Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1021

By Laura Sanders Although it’s tricky for us humans to see, mouse feelings are written all over their furry little faces. With machine learning tools, researchers reliably spotted mice’s expressions of joy, fear, pain and other basic emotions. The results, published in the April 3 Science, provide a field guide for scientists seeking to understand how emotions such as joy, regret and empathy work in animals other than humans (SN: 11/10/16; SN: 6/9/14; SN: 12/8/11). Using machine learning to reveal mice’s expressions is “an extraordinarily exciting direction,” says Kay Tye, a neuroscientist at the Salk Institute for Biological Studies in La Jolla, Calif. The findings “lay the foundation for what I expect will be a game changer for neuroscience research on emotional states.” Neuroscientist Nadine Gogolla of the Max Planck Institute of Neurobiology in Martinsried, Germany, and colleagues gave mice experiences designed to elicit distinct emotions. Sugar water evoked pleasure, a shock to the tail triggered pain, bitter quinine water created disgust, an injection of lithium chloride evoked a nauseated malaise, and a place where shocks previously had been delivered sparked fear. For each setup, high-speed video cameras captured subtle movements in the mice’s ears, noses, whiskers and other parts of the face. Observers can generally see that something is happening on the mouse’s face, Gogolla says. But translating those subtle clues into emotions is really hard, “especially for an untrained human being,” she says. © Society for Science & the Public 2000–2020

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27168 - Posted: 04.03.2020

By Monica Schoch-Spana The novel coronavirus has touched off another stealthy and growing public health crisis that calls for an equally matched emergency response. Like other pandemics and emerging disease outbreaks, COVID-19 is creating immense psychosocial disturbances. The disease involves an unfamiliar threat that is difficult to detect and challenging to distinguish from more benign illnesses. Protracted and dynamic pandemic conditions will draw out the anxiety. Things will get worse before they get better. Absent a vaccine, nonpharmaceutical interventions are the only way to prevent infections, and they dramatically upset everyday bodily habits, social interactions and economic exchanges. Recent grocery store runs are a sign of concern in the community. Personal actions to avoid infection such as stockpiling hand sanitizer also confer a sense of control over an uncertain danger. Improvements to current risk communication can alleviate widespread distress. Top elected officials and health authorities should empathize with people’s fear, normalize stress reactions, provide clear guidance on recommended health behaviors, instruct in concrete protections including those for mental health and share solidarity and resilience messages. Advertisement However, more interventions are essential because specific groups are at a higher risk of both acute and lingering emotional distress. Health care workers on the epidemic front lines face compounding stressors: the prospect of more and longer shifts, the need to improvise childcare coverage, finite supplies of personal protective equipment, fear of bringing infection home, witnessing co-workers becoming ill, and making tough allocation decisions about scarce, lifesaving resources like mechanical ventilators. © 2020 Scientific American

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 27131 - Posted: 03.21.2020

By Judson A. Brewer, M.D. Anxiety is a strange beast. As a psychiatrist, I have learned that anxiety and its close cousin, panic, are both born from fear. As a behavioral neuroscientist, I know that fear’s main evolutionary function is helping us survive. In fact, fear is the oldest survival mechanism we have. Fear helps us learn to avoid dangerous situations in the future through a process called negative reinforcement. For example, if we step out into a busy street, turn our head and see a car coming right at us, we instinctively jump back onto the safety of the sidewalk. Evolution made this really simple for us. So simple that we only need three elements in situations like this to learn: an environmental cue, a behavior and a result. In this case, walking up to a busy street cues us to look both ways before crossing. The result of not getting killed helps us remember to repeat the action again in the future. Sometime in the last million years, humans evolved a new layer on top of our more primitive survival brain, called the prefrontal cortex. Involved in creativity and planning, the prefrontal cortex helps us think and plan for the future. It predicts what will happen in the future based on past experience. If information is lacking, our prefrontal cortex lays out different scenarios about what might happen, and guesses which will be most likely. It does this by running simulations based on previous events that are most similar. Defined as “a feeling of worry, nervousness or unease, typically about an imminent event or something with an uncertain outcome,” anxiety comes up when our prefrontal cortexes don’t have enough information to accurately predict the future. We see this right now with coronavirus. Without accurate information, it is easy for our brains to spin stories of fear and dread. © 2020 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 27117 - Posted: 03.14.2020

