Chapter 8. General Principles of Sensory Processing, Touch, and Pain

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1419

By Jim Robbins Tens of thousands of bar-tailed godwits are taking advantage of favorable winds this month and next for their annual migration from the mud flats and muskeg of southern Alaska, south across the vast expanse of the Pacific Ocean, to the beaches of New Zealand and eastern Australia. They are making their journey of more than 7,000 miles by flapping night and day, without stopping to eat, drink or rest. “The more I learn, the more amazing I find them,” said Theunis Piersma, a professor of global flyway ecology at the University of Groningen in the Netherlands and an expert in the endurance physiology of migratory birds. “They are a total evolutionary success.” The godwit’s epic flight — the longest nonstop migration of a land bird in the world — lasts from eight to 10 days and nights through pounding rain, high winds and other perils. It is so extreme, and so far beyond what researchers knew about long-distance bird migration, that it has required new investigations. In a recent paper, a group of researchers said the arduous journeys challenge “underlying assumptions of bird physiology, orientation, and behavior,” and listed 11 questions posed by such migrations. Dr. Piersma called the pursuit of answers to these questions “the new ornithology.” The extraordinary nature of what bar-tailed and other migrating birds accomplish has been revealed in the last 15 years or so with improvements to tracking technology, which has given researchers the ability to follow individual birds in real time and in a detailed way along the full length of their journey. “You know where a bird is almost to the meter, you know how high it is, you know what it’s doing, you know its wing-beat frequency,” Dr. Piersma said. “It’s opened a whole new world.” The known distance record for a godwit migration is 13,000 kilometers, or nearly 8,080 miles. © 2022 The New York Times Company

Keyword: Animal Migration; Sleep
Link ID: 28484 - Posted: 09.21.2022

By Anil Oza Sitting alone in the cockpit of a small biplane, Martin Wikelski listens for the pings of a machine by his side. The sonic beacons help the ecologist stalk death’s-head hawkmoths (Acherontia atropos) fluttering across the dark skies above Konstanz, Germany — about 80 kilometers north of the Swiss Alps. The moths, nicknamed for the skull-and-crossbones pattern on their backs, migrate thousands of kilometers between northern Africa and the Alps during the spring and fall. Many migratory insects go where the wind takes them, says Ring Carde, an entomologist at the University of California, Riverside who is not a member of Wikelski’s team. Death’s-head hawkmoths appear to be anything but typical. “When I follow them with a plane, I use very little gas,” says Wikelski, of the Max Planck Institute of Animal Behavior in Munich. “That shows me that they are supposedly choosing directions or areas that are probably supported by a little bit of updraft.” A new analysis of data collected from 14 death’s-head hawkmoths suggest that these insects indeed pilot themselves, possibly relying in part on an internal compass attuned to Earth’s magnetic field. The moths not only fly along a straight path, they also stay the course even when winds change, Wikelski and colleagues report August 11 in Science. The findings could help predict how the moths’ flight paths might shift as the globe continues warming, Wikelski says. Like many animals, death’s-head hawkmoths will probably move north in search of cooler temperatures, he suspects. To keep tabs on the moths, Wikelski’s team glued radio transmitters to their backs, which is easier to do than one might expect. “Death’s-head hawkmoths are totally cool,” Wikelski says. They’re also huge. Weighing as much as three jellybeans, the moths are the largest in Europe. That makes attaching the tiny tags a cinch, though the moths don’t like it very much. “They talk to you, they shout at you a little bit,” he says. © Society for Science & the Public 2000–2022.

Keyword: Animal Migration
Link ID: 28451 - Posted: 08.27.2022

By Betsy Mason 08.05.2022 What is special about humans that sets us apart from other animals? Less than some of us would like to believe. As scientists peer more deeply into the lives of other animals, they’re finding that our fellow creatures are far more emotionally, socially, and cognitively complex than we typically give them credit for. A deluge of innovative research is revealing that behavior we would call intelligent if humans did it can be found in virtually every corner of the animal kingdom. Already this year scientists have shown that Goffin’s cockatoos can use multiple tools at once to solve a problem, Australian Magpies will cooperate to remove tracking devices harnessed to them by scientists, and a small brown songbird can sometimes keep time better than the average professional musician — and that’s just among birds. This pileup of fascinating findings may be at least partly responsible for an increase in people’s interest in the lives of other animals — a trend that’s reflected in an apparent uptick in books and television shows on the topic, as well as in legislation concerning other species. Public sentiment in part pushed the National Institutes of Health to stop supporting biomedical research on chimpanzees in 2015. In Canada, an outcry led to a ban in 2019 on keeping cetaceans like dolphins and orcas in captivity. And earlier this year, the United Kingdom passed an animal welfare bill that officially recognizes that many animals are sentient beings capable of suffering, including invertebrates like octopuses and lobsters. Many of these efforts are motivated by human empathy for animals we’ve come to see as intelligent, feeling beings like us, such as chimpanzees and dolphins. But how can we extend that concern to the millions of other species that share the planet with us?

