunted by a car crash. The patient had developed acute anxiety over the cross streets where the crash occurred, unable to drive a route that carried so many painful memories. So Dr. Jewell, a psychologist in Colorado, treated the patient through a technique called exposure therapy, providing emotional guidance as they revisited the intersection together. But they did not physically return to the site. They revisited it through virtual reality. Dr. Jewell is among a handful of psychologists testing a new service from a Silicon Valley start-up called Limbix that offers exposure therapy through Daydream View, the Google headset that works in tandem with a smartphone. “It provides exposure in a way that patients feel safe,” she said. “We can go to a location together, and the patient can tell me what they’re feeling and what they’re thinking.” The service recreates outdoor locations by tapping into another Google product, Street View, a vast online database of photos that delivers panoramic scenes of roadways and other locations around the world. Using these virtual street scenes, Dr. Jewell has treated a second patient who struggled with anxiety after being injured by another person outside a local building. The service is also designed to provide treatment in other ways, like taking patients to the top of a virtual skyscraper so they can face a fear of heights or to a virtual bar so they can address an alcohol addiction. Backed by the venture capital firm Sequoia Capital, Limbix is less than a year old. The creators of its new service, including its chief executive and co-founder, Benjamin Lewis, worked in the seminal virtual reality efforts at Google and Facebook. © 2017 The New York Times Company

Keyword: Learning & Memory; Emotions
Link ID: 23897 - Posted: 07.31.2017

By Robert Sanders, Media relations Marian Cleeves Diamond, one of the founders of modern neuroscience who was the first to show that the brain can change with experience and improve with enrichment, and who discovered evidence of this in the brain of Albert Einstein, died July 25 at the age of 90 in Oakland. A professor emerita of integrative biology at the University of California, Berkeley, Diamond achieved celebrity in 1984 when she examined preserved slices of Einstein’s brain, finding that he had more support cells in the brain than average. Her main claim to fame, however, came from work on rats, in which she showed that an enriched environment — toys and companions — changed the anatomy of the brain. The implication was that the brains of all animals, including humans, benefit from an enriched environment, and that impoverished environments can lower the capacity to learn. “Her research demonstrated the impact of enrichment on brain development — a simple but powerful new understanding that has literally changed the world, from how we think about ourselves to how we raise our children,” said UC Berkeley colleague George Brooks, a professor of integrative biology. “Dr. Diamond showed anatomically, for the first time, what we now call plasticity of the brain. In doing so she shattered the old paradigm of understanding the brain as a static and unchangeable entity that simply degenerated as we age. ” Her results were initially resisted by some neuroscientists. At one meeting, she later recalled, a man stood up after her talk and said loudly, “Young lady, that brain cannot change!” © 2017 UC Regents

Keyword: Learning & Memory
Link ID: 23896 - Posted: 07.31.2017

Jon Hamilton The human brain knows what it knows. And so, it appears, does a rat brain. Rats have shown that they have the ability to monitor the strength of their own memories, researchers from Providence College reported this month in the journal Animal Cognition. Brain scientists call this sort of ability metacognition. It's a concept that became famous in 2002, when then Secretary of Defense Donald Rumsfeld explained to reporters: There are known knowns. There are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. Rumsfeld wasn't talking about rats. But he could have been, says Michael Beran, a comparative psychologist and associate professor at Georgia State University who was not part of the research. The new study of rats offers "consistent and clear evidence that they have these glimmerings of metacognitive monitoring," Beran says. The finding suggests an ancient evolutionary path that eventually led to humans' highly developed ability to monitor their own thoughts. It also suggests that rats could be valuable animal models for studying diseases like Alzheimer's, which erode metacognition. The study focused on a type of metacognition called metamemory. It's something we depend on to get through the day, says Victoria Templer, the study's lead author and an assistant professor in the psychology department at Providence College. © 2017 npr