By Michael Price Every Fourth of July, the thunderous crack of my neighbors’ fireworks is quickly followed by the wailing chorus of frightened dogs, including my own two mixed-breed pups. New research suggests Pico’s and Winnie’s sensitivity to noise, especially fireworks, is the most common form of anxiety in pet dogs. The study—the largest ever on canine temperaments—also finds that some breeds are prone to certain anxious behaviors, including aggression, separation anxiety, and fear. The results could help uncover new ways to tackle these traits. Anecdotes on dog behavior abound, but reliable scientific data are lacking, says Hannes Lohi, a canine geneticist at the University of Helsinki. That’s particularly an issue when looking at problem behaviors that can put dogs at higher risk of being euthanized or winding up in shelters. So Lohi and colleagues contacted Finnish dog breed clubs and reached out to dog owners around the world through social media, asking owners to rate their dogs’ behavior on seven different anxiety-related traits: noise sensitivity, general fear, fear of heights and surfaces (like reflective tiles), inattention, compulsive behaviors (like relentless chewing or tail chasing), aggression, and separation anxiety. They received more than 13,700 responses representing 264 breeds. To make reliable comparisons, the researchers limited themselves to the 14 breeds with 200 or more surveyed dogs. © 2020 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 27099 - Posted: 03.06.2020

Douglas Heaven Human faces pop up on a screen, hundreds of them, one after another. Some have their eyes stretched wide, others show lips clenched. Some have eyes squeezed shut, cheeks lifted and mouths agape. For each one, you must answer this simple question: is this the face of someone having an orgasm or experiencing sudden pain? Psychologist Rachael Jack and her colleagues recruited 80 people to take this test as part of a study1 in 2018. The team, at the University of Glasgow, UK, enlisted participants from Western and East Asian cultures to explore a long-standing and highly charged question: do facial expressions reliably communicate emotions? Researchers have been asking people what emotions they perceive in faces for decades. They have questioned adults and children in different countries and Indigenous populations in remote parts of the world. Influential observations in the 1960s and 1970s by US psychologist Paul Ekman suggested that, around the world, humans could reliably infer emotional states from expressions on faces — implying that emotional expressions are universal2,3. These ideas stood largely unchallenged for a generation. But a new cohort of psychologists and cognitive scientists has been revisiting those data and questioning the conclusions. Many researchers now think that the picture is a lot more complicated, and that facial expressions vary widely between contexts and cultures. Jack’s study, for instance, found that although Westerners and East Asians had similar concepts of how faces display pain, they had different ideas about expressions of pleasure. © 2020 Springer Nature Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27079 - Posted: 02.27.2020

By Everyday Einstein Sabrina Stierwalt People from all cultures laugh, although we may laugh at different things. (I once interviewed for a job in the Netherlands and none of my jokes landed. I didn’t get that job.) Apes also laugh. We know this because there are scientists whose job it is to tickle animals. I’m not even kidding. What a life! Advertisement Humans start laughing as early as 3 months into life, even before we can speak. This is true even for babies who are deaf or blind. Peekaboo, it turns out, is particularly a global crowd-pleaser. And we know this because studying baby laughter is an actual job, too. So, the ubiquitous nature of laughter suggests that it must serve a purpose, but what? Why do we laugh? Here are a few scientific reasons Laughter clearly serves a social function. It is a way for us to signal to another person that we wish to connect with them. In fact, in a study of thousands of examples of laughter, the speakers in a conversation were found to be 46 percent more likely to laugh than the listeners. We’re also 30 times more likely to laugh in a group. Young children between the ages of 2.5 and 4 were found to be eight times more likely to laugh at a cartoon when they watched it with another child even though they were just as likely to report that the cartoon was funny whether alone or not. Evolutionarily speaking, this signal of connection likely played an important role in survival. Upon meeting a stranger, we want to know: What are your intentions with me? And who else are you aligned with? © 2020 Scientific American