Keyword: Vision; Hearing
Link ID: 28447 - Posted: 08.27.2022

By Chantel Prat I remember all too well that day early in the pandemic when we first received the “stay at home” order. My attitude quickly shifted from feeling like I got a “snow day” to feeling like a bird in a cage. Being a person who is both extraverted by nature and not one who enjoys being told what to do, the transition was pretty rough. But you know what? I got used to it. Though the pandemic undoubtedly affected some of your lives more than others, I know it touched every one of us in ways we will never forget. And now, after two years and counting, I am positive that every person reading this is fundamentally different from when the pandemic started. Because that’s how our brains work. They are molded by our experiences so that we can fit into all kinds of different situations—even the decidedly suboptimal ones. MOTHER TONGUE: Neuroscientist and psychologist Chantel Prat says the languages we speak play a huge role in shaping our minds and brains. Photo by Shaya Bendix Lyon. This is actually one of the most human things about all of our brains. In fact, according to some contemporary views of human evolution, our ancestors underwent a “cognitive revolution” precisely because they were forced to adapt. Based on evidence suggesting that the size of our ancestors’ brains increased following periods of extreme weather instability, one popular explanation for our remarkable flexibility is that the hominids who were not able to adapt to environmental changes didn’t survive. In other words, the brains of modern humans were selected for their ability to learn and adapt to changing environments. But one of the major costs of this remarkable flexibility is that humans are born without any significant preconceived notions about how things work. If you’ve ever had a conversation with someone about an event you both participated in that left you feeling like one of you was delusional because your stories were so different, you might have a hint about how much your experiences have shaped the way you understand the world around you. This can be insanely frustrating because—let’s face it—our own brains are really convincing when they construct our personal version of reality. Remember the Dress? Though it can feel like gaslighting when someone has a different reality from yours, it’s also entirely possible that you both were reporting your version of the truth. At the end of the day, the way people remember a story reflects differences in the way they experienced the original event. The scientific explanation for this boils down to differences in perspective. © 2022 NautilusThink Inc,

Keyword: Attention; Vision
Link ID: 28427 - Posted: 08.11.2022

By Betsy Mason What is special about humans that sets us apart from other animals? Less than some of us would like to believe. As scientists peer more deeply into the lives of other animals, they’re finding that our fellow creatures are far more emotionally, socially, and cognitively complex than we typically give them credit for. A deluge of innovative research is revealing that behavior we would call intelligent if humans did it can be found in virtually every corner of the animal kingdom. Already this year scientists have shown that Goffin’s cockatoos can use multiple tools at once to solve a problem, Australian Magpies will cooperate to remove tracking devices harnessed to them by scientists, and a small brown songbird can sometimes keep time better than the average professional musician — and that’s just among birds. This pileup of fascinating findings may be at least partly responsible for an increase in people’s interest in the lives of other animals — a trend that’s reflected in an apparent uptick in books and television shows on the topic, as well as in legislation concerning other species. Public sentiment in part pushed the National Institutes of Health to stop supporting biomedical research on chimpanzees in 2015. In Canada, an outcry led to a ban in 2019 on keeping cetaceans like dolphins and orcas in captivity. And earlier this year, the United Kingdom passed an animal welfare bill that officially recognizes that many animals are sentient beings capable of suffering, including invertebrates like octopuses and lobsters. Many of these efforts are motivated by human empathy for animals we’ve come to see as intelligent, feeling beings like us, such as chimpanzees and dolphins. But how can we extend that concern to the millions of other species that share the planet with us?