Keyword: Learning & Memory
Link ID: 23895 - Posted: 07.29.2017

By Sam Wong Students who take Adderall to improve their test scores may get a slight benefit, but it’s mainly a placebo effect. The drug Adderall is a combination of the stimulants amphetamine and dextroamphetamine, and is used to treat attention deficit hyperactivity disorder (ADHD). But it’s growing in popularity as a study drug in the US, where around a third of college students are thought to try using prescription stimulants for non-medical reasons. But does it work? Rachel Fargason, a psychiatrist at the University of Alabama, Birmingham, says the idea of stimulants as cognitive enhancers didn’t tally with her experience of patients who were diagnosed incorrectly. “If they didn’t have ADHD, the stimulants generally didn’t help them cognitively,” she says. To investigate further, Fargason’s team set up a trial in 32 people between the ages of 19 and 30, none of whom had ADHD. Each participant took a batch of cognitive tests four times. On two of these occasions they were given 10 milligrams of Adderall, while they were given a placebo the other times. With each treatment, they were once told they were getting medication, and once told they were getting a placebo. © Copyright New Scientist Ltd.

Keyword: ADHD; Drug Abuse
Link ID: 23858 - Posted: 07.21.2017

Susan Milius Ravens have passed what may be their toughest tests yet of powers that, at least on a good day, let people and other apes plan ahead. Lab-dwelling common ravens (Corvus corax) in Sweden at least matched the performance of nonhuman apes and young children in peculiar tests of advanced planning ability. The birds faced such challenges as selecting a rock useless at the moment but likely to be useful for working a puzzle box and getting food later. Ravens also reached apelike levels of self-control, picking a tool instead of a ho-hum treat when the tool would eventually allow them to get a fabulous bit of kibble 17 hours later, Mathias Osvath and Can Kabadayi of Lund University in Sweden report in the July 14 Science. “The insight we get from the experiment is that [ravens] can plan for the future outside behaviors observed in the wild,” Markus Böckle, of the University of Cambridge, said in an e-mail. Böckle, who has studied ravens, coauthored a commentary in the same issue of Science. In the wild, ravens cache some of their food, but that apparent foresight could be more of a specific adaptation that evolved with diet instead of as some broader power of planning. The Lund tests, based on experiments with apes, tried to challenge ravens in less natural ways. The researchers say the birds aren’t considered much of a tool-using species in nature, nor do they trade for food. “The study for the first time in any animal shows that future planning can be used in behaviors it was not originally selected for” in evolution, Böckle says. © Society for Science & the Public 2000 - 2017.

Keyword: Intelligence; Evolution
Link ID: 23835 - Posted: 07.14.2017

By Ryan Cross Whether caused by a car accident that slams your head into the dashboard or repeated blows to your cranium from high-contact sports, traumatic brain injury can be permanent. There are no drugs to reverse the cognitive decline and memory loss, and any surgical interventions must be carried out within hours to be effective, according to the current medical wisdom. But a compound previously used to enhance memory in mice may offer hope: Rodents who took it up to a month after a concussion had memory capabilities similar to those that had never been injured. The study “offers a glimmer of hope for our traumatic brain injury patients,” says Cesario Borlongan, a neuroscientist who studies brain aging and repair at the University of South Florida in Tampa. Borlongan, who reviewed the new paper, notes that its findings are especially important in the clinic, where most rehabilitation focuses on improving motor—not cognitive—function. Traumatic brain injuries, which cause cell death and inflammation in the brain, affect 2 million Americans each year. But the condition is difficult to study, in part because every fall, concussion, or blow to the head is different. Some result in bleeding and swelling, which must be treated immediately by drilling into the skull to relieve pressure. But under the microscope, even less severe cases appear to trigger an “integrated stress response,” which throws protein synthesis in neurons out of whack and may make long-term memory formation difficult. © 2017 American Association for the Advancement of Science.

Keyword: Learning & Memory; Brain Injury/Concussion
Link ID: 23825 - Posted: 07.11.2017