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27029 - Posted: 02.10.2020

By Elizabeth Pennisi It’s been a bad couple of weeks for behavioral ecologist Jonathan Pruitt—the holder of one of the prestigious Canada 150 Research Chairs—and it may get a lot worse. What began with questions about data in one of Pruitt’s papers has flared into a social media–fueled scandal in the small field of animal personality research, with dozens of papers on spiders and other invertebrates being scrutinized by scores of students, postdocs, and other co-authors for problematic data. Already, two papers co-authored by Pruitt, now at McMaster University, have been retracted for data anomalies; Biology Letters is expected to expunge a third within days. And the more Pruitt’s co-authors look, the more potential data problems they find. All papers using data collected or curated by Pruitt, a highly productive researcher who specialized in social spiders, are coming under scrutiny and those in his field predict there will be many retractions. The furor has even earned a Twitter hashtag—#PruittData. Yet even one of the researchers who initially probed Pruitt’s data cautions that what has happened remains unclear. “There is no hard evidence that [Pruitt’s] data are fabricated,” says behavioral ecologists Niels Dingemanse of Ludwig Maximilian University of Munich (LMU). © 2019 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 27012 - Posted: 02.01.2020

By Theodor Schaarschmidt A 51-year-old man I will call “Mr. Pinocchio” had a strange problem. When he tried to tell a lie, he often passed out and had convulsions. In essence, he became a kind of Pinocchio, the fictional puppet whose nose grew with every fib. For the patient, the consequences were all too real: he was a high-ranking official in the European Economic Community (since replaced by the European Union), and his negotiating partners could tell immediately when he was bending the truth. His condition, a symptom of a rare form of epilepsy, was not only dangerous, it was bad for his career. Doctors at the University Hospitals of Strasbourg in France discovered that the root of the problem was a tumor about the size of a walnut. The tumor was probably increasing the excitability of a brain region involved in emotions; when Mr. Pinocchio lied, this excitability caused a structure called the amygdala to trigger seizures. Once the tumor was removed, the fits stopped, and he was able to resume his duties. The doctors, who described the case in 1993, dubbed the condition the “Pinocchio syndrome.” Mr. Pinocchio’s plight demonstrates the far-reaching consequences of even minor changes in the structure of the brain. But perhaps just as important, it shows that lying is a major component of the human behavioral repertoire; without it, we would have a hard time coping. When people speak unvarnished truth all the time—as can happen when Parkinson’s disease or certain injuries to the brain’s frontal lobe disrupt people’s ability to lie—they tend to be judged tactless and hurtful. In everyday life, we tell little white lies all the time, if only out of politeness: Your homemade pie is awesome (it’s awful). No, Grandma, you’re not interrupting anything (she is). A little bit of pretense seems to smooth out human relationships without doing lasting harm. © 2020 Scientific American

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27006 - Posted: 01.29.2020

By Jane E. Brody My husband and I were psychological opposites. I’ve always seen the glass as half-full; to him it was half-empty. That difference, research findings suggest, is likely why I pursue good health habits with a vengeance while he was far less inclined to follow the health-promoting lifestyle I advocated. I’m no cockeyed optimist, but I’ve long believed that how I eat and exercise, as well as how I view the world, can benefit my mental and physical well-being. An increasing number of recent long-term studies have linked greater optimism to a lower risk of developing cardiovascular disease and other chronic ailments and to fostering “exceptional longevity,” a category one team of researchers used for people who live to 85 and beyond. Admittedly, the relationship between optimism and better health and a longer life is still only a correlation that doesn’t prove cause and effect. But there is also now biological evidence to suggest that optimism can have a direct impact on health, which should encourage both the medical profession and individuals to do more to foster optimism as a potential health benefit. According to Dr. Alan Rozanski, one of the field’s primary researchers, “It’s never too early and it’s never too late to foster optimism. From teenagers to people in their 90s, all have better outcomes if they’re optimistic.” Dr. Rozanski is a cardiologist at Mount Sinai St. Luke’s Hospital in New York who became interested in optimism while working in a cardiac rehabilitation program early in his career. In an interview, he explained, “Many heart-attack patients who had long been sedentary would come into the gym and say ‘I can’t do that!’ But I would put them on the treadmill, start off slowly and gradually build them up. Their attitude improved, they became more confident. One woman in her 70s said her heart attack may have been the best thing that had happened to her because it transformed what she thought she could do.” © 2020 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26995 - Posted: 01.27.2020