Keyword: Vision; Hearing
Link ID: 28420 - Posted: 08.06.2022

R. Douglas Fields Neuroscientists, being interested in how brains work, naturally focus on neurons, the cells that can convey elements of sense and thought to each other via electrical impulses. But equally worthy of study is a substance that’s between them — a viscous coating on the outside of these neurons. Roughly equivalent to the cartilage in our noses and joints, the stuff clings like a fishing net to some of our neurons, inspiring the name perineuronal nets (PNNs). They’re composed of long chains of sugar molecules attached to a protein scaffolding, and they hold neurons in place, preventing them from sprouting and making new connections. Given this ability, this little-known neural coating provides answers to some of the most puzzling questions about the brain: Why do young brains absorb new information so easily? Why are the fearful memories that accompany post-traumatic stress disorder (PTSD) so difficult to forget? Why is it so hard to stop drinking after becoming dependent on alcohol? And according to new research from the neuroscientist Arkady Khoutorsky and his colleagues at McGill University, we now know that PNNs also explain why pain can develop and persist so long after a nerve injury. Neural plasticity is the ability of neural networks to change in response to experiences in life or to repair themselves after brain injury. Such opportunities for effortless change are known as critical periods when they occur early in life. Consider how easily babies pick up language, but how difficult it is to learn a foreign language as an adult. In a way, this is what we’d want: After the intricate neural networks that allow us to understand our native language are formed, it’s important for them to be locked down, so the networks remain relatively undisturbed for the rest of our lives. All Rights Reserved © 2022

Keyword: Pain & Touch; Glia
Link ID: 28415 - Posted: 07.30.2022

ByVirginia Morell We swat bees to avoid painful stings, but do they feel the pain we inflict? A new study suggests they do, a possible clue that they and other insects have sentience—the ability to be aware of their feelings. “It’s an impressive piece of work” with important implications, says Jonathan Birch, a philosopher and expert on animal sentience at the London School of Economics who was not involved with the paper. If the study holds up, he says, “the world contains far more sentient beings than we ever realized.” Previous research has shown honey bees and bumble bees are intelligent, innovative, creatures. They understand the concept of zero, can do simple math, and distinguish among human faces (and probably bee faces, too). They’re usually optimistic when successfully foraging, but can become depressed if momentarily trapped by a predatory spider. Even when a bee escapes a spider, “her demeanor changes; for days after, she’s scared of every flower,” says Lars Chittka, a cognitive scientist at Queen Mary University of London whose lab carried out that study as well as the new research. “They were experiencing an emotional state.” To find out whether these emotions include pain, Chittka and colleagues looked at one of the criteria commonly used for defining pain in animals: “motivational trade-offs.” People will endure the pain of a dentist’s drill for the longer term benefits of healthy teeth, for example. Similarly, hermit crabs will leave preferred shells to escape an electric shock only when given a particularly high jolt—an experiment that demonstrated crabs can tell the difference between weak and strong painful stimuli, and decide how much pain is worth enduring. That suggests crabs do feel pain and don’t simply respond reflexively to an unpleasant stimulus. Partly as a result of that study, crabs (and other crustaceans, including lobsters and crayfish) are recognized as sentient under U.K. law. © 2022 American Association for the Advancement of Science

Keyword: Pain & Touch; Evolution
Link ID: 28410 - Posted: 07.30.2022

By Meghan Rosen A flexible electronic implant could one day make pain management a lot more chill. Created from materials that dissolve in the body, the device encircles nerves with an evaporative cooler. Implanted in rats, the cooler blocked pain signals from zipping up to the brain, bioengineer John Rogers and colleagues report in the July 1 Science. Though far from ready for human use, a future version could potentially let “patients dial up or down the pain relief they need at any given moment,” says Rogers, of Northwestern University in Evanston, Ill. Scientists already knew that low temperatures can numb nerves in the body. Think of frozen fingers in the winter, Rogers says. But mimicking this phenomenon with an electronic implant isn’t easy. Nerves are fragile, so scientists need something that gently hugs the tissues. And an ideal implant would be absorbed by the body, so doctors wouldn’t have to remove it. Made from water-soluble materials, the team’s device features a soft cuff that wraps around a nerve like toilet paper on a roll. Tiny channels snake down its rubbery length. When liquid coolant that’s pumped through the channels evaporates, the process draws heat from the underlying nerve. A temperature sensor helps scientists hit the sweet spot — cold enough to block pain but not too cold to damage the nerve. The researchers wrapped the implant around a nerve in rats and tested how they responded to having a paw poked. With the nerve cooler switched on, scientists could apply about seven times as much pressure as usual before the animals pulled their paws away. That’s a sign that the rats’ senses had grown sluggish, Rogers says. © Society for Science & the Public 2000–2022.