By Jennifer Oullette Are brain-training games any better at improving your ability to think, remember and focus than regular computer games? Possibly not, if the latest study is anything to go by. Joseph Kable at the University of Pennsylvania and his colleagues have tested the popular Luminosity brain-training program from Lumos Labs in San Francisco, California, against other computer games and found no evidence that it is any better at improving your thinking skills. Brain-training is a booming market. It’s based on the premise that our brains change in response to learning challenges. Unlike computer games designed purely for entertainment, brain-training games are meant to be adaptive, adjusting challenge levels in response to a player’s changing performance. The thinking is that this should improve a player’s memory, attention, focus and multitasking skills. But there are questions over whether brain-training platforms can enhance cognitive function in a way that is meaningful for wider life. Last year, Lumos Labs paid $2 million to settle a charge from the US Federal Trade Commission for false advertising. Advertising campaigns had claimed that the company’s memory and attention games could reduce the effects of age-related dementia, and stave off Alzheimer’s disease. Most studies on the effects of brain-training games have been small and had mixed results. For this study, Kable and his colleagues recruited 128 young healthy adults for a randomised controlled trial. © Copyright New Scientist Ltd.

Keyword: Learning & Memory; Alzheimers
Link ID: 23821 - Posted: 07.11.2017

By Diana Kwon By blocking specific enzymes, researchers were able to selectively remove memories stored in the neurons of Aplysia, a sea slug. These findings, published last week (June 22) in Current Biology, demonstrate that distinct memories stored in connections to a single nerve cell can be manipulated separately. “We were able to reverse long-term changes in synaptic strength at synapses known to contribute to different forms of memories,” study coauthor Samuel Schacher, a neuroscientist at Columbia University, told Motherboard. By stimulating multiple Aplysia sensory neurons that make connections with to the same motor neuron, Schacher and colleagues induced associative memory, which involves learning the relationship between two previously unrelated items (a new acquaintance’s name, for example), and non-associative memory, where recollections are unrelated to a specific event. The team measured the strength of the synaptic connections between the sensory and motor neurons and discovered that distinct forms of an enzyme, protein kinase M (PKM), played a role in developing the changes linked to the two types of memory. Selectively blocking these molecules, the researchers found, allowed them to remove the memories of their choice. Molecules associated with memory have been discovered in the past. For example, in a 2006 Science study, another team of researchers was able to erase memories in mice by blocking a related molecule, PKM-zeta. Subsequent papers, however, found that mice lacking this enzyme had no problem forming memories. © 1986-2017 The Scientist

Keyword: Learning & Memory
Link ID: 23791 - Posted: 06.30.2017

People with higher IQs are less likely to die before the age of 79. That’s according to a study of over 65,000 people born in Scotland in 1936. Each of the people in the study took an intelligence test at the age of 11, and their health was then followed for 68 years, until the end of 2015. When Ian Deary, of the University of Edinburgh, UK, and his team analysed data from the study, they found that a higher test score in childhood was linked to a 28 per cent lower risk of death from respiratory disease, a 25 per cent reduced risk of coronary heart disease, and a 24 per cent lower risk of death from stroke. These people were also less likely to die from injuries, digestive diseases, and dementia – even when factors like socio-economic status were taken into account. Deary’s team say there are several theories for why more intelligent people live longer, such as people with higher IQs being more likely to look after their health and less likely to smoke. They also tend to do more exercise and seek medical attention when ill. “I’m hoping it means that if we can find out what smart people do and copy them, then we have a chance of a slightly longer and healthier life,” says Dreary. But there’s evidence genetics is involved too. A recent study suggests that very rare genetic variants can play an important role in lowering intelligence, and that these may also be likely to impair a person’s health. Journal reference: British Medical Journal, DOI: 10.1136/bmj.j2708 © Copyright New Scientist Ltd.

Keyword: Intelligence
Link ID: 23786 - Posted: 06.29.2017

By Anil Ananthaswamy To understand human consciousness, we need to know why it exists in the first place. New experimental evidence suggests it may have evolved to help us learn and adapt to changing circumstances far more rapidly and effectively. We used to think consciousness was a uniquely human trait, but neuroscientists now believe we share it with many other animals, including mammals, birds and octopuses. While plants and arguably some animals like jellyfish seem able to respond to the world around them without any conscious awareness, many other animals consciously experience and perceive their environment. Read more: Why be conscious – The improbable origins of our unique mind In the 19th century, Thomas Henry Huxley and others argued that such consciousness is an “epiphenomenon” – a side effect of the workings of the brain that has no causal influence, the way a steam whistle has no effect on the way a steam engine works. More recently, neuroscientists have suggested that consciousness enables us to integrate information from different senses or keep such information active for long enough in the brain that we can experience the sight and sound of car passing by, for example, as one unified perception, even though sound and light travel at different speeds. © Copyright New Scientist Ltd.