By Laura Sanders A parasite common in cats can eliminate infected mice’s fear of felines — a brain hijack that leads to a potentially fatal attraction. But this cat-related boldness (SN: 9/18/13) isn’t the whole story. Once in the brain, the single-celled parasite Toxoplasma gondii makes mice reckless in all sorts of dangerous scenarios, researchers write January 14 in Cell Reports. Infected mice spent more time in areas that were out in the open, exposed places that uninfected mice usually avoid. Infected mice also prodded an experimenter’s hand inside a cage — an intrusion that drove uninfected mice to the other side of the cage. T. gondii–infected mice were even unfazed by an anesthetized rat, a mouse predator, the researchers from the University of Geneva and colleagues found. And infected mice spent more time than uninfected mice exploring the scents of foxes and relatively harmless guinea pigs. The extent of mice’s infections, measured by the load of parasite cysts in the brain, seemed to track with the behavior changes, the researchers report. Toxoplasma gondiiToxoplasma gondii, tweaked to glow green, was isolated from the brain of an infected mouse.Pierre-Mehdi Hammoudi, Damien Jacot The parasite needs to get into the guts of cats to sexually reproduce. Other animals can become infected by ingesting T. gondii through direct or indirect contact with cat feces. The parasite can then spread throughout the body and ultimately form cysts in the brain. People can become infected with T. gondii, though usually not as severely as mice. Some studies have hinted, however, at links between the parasite and human behaviors such as inattention and suicide, as well as mental disorders such as schizophrenia. © Society for Science & the Public 2000–2020

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26963 - Posted: 01.15.2020

Nell Greenfieldboyce Parrots can perform impressive feats of intelligence, and a new study suggests that some of these "feathered apes" may also practice acts of kindness. African grey parrots voluntarily helped a partner get a food reward by giving the other bird a valuable metal token that could be exchanged for a walnut, according to a newly published report in the journal Current Biology. "This was really surprising that they did this so spontaneously and so readily," says Désirée Brucks, a biologist at ETH Zürich in Switzerland who is interested in the evolution of altruism. Children as young as 1 seem highly motivated to help others, and scientists used to think this kind of prosocial behavior was uniquely human. More recent research has explored "helping" behavior in other species, everything from nonhuman primates to rats and bats. To see whether intelligent birds might help out a feathered pal, Brucks and Auguste von Bayern of the Max Planck Institute for Ornithology in Germany tested African grey parrots. They used parrots that had previously been trained to understand that specific tokens, in the form of small metal rings, could be traded for a food treat through an exchange window. In their experiment, this exchange window was covered up and closed on one bird's cage, making it impossible for that bird to trade. The bird had a pile of tokens in its cage but no way to use them. Meanwhile, its neighbor in an adjacent cage had an open exchange window — but no tokens for food. © 2020 npr

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26948 - Posted: 01.10.2020

By Catherine Matacic Falling in love is never easy. But do it in a foreign language, and complications pile up quickly, from your first fumbling attempts at deep expression to the inevitable quarrel to the family visit punctuated by remarks that mean so much more than you realize. Now, a study of two dozen terms related to emotion in nearly 2500 languages suggests those misunderstandings aren’t all in your head. Instead, emotional concepts like love, shame, and anger vary in meaning from culture to culture, even when we translate them into the same words. “I wish I had thought of this,” says Lisa Feldman Barrett, a neuroscientist and psychologist at Northeastern University in Boston. “It’s a very, very well-reasoned, clever approach.” People have argued about emotions since the ancient Greeks. Aristotle suggested they were essential to virtue. The stoics called them antithetical to reason. And in his “forgotten” masterpiece, The Expression of the Emotions in Man and Animals, Charles Darwin wrote that they likely had a single origin. He thought every culture the world over shared six basic emotions: happiness, sadness, fear, anger, surprise, and disgust. Since then, psychologists have looked for traces of these emotions in scores of languages. And although one common experiment, which asks participants to identify emotions from photographs of facial expressions, has led to many claims of universality, critics say an overreliance on concepts from Western, industrialized societies dooms such attempts from the start. © 2019 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 26907 - Posted: 12.21.2019