Keyword: Pain & Touch
Link ID: 28387 - Posted: 07.05.2022

Sofia Quaglia When they are in the deep, dark ocean, seals use their whiskers to track down their prey, a study has confirmed after observing the sea mammals in their natural habitat. It’s hard for light to penetrate the gloom of the ocean’s depths, and animals have come up with a variety of adaptations in order to live and hunt there. Whales and dolphins, for example, use echolocation – the art of sending out clicky noises into the water and listening to their echo as they bounce off possible prey, to locate them. But deep-diving seals who don’t have those same acoustic projectors must have evolutionarily learned to deploy another sensory technique. Scientists have long hypothesised that the secret weapons are their long, cat-like whiskers, conducting over 20 years of experiments with artificial whiskers or captive seals blindfolded in a pool, given the difficulties of directly observing the hunters in the tenebrous depths of the ocean. Now a study may have confirmed the hypothesis, according to Taiki Adachi, assistant project scientist of University of California, Santa Cruz, and one of the lead authors of the study published in Proceedings of the National Academy of Science. Adachi and his team positioned small video cameras with infrared night-vision on the left cheek, lower jaw, back and head of five free-ranging northern elephant seals, the Mirounga angustirostris, in Año Nuevo state park in California. They recorded a total of approximately nine and a half hours of deep sea footage during their seasonal migration. By analysing the videos the scientists noted that diving seals held back their whiskers for the initial part of their dives and, and once they reached a depth suitable for foraging, they rhythmically whisked their whiskers back and forth, hoping to sense any vibration caused by the slightest water movements of swimming prey. © 2022 Guardian News & Media Limited o

Keyword: Pain & Touch
Link ID: 28368 - Posted: 06.14.2022

By Maria Temming The Terminator may be one step closer to reality. Researchers at the University of Tokyo have built a robotic finger that, much like Arnold Schwarzenegger’s titular cyborg assassin, is covered in living human skin. The goal is to someday build robots that look like real people — albeit for more altruistic applications. Super realistic-looking robots could more seamlessly interact with humans in medical care and service industries, say biohybrid engineer Shoji Takeuchi and his colleagues June 9 in Matter. (Whether cyborgs masked in living tissue would be more congenial or creepy is probably in the eye of the beholder.) To cover the finger in skin, Takeuchi and colleagues submerged the robotic digit in a blend of collagen and human skin cells called dermal fibroblasts. The mixture settled into a base layer of skin, or dermis, covering the finger. The team then poured a liquid containing human keratinocyte cells onto the finger, which formed an outer skin layer, or epidermis. After two weeks, skin covering the finger measured a few millimeters thick — comparable to the thickness of human skin. The lab-made skin was strong and stretchy enough to withstand the robotic finger bending. It could also heal itself: When researchers made a small cut on the robotic finger and covered it with a collagen bandage, the skin’s fibroblast cells merged the bandage with the rest of the skin within a week. Researchers at the University of Tokyo covered this robotic finger in living human skin to pave the way for ultrarealistic cyborgs. “This is very interesting work and an important step forward in the field,” says Ritu Raman, an MIT engineer who also builds machines with living components. “Biological materials are appealing because they can dynamically sense and adapt to their environments.” For instance, she’d like to see a future version of the living robot skin embedded with nerve cells to make robots more aware of their surroundings. © Society for Science & the Public 2000–2022.