Keyword: Consciousness; Learning & Memory
Link ID: 23785 - Posted: 06.28.2017

/ By Rod McCullom Facebook has problem — a very significant problem — with the violent and gruesome content which has quickly found its way, in numerous instances, onto the social network and its Facebook Live feature, which was introduced to American users in January 2016. The disturbing litany of murders, suicides and assaults have already become macabre technological milestones. These include Robert Godwin Sr., the 74-year-old father of nine and grandfather of 14 who was selected by a gunman at random and then murdered in a video posted to Facebook in mid-April. One week later, a man in Thailand streamed the murder of his 11-month old daughter on Facebook Live before taking his own life. The beating and torture of an 18-year-old man with intellectual and development disabilities was live-streamed on the service in January, and the tragic shooting death of two-year-old Lavontay White Jr. followed a month later on Valentine’s Day. “At least 45 instances of violence — shootings, rapes, murders, child abuse, torture, suicides, and attempted suicides — have been broadcast via Live [since] December 2015,” Buzzfeed’s Alex Kantrowitz reported this month. “That’s an average rate of about two instances per month.” Copyright 2017 Undark

Keyword: Aggression; Robotics
Link ID: 23778 - Posted: 06.27.2017

Rebecca Hersher The first problem with the airplane bathroom was its location. It was March. Greg O'Brien and his wife, Mary Catherine, were flying back to Boston from Los Angeles, sitting in economy seats in the middle of the plane. "We're halfway, probably over Chicago," Greg remembers, "and Mary Catherine said, 'Go to the bathroom.' " "It just sounded like my mother," Greg says. So I said 'no.' " Mary Catherine persisted, urging her husband of 40 years to use the restroom. People started looking at them. "It was kind of funny," says Greg. Mary Catherine was more alarmed than amused. Greg has early-onset Alzheimer's, which makes it increasingly hard for him to keep track of thoughts and feelings over the course of minutes or even seconds. It's easy to get into a situation where you feel like you need to use the bathroom, but then forget. And they had already been on the plane for hours. Finally, Greg started toward the restroom at the back of the plane, only to find the aisle was blocked by an attendant serving drinks. Mary Catherine gestured to him. "Use the one in first class!" At that point, on top of the mild anxiety most people feel when they slip into first class to use the restroom, Greg was feeling overwhelmed by the geography of the plane. He pulled back the curtain dividing the seating sections. "This flight attendant looks at me like she has no use for me. I just said 'Look, I really have to go the bathroom,' and she says 'OK, just go.' " © 2017 npr

Keyword: Alzheimers; Learning & Memory
Link ID: 23772 - Posted: 06.26.2017

Andrea Hsu Intuitively, we tend to think of forgetting as failure, as something gone wrong in our ability to remember. Now, Canadian neuroscientists with the University of Toronto are challenging that notion. In a paper published Wednesday in the journal Neuron, they review the current research into the neurobiology of forgetting and hypothesize that our brains purposefully work to forget information in order to help us live our lives. I spoke with Blake Richards, one of the co-authors of the paper, who applies artificial intelligence theories to his study of how the brain learns. He says that in the AI world, there's something called over-fitting — a phenomenon in which a machine stores too much information, hindering its ability to behave intelligently. He hopes that greater understanding of how our brains decide what to keep and what to forget will lead to better AI systems that are able to interact with the world and make decisions in the way that we do. We hear a lot about the study of memory. Is the study of forgetting a relatively new thing? Within psychology, there's a long history of work examining forgetting. So that's not a new field of study. But the neuroscientists — those of us who work with the biology of how the brain works — have not really examined forgetting much in the past. Generally, the focus for the last few decades in neuroscience has been the question of how do the cells in our brains change themselves in order to store information and remember things. It's only been in the last few years that there's been an upswing in scientific studies looking at what's happening inside our brains at the cellular level that might actually produce forgetting. © 2017 npr

Keyword: Learning & Memory
Link ID: 23771 - Posted: 06.24.2017