By David Brooks This has been a golden age for brain research. We now have amazing brain scans that show which networks in the brain ramp up during different activities. But this emphasis on the brain has subtly fed the illusion that thinking happens only from the neck up. It’s fed the illusion that the advanced parts of our thinking are the “rational” parts up top that try to control the more “primitive” parts down below. So it’s interesting how many scientists are now focusing on the thinking that happens not in your brain but in your gut. You have neurons spread through your innards, and there’s increasing attention on the vagus nerve, which emerges from the brain stem and wanders across the heart, lungs, kidney and gut. The vagus nerve is one of the pathways through which the body and brain talk to each other in an unconscious conversation. Much of this conversation is about how we are relating to others. Human thinking is not primarily about individual calculation, but about social engagement and cooperation. One of the leaders in this field is Stephen W. Porges of Indiana University. When you enter a new situation, Porges argues, your body reacts. Your heart rate may go up. Your blood pressure may change. Signals go up to the brain, which records the “autonomic state” you are in. Maybe you walk into a social situation that feels welcoming. Green light. Your brain and body get prepared for a friendly conversation. But maybe the person in front of you feels threatening. Yellow light. You go into fight-or-flight mode. Your body instantly changes. Your ear, for example, adjusts to hear high and low frequencies — a scream or a growl — rather than midrange frequencies, human speech. Or maybe the threat feels like a matter of life and death. Red light. Your brain and body begin to shut down. According to Porges’s “Polyvagal Theory,” the concept of safety is fundamental to our mental state. People who have experienced trauma have bodies that are highly reactive to perceived threat. They don’t like public places with loud noises. They live in fight-or-flight mode, stressed and anxious. Or, if they feel trapped and constrained, they go numb. Their voice and tone go flat. Physical reactions shape our way of seeing and being. © 2019 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26869 - Posted: 12.04.2019

Correspondent Lesley Stahl Who among us hasn't wished we could read someone else's mind, know exactly what they're thinking? Well that's impossible, of course, since our thoughts are, more than anything else, our own. Private, personal, unreachable. Or at least that's what we've always, well, thought. Advances in neuroscience have shown that, on a physical level, our thoughts are actually a vast network of neurons firing all across our brains. So if that brain activity could be identified and analyzed, could our thoughts be decoded? Could our minds be read? Well, a team of scientists at Carnegie Mellon University in Pittsburgh has spent more than a decade trying to do just that. We started our reporting on their work 10 years ago, and what they've discovered since, has drawn us back. In Carnegie Mellon's scanner room, two floors underground, a steady stream of research subjects come to have their brains and thoughts "read" in this MRI machine. It's a type of scanning called functional MRI, FMRI. That looks at what's happening inside the brain as a person thinks. Marcel Just: It's like being an astronomer when the first telescope is discovered, or being a biologist when the first microscope is-- is developed. Neuroscientist Marcel Just says this technology has made it possible for the first time to see the physical makeup of our thoughts. When we first visited Dr. Just's lab ten years ago, he and his team had conducted a study. They put people in the scanner and asked them to think about ten objects, five of them tools like screwdriver and hammer and five of them dwellings like igloo and castle, while measuring activity levels throughout their brains. The idea was to crunch the data and try to identify distinctive patterns of activity for each object. Lesley Stahl: You had them think about a screwdriver. Marcel Just: Uh-huh. Lesley Stahl: And the computer found the place in the brain where that person was thinking "screwdriver?" Marcel Just: Screwdriver isn't one place in the brain. It's many places in the brain. When you think of a screwdriver, you think about how you hold it, how you twist it, what it looks like… Lesley Stahl: And each of those functions are in different places? Marcel Just: Correct. He showed us that by dividing the brain into thousands of tiny cubes and analyzing the amount of activity in each one, his team was able to identify unique patterns for each object. © 2019 CBS Interactive Inc.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 26853 - Posted: 11.26.2019