Keyword: Pain & Touch; Robotics
Link ID: 28365 - Posted: 06.11.2022

By Eiman Azim, Sliman Bensmaia, Lee E. Miller, Chris Versteeg Imagine you are playing the guitar. You’re seated, supporting the instrument’s weight across your lap. One hand strums; the other presses strings against the guitar’s neck to play chords. Your vision tracks sheet music on a page, and your hearing lets you listen to the sound. In addition, two other senses make playing this instrument possible. One of them, touch, tells you about your interactions with the guitar. Another, proprioception, tells you about your arms’ and hands’ positions and movements as you play. Together, these two capacities combine into what scientists call somatosensation, or body perception. Our skin and muscles have millions of sensors that contribute to somatosensation. Yet our brain does not become overwhelmed by the barrage of these inputs—or from any of our other senses, for that matter. You’re not distracted by the pinch of your shoes or the tug of the guitar strap as you play; you focus only on the sensory inputs that matter. The brain expertly enhances some signals and filters out others so that we can ignore distractions and focus on the most important details. How does the brain accomplish these feats of focus? In recent research at Northwestern University, the University of Chicago and the Salk Institute for Biological Studies in La Jolla, Calif., we have illuminated a new answer to this question. Through several studies, we have discovered that a small, largely ignored structure at the very bottom of the brain stem plays a critical role in the brain’s selection of sensory signals. The area is called the cuneate nucleus, or CN. Our research on the CN not only changes the scientific understanding of sensory processing, but it might also lay the groundwork for medical interventions to restore sensation in patients with injury or disease. © 2022 Scientific American

Keyword: Attention
Link ID: 28330 - Posted: 05.18.2022

By Gina Kolata The very treatments often used to soothe pain in the lower back, which the Centers for Disease Control and Prevention says is the most common type of pain, might cause it to last longer, according to a new study. Managing pain with steroids and nonsteroidal anti-inflammatory drugs, like ibuprofen, can actually turn a wrenched back into a chronic condition, the study found. Some medical experts urged caution in interpreting the results too broadly. The study did not use the gold standard for medical research, which would be a clinical trial in which people with back pain would be randomly assigned to take a nonsteroidal anti-inflammatory drug or a placebo and followed to see who developed chronic pain. Instead, it involved observations of patients, an animal study and an analysis of patients in a large database. “It’s intriguing but requires further study,” said Dr. Steven J. Atlas, director of primary care practice-based research and quality improvement at Massachusetts General Hospital. Dr. Bruce M. Vrooman, a pain specialist at Dartmouth Hitchcock Medical Center in New Hampshire, agreed, but also called the study “impressive in its scope” and said that if the results hold up in a clinical trial, it could “force reconsideration of how we treat acute pain.” Dr. Thomas Buchheit, director of the regenerative pain therapies program at Duke, had a different view. “People overuse the term ‘paradigm shift’, but this is absolutely a paradigm shift,” Dr. Buchheit said. “There is this unspoken rule: If it hurts, take an anti-inflammatory, and if it still hurts, put a steroid on it,” he added. “But,” he said, the study shows that “we have to think of healing and not suppression of inflammation.” Guidelines from professional medical societies already say that people with back pain should start with nondrug treatments like exercise, physical therapy, heat or massage. Those measures turn out to be as effective as pain-suppressing drugs, without the same side effects. © 2022 The New York Times Company

Keyword: Pain & Touch
Link ID: 28328 - Posted: 05.18.2022

Perspective by Susan Berger As I faced a prophylactic double mastectomy in hopes of averting cancer, I had many questions for my surgeons — one of which was about pain. I was stunned when both my breast surgeon and plastic surgeon said that a nerve block would leave me pain-free for about three days, after which the worst of the pain would be over. Pectoralis nerve (PECS) blocks were developed to provide analgesia or pain relief for chest surgeries, including breast surgery. That is what happened. I went through the mastectomy Dec. 1 after learning I had the PALB2 gene mutation that carried a sharply elevated risk of breast cancer as well as a higher risk of ovarian and pancreatic cancers. I also had my fallopian tubes and ovaries removed in July. I had learned about the gene mutation in April 2021, when one of my daughters found out she was a carrier. As a 24-year breast cancer survivor and longtime health reporter, I was astonished that I had heard nothing about this mutation. I researched it and wrote “This Breast Cancer Gene Is Less Well Known, but Nearly as Dangerous” in August. After the double mastectomy, I also wrote about it for The Washington Post. Just as my surgeons at NorthShore University HealthSystem predicted, I was released from the hospital the same day as my surgery and remarkably pain-free. I took one Tramadol (a step down from stronger medications containing codeine) when I got home — only because it was suggested I take one pill. As I recovered, I only took Advil and Tylenol. The opioid epidemic is a major public health issue in the United States and nerve blocks could be a solution. According to a study published in the Journal of Clinical Medicine in 2021, 1 in 20 surgical patients will continue to use opioids beyond 90 days. “There is no association with magnitude of surgery, major versus minor, and the strongest predictor of continued use is surgical exposure,” the study states. © 1996-2022 The Washington Post

Keyword: Pain & Touch; Drug Abuse
Link ID: 28316 - Posted: 05.07.2022

By Jim Robbins TUCSON, Ariz. — In a small room in a building at the Arizona-Sonora Desert Museum, the invertebrate keeper, Emma Califf, lifts up a rock in a plastic box. “This is one of our desert hairies,” she said, exposing a three-inch-long scorpion, its tail arced over its back. “The largest scorpion in North America.” This captive hairy, along with a swarm of inch-long bark scorpions in another box, and two dozen rattlesnakes of varying species and sub- species across the hall, are kept here for the coin of the realm: their venom. Efforts to tease apart the vast swarm of proteins in venom — a field called venomics — have burgeoned in recent years, and the growing catalog of compounds has led to a number of drug discoveries. As the components of these natural toxins continue to be assayed by evolving technologies, the number of promising molecules is also growing. “A century ago we thought venom had three or four components, and now we know just one type of venom can have thousands,” said Leslie V. Boyer, a professor emeritus of pathology at the University of Arizona. “Things are accelerating because a small number of very good laboratories have been pumping out information that everyone else can now use to make discoveries.” She added, “There’s a pharmacopoeia out there waiting to be explored.” It is a striking case of modern-day scientific alchemy: The most highly evolved of natural poisons on the planet are creating a number of effective medicines with the potential for many more. One of the most promising venom-derived drugs to date comes from the deadly Fraser Island funnel web spider of Australia, which halts cell death after a heart attack. Blood flow to the heart is reduced after a heart attack, which makes the cell environment more acidic and leads to cell death. The drug, a protein called Hi1A, is scheduled for clinical trials next year. In the lab, it was tested on the cells of beating human hearts. It was found to block their ability to sense acid, “so the death message is blocked, cell death is reduced, and we see improved heart cell survival,” said Nathan Palpant, a researcher at the University of Queensland in Australia who helped make the discovery. © 2022 The New York Times Company

Keyword: Pain & Touch; Neurotoxins
Link ID: 28315 - Posted: 05.04.2022

Ellen Phiddian Tricyclic antidepressants have long been known to have more than one purpose: among other things, they can alleviate pain – particularly nerve pain. Recent research has finally established why these tricyclic antidepressants (TCAs) can help with nerve pain. The discovery could lead to the rapid development of pain relief medications that don’t include the side effects of TCAs. Nerve pain comes from a variety of sources – including cancer, diabetes, trauma, multiple sclerosis, and infections. These treatments could address a range of different types of nerve pain. It turns out the drugs inhibit a key protein in our nerves, called an N-type calcium channel. These N-type calcium channels are shaped like tiny gates, allowing positively charged calcium ions, or Ca2+, through them. This helps with the transmission of pain signals in the body. Researchers have long been keen to find things that “close” the gate of these calcium channels because that’s likely to have analgesic effects. Adjunct Professor Peter Duggan, a researcher with the CSIRO and senior collaborator on the project, says that he and his colleagues initially stumbled across TCAs from a very different direction: they were investigating the toxins of venomous marine cone snails. “A few of the components in that toxin are actually painkillers and they block these calcium ion channels very, very effectively,” says Duggan. The cone snail toxin has the potential to be very dangerous to people, as well as needing to be administered in an impractical way, so the researchers started looking at similar compounds that might have some of the same properties.