By Eva Frederick Yellow is usually the color of happy, joyful emotions. But according to a new study, not all people associate the sunshiney shade with good vibes. To find out what factors might play a role, researchers tested a new hypothesis: What if people’s physical surroundings affect their feelings about certain colors? For instance, if someone lived in cold and rainy Finland, would they feel differently about the color yellow from someone who lived near the Sahara Desert? The researchers looked at color-emotion data from an ongoing international survey of 6625 people in 55 countries. The survey asks participants to rate 12 colors on how closely they are associated with feelings including joy, pride, fear, and shame. Yellow is not so fun in the sun The darker the shade in the below map, the higher the likelihood of people associating the color yellow with joyful emotions. Overall, people were more likely to associate yellow with joy when they lived in rainier countries that lay farther from the equator, researchers report in the Journal of Environmental Psychology. © 2019 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 10: Biological Rhythms and Sleep
Link ID: 26675 - Posted: 10.07.2019

By Olga Perepelkina, Kristina Astakhova We all remember “the dress.” An illusion like this shows that even a phenomenon as basic as color perception can be ambiguous. Emotions are much more complex entities than colors and thus can lead to even more confusion. Our perception of emotional expressions is related not only to the physical properties of a face, but also to a bunch of other factors affecting both the percipient (for example, a person's past experience, cultural background, or individual expectations) and the situation itself (the context). To test that idea, researchers at Neurodata Lab created a short test and asked more than 1,400 people from 29 countries to have a look at four pairs of photographs, or eight in total. The first image in each pair showed a woman with a certain facial expression. The second was identical to the first, except that it had an object added to it: a mascara brush, a book and glasses, a toothpick or a guitar. These objects added context. People then had to look at every image and indicate if the facial expressions looked emotional to them. Responses differed significantly between the photos with an added object and those without one. On average, people responded that the faces were “emotional” in most images without any additional context (in 3.52 out of four). After an object was added, subjects frequently changed their opinions and instead responded that emotions were present in only one about photo out of four (to be precise, it was 1.2 out of four). Emotional perception depends on context in the broadest sense of this word. The way we express ourselves nonverbally is affected by an array of factors, such as individual differences in age, gender, society or culture, and differences in various situational factors. © 2019 Scientific American

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26612 - Posted: 09.15.2019

Maanvi Singh The notion that you can smile your way to happiness is an enduring one. Back in the 1800s, Charles Darwin was among the first to come up with what modern scientists further developed into the "facial feedback hypothesis." That's the idea that smiling can make you happier and frowning can make you sadder or angrier — that changing your facial expression can intensify or even transform your mood. Dick Van Dyke sang about the phenomenon — and so did Nat King Cole. And it is still taught in psychology classes today. But researchers are now finding that this phenomenon may be more complicated than they once thought. A recent study that reviewed around 50 years of data, including the results of nearly 300 experiments testing the facial feedback theory, has found that if smiling boosts happiness, it's only by a tiny bit. "I know when I'm sad and people tell me to smile, it just makes me more angry." Nick Coles, social psychology researcher, University of Tennessee, Knoxville After crunching all the numbers, the researchers say their results suggest that if 100 people smiled — all else equal among them — only about seven might expect to feel happier than if they hadn't smiled. The study also looked at the effects of a number of other facial expressions, including scowling and frowning, and tried to more generally understand the extent to which positive facial expressions create positive emotions and negative facial expressions create negative emotions. In each case, "the effects were extremely tiny," says Nick Coles, a social psychology Ph.D. candidate at the University of Tennessee, Knoxville, who led the study. The results, published in the June issue of Psychological Bulletin, add to a debate that has been ongoing "for at least 100 years — since the dawn of psychology," Coles says. © 2019 npr