Keyword: Pain & Touch; Depression
Link ID: 28312 - Posted: 05.04.2022

By Helen Ouyang After an hour-and-a-half bus ride last November, Julia Monterroso arrived at a white Art Deco building in West Hollywood, just opposite a Chanel store and the Ivy, a restaurant famous for its celebrity sightings. Monterroso was there to see Brennan Spiegel, a gastroenterologist and researcher at Cedars-Sinai who runs one of the largest academic medical initiatives studying virtual reality as a health therapy. He started the program in 2015 after the hospital received a million-dollar donation from an investment banker on its board. Spiegel saw Monterroso in his clinic the week before and thought he might be able to help alleviate her symptoms. Monterroso is 55 and petite, with youthful bangs and hair clipped back by tiny jeweled barrettes. Eighteen months earlier, pain seized her lower abdomen and never went away. After undergoing back surgery in September to treat a herniated disc — and after the constant ache in her abdomen worsened — she had to stop working as a housecleaner. Eventually, following a series of tests that failed to reveal any clear cause, she landed in Spiegel’s office. She rated her pain an 8 on a 10-point scale, with 10 being the most severe. Chronic pain is generally defined as pain that has lasted three months or longer. It is one of the leading causes of long-term disability in the world. By some measures, 50 million Americans live with chronic pain, in part because the power of medicine to relieve pain remains woefully inadequate. As Daniel Clauw, who runs the Chronic Pain and Fatigue Research Center at the University of Michigan, put it in a 2019 lecture, there isn’t “any drug in any chronic-pain state that works in better than one out of three people.” He went on to say that nonpharmacological therapy should instead be “front and center in managing chronic pain — rather than opioids, or for that matter, any of our drugs.” Virtual reality is emerging as an unlikely tool for solving this intractable problem. The V.R. segment in health care alone, which according to some estimates is already valued at billions of dollars, is expected to grow by multiples of that in the next few years, with researchers seeing potential for it to help with everything from anxiety and depression to rehabilitation after strokes to surgeons strategizing where they will cut and stitch. In November, the Food and Drug Administration gave authorization for the first V.R. product to be marketed for the treatment of chronic pain. © 2022 The New York Times Company

Keyword: Pain & Touch; Vision
Link ID: 28304 - Posted: 04.27.2022

By Brittany Shammas and Timothy Bella William Husel, an Ohio doctor who was accused of killing 14 patients with what prosecutors described as “wildly excessive” doses of fentanyl between 2015 and 2018, was acquitted on all counts of murder Wednesday, concluding one of the most significant murder cases of its kind against a health-care professional. Husel, a onetime physician of the year trained at the Cleveland Clinic, faced one count of murder for each of the 14 critically ill patients he was accused of killing. The jury deliberated for seven days before finding him not guilty on all 14 counts in what was one of the largest murder trials in Ohio history. He had been charged with causing or hastening their deaths amid a period of lax oversight of fentanyl at Mount Carmel West, a Catholic hospital in Columbus. Husel would have faced life in prison with just one guilty verdict. While the synthetic opioid is significantly more powerful than morphine and has wreaked havoc on American streets, it can provide pain relief in medical settings that is crucial to end-of-life care. The alleged victims in the Ohio case suffered critical medical conditions including overdoses, cancer, strokes and internal bleeding. Prosecutors acknowledged that all were being kept alive on ventilators and that many of them were dying. “In truth, William Husel was an innocent man, and thank goodness the justice system prevailed,” Jose Baez, one of Husel’s defense attorneys, told reporters. The 46-year-old’s acquittal came after a two-month trial that triggered a debate on end-of-life medical care. Husel and Baez argued in the trial that the doctor offered comfort care for dying patients and was not trying to kill them. They pointed out that the doctor’s actions did not occur in secret — nurses were the ones to administer the doses — and alleged that hospital officials made Husel the villain after realizing the systemic failures at play. The fallout over the allegations at Mount Carmel West had repercussions: the firing of 23 employees; the resignation of the hospital’s chief executive, chief clinical officer and chief pharmacy officer; and Medicare and Medicaid funding for the institution was put in jeopardy. © 1996-2022 The Washington Post

Keyword: Pain & Touch; Drug Abuse
Link ID: 28297 - Posted: 04.23.2022

ByKelly Servick An experimental pain drug that may offer an alternative to opioids has shown promise in two small clinical trials for acute pain, its developer announced today. Vertex Pharmaceuticals’s compound, called VX-548, outperformed a placebo in phase 2 trials for two types of postsurgical pain, the company said in a press release. The results pave the way for larger trials that could lead to regulatory approval. “This is a major advance in the effort to supersede opioids,” says John Wood, a neurobiologist at University College London who has studied the cellular channel that VX-548 targets. “These results are terrific, and the side effect profile is very good.” Opioids are powerful pain relievers, but they can cause side effects including slowed breathing, and they come with the potential for addiction. An epidemic of overdose deaths has prompted a hunt for safer alternatives. The new trials grew out of research into sodium channels on the surface of pain-sensing neurons, which let them fire electrical signals. One such channel, called Nav1.8, is crucial to relaying pain signals to the spinal cord from nerves throughout the body. People with genetic mutations that make Nav1.8 hyperactive can suffer pain even in the absence of injury. But relieving pain by blocking either Nav1.8 or another channel, Nav1.7, has proved difficult. One issue is their structure closely resembles those of other sodium channels, which regulate vital functions in the heart, muscles, and brain. To be safe, a compound needs to target the channel of interest and not accidentally target these other, critical channels. Vertex has spent years developing highly specific Nav1.8-blocking drugs, but it has abandoned previous candidates before they reached pivotal phase 3 trials. One drug, known as VX-150, succeeded in three phase 2 clinical studies but never advanced to larger ones, in part because its high dose might be impractical for clinical use. “We wanted to have higher potency,” explains Vertex Chief Scientific Officer David Altshuler. © 2022 American Association for the Advancement of Science.

Keyword: Pain & Touch
Link ID: 28265 - Posted: 04.02.2022

By Lisa Sanders, M.D. The 51-year-old man sat at his desk preparing for his next online meeting when he suddenly became aware of a familiar stiffness and exhaustion. Had he slept badly? Or was this the beginning of one of his strange episodes? As the symptoms worsened, he had his answer. He knew that when he started to feel this way, the only recourse was to get into bed before he got any weaker. As he made his way slowly down the hall, his legs felt heavy, as if he were wearing ankle weights. Just lifting them was real work. He passed his wife’s home office without a word. She knew just from looking at him that he would probably have to spend the rest of the day in bed. For much of their 30-year marriage, he had these strange spells; he would suddenly feel exhausted and weak and have to lie down. He couldn’t work. He was a software engineer, and any mental exertion was too much for him. Once the fatigue fully set in — maybe after the first hour or so — he couldn’t walk, couldn’t stand, couldn’t even sit up. It was as if his body was totally out of gas, worse than how it felt when he ran a marathon. He would lie in a dark room, too weak to even hold up a book and too tired to think. But by the next morning, he would usually be fine, brimming with energy and enthusiasm, like normal. It was so strange. After more than 20 years, they both had come to expect these episodes. For most of that time, the spells were infrequent, maybe once a month. But recently they became more frequent. The monthly episodes became weekly, then a couple of times a week. They often came, as they did that morning, out of nowhere. Just before leaving his office, he sent an email to the woman he was to meet online. Sorry, he wrote, I’m not feeling well. Could we reschedule? Seeing a Psychiatrist Over the years the man saw many doctors. They had their theories, but so far none panned out. A few were convinced that he had periodic paralysis, a disorder sometimes linked to thyroid disease, where patients become temporarily paralyzed by too much or too little potassium in the bloodstream. But his potassium was always normal, even during these episodes. © 2022 The New York Times Company

Keyword: Pain & Touch
Link ID: 28263 - Posted: 04.02.2022

Gabino Iglesias The Man Who Tasted Words is a deep dive into the world of our senses — one that explores the way they shape our reality and what happens when something malfunctions or functions differently. Despite the complicated science permeating the narrative and the plethora of medical explanations, the book is also part memoir. And because of the way the author, Dr. Guy Leschziner, treats his patients — and how he presents the ways their conditions affect their lives and those of the people around them — it is also a very humane, heartfelt book. We rely on vision, hearing, taste, smell, and touch to not only perceive the reality around us but also to help us navigate it by constantly processing stimuli, predicting what will happen based on previous experiences, and filling the gaps of everything we miss as we construct it. However, that truth, the "reality" we see, taste, hear, touch, and smell, isn't actually there; our brains, with the help of our nervous system continuously build it for us. But sometimes our brains or nervous system have a glitch, and that has affects reality. The Man Who Tasted Words carefully looks at — and tries to explain — some of the most bizarre glitches. Sponsor Message "What we believe to be a precise representation of the world around us is nothing more than an illusion, layer upon layer of processing of sensory information, and the interpretation of that information according to our expectations," states Leschziner. When one of those senses doesn't work correctly, that illusion morphs in ways that significantly impact the lives of those whose nervous systems or brain work differently. Paul, for example, is a man who feels no pain. While this sounds like a great "flaw" to have, Leschziner shows it's the opposite. Pain helps humans learn "to avoid sharp or hot objects." It teaches that certain things in our environment are potentially harmful, tells us when we've had an injury and makes us protect it, and even lets us know there's an infection in our body so we can go to the doctor. © 2022 npr

Keyword: Consciousness
Link ID: 28233 - Posted: 03.11.2022