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26370 - Posted: 07.01.2019

By Kevin Arceneaux, Bert N. Bakker, Claire Gothreau, and Gijs Schumacher Science is supposed to be self-correcting. Ugly facts kill beautiful theories, to paraphrase the 19th-century biologist Thomas Huxley. But, as we learned recently, policies at the top scientific journals don’t make this easy. Our story starts in 2008, when a group of researchers published an article (here it is without a paywall) that found political conservatives have stronger physiological reactions to threatening images than liberals do. The article was published in Science, which is one of the most prestigious general science journals around. It’s the kind of journal that can make a career in academia. It was a path-breaking and provocative study. For decades, political scientists and psychologists have tried to understand the psychological roots of ideological differences. The piece published in Science offered some clues as to why liberals and conservatives differ in their worldviews. Perhaps it has to do with how the brain is wired, the researchers suggested—specifically, perhaps it’s because conservatives’ brains are more attuned to threats than liberals’. It was an exciting finding, it helped usher in a new wave of psychophysiological work in the study of politics, and it generated extensive coverage in popular media. In 2018, 10 years after the publication of the study, the findings were featured on an episode of NPR’s Hidden Brain podcast. Fast forward to 2014. All four of us were studying the physiological basis of political attitudes, two of us in Amsterdam, the Netherlands (Bakker and Schumacher at the University of Amsterdam), and two of us in Philadelphia (Arceneaux and Gothreau at Temple University). We had raised funds to create labs with expensive equipment for measuring physiological reactions, because we were excited by the possibilities that the 2008 research opened for us. © 2019 The Slate Group LLC.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26348 - Posted: 06.24.2019

Ian Sample Science editor In a project that has all the makings of a Roald Dahl classic, scientists have hit on an answer to the mystery of how man’s best friend got its puppy dog eyes. The sad, imploring expression held such power over humans during 33,000 years of canine domestication that the preference for dogs that could pull off the look steered the evolution of their facial muscles, researchers have said. The result is that dogs gradually acquired a new forehead muscle named the levator anguli oculi medialis, or LAOM, and have used it to deploy the doleful look to devastating effect ever since. “They are very powerful animals in how they capture our hearts,” said Prof Bridget Waller, the director of the Centre for Comparative and Evolutionary Psychology at the University of Portsmouth. “We pay a lot of attention to faces, they are meaningful to us, and this expression makes dogs look juvenile and sad. It induces a nurturing response. It’s a cute factor.” Puppy dog eyes are achieved by the LAOM raising the inner eyebrows, in some cases quite dramatically. The movement makes the eyes look larger and the face more babyish. Humans use different muscles to produce a similar expression when they are sad, which may explain why it brings out the caregiver in people. To investigate how the look developed in dogs, the UK-US research team acquired wolf and dog cadavers from taxidermists and US state organisations and dissected their heads to compare the facial muscles. No animals were killed for the research. © 2019 Guardian News & Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 26335 - Posted: 06.18.2019

Nicole Karlis There is no way Leonardo da Vinci could have predicted that the Mona Lisa would remain one of the most widely-debated works of art in modern day — thanks in no small part to her intriguing expression. Indeed, as one of the most famous paintings in the world, Mona Lisa's facial expression continues to beguile both commoners and academics. A 2017 study published in the journal Scientific Reports (part of the network of Nature's journals) proclaimed that Mona Lisa’s smile did indeed depict genuine happiness, according to the study's subjects who compared it with subtly manipulated facial expressions. Now, a new study published in the neuroscience journal Cortex says that her smile is non-genuine. In other words, she's faking it. The three neuroscience and cognition researchers who penned the article fixated on the asymmetry of Mona Lisa’s smile. Some historical theories suggest the facial asymmetry is due to the loss of the subject's anterior teeth, while others have speculated it could have been related to Bell’s Palsy. The Cortex article's authors note that as the upper part of her face does not appear to be active, it is possible to interpret her smile as “non-genuine.” This would relate to theories of emotion neuropsychology, which is the characterization of the behavioral modifications that follow a neurological condition. © 2018 Salon Media Group, Inc

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 7: Vision: From Eye to Brain
Link ID: 26300 - Posted: 06.05.2019