Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 983

By Carl Zimmer How generous is an ape? It’s a hard question for scientists to tackle, but the answer could tell us a lot about ourselves. People in every culture can be generous, whether they’re loaning a cellphone to an office mate or sharing an antelope haunch with a hungry family. While it’s easy to dwell on our capacity for war and violence, scientists see our generosity as a remarkable feature of our species. “One of the things that stands out about humans is how helpful we are,” said Christopher Krupenye, a primate behavior researcher at the University of St. Andrews in Scotland. This generosity may have been crucial to the survival of our early ancestors who lived in small bands of hunter-gatherers. “When our own attempts to find food are unsuccessful, we rely on others to share food with us — otherwise we starve,” said Jan Engelmann, a researcher at Göttingen University. To understand the origin of this impulse — known as prosociality — a number of researchers have turned to our closest living relatives. For example, a new study involving bonobo apes suggests that the roots of human generosity run deep, but only came into full flower over the course of the evolution of our species. Roughly seven million years ago, our lineage split from the ancestors of chimpanzees and their cousin species, bonobos. Chimpanzees and bonobos share a common ancestor that lived about two million years ago. These two closely related species of apes look almost identical to the untrained eye. But they have evolved some intriguing differences in their behavior, including which objects — food or tools — prompt them to behave with generosity. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25442 - Posted: 09.12.2018

Jules Howard And so, the killer whale known as J35 is back to her old self. She is no longer carrying the dead body of a calf she held aloft in the water for more than two weeks. Her so-called tour of grief has ended, to the relief of a global audience who had become wrapped up in this heart-wrenching animal drama. Great news, right? Sure. Yet I have a strange feeling in my stomach. It’s a familiar one. The pedant in me is stirring, eager to get us to consider what we know about animals and what we don’t – and may never – know about their lives. It isn’t my aim to belittle J35 and her apparent pain, far from it. It’s rather to make sure we don’t accidentally dilute the emotions of a killer whale by making it all about us. First, I have form on this issue. A while ago, I published a book called Death on Earth and episodes of apparent animal grief was one of the areas upon which I focused. During my research, I drew up a list of all sorts of anecdotes about animals labelled (by respectable researchers) as evidence of “mourning” and “grief”. These included police dogs pawing at their master’s coffins, macaques resuscitating fallen loved ones and turtles appearing on beaches to mourn at makeshift graves made by humans for the turtles that didn’t make it. I was told by members of the public on Twitter about dogs going off food after losing kennel-mates and horses burying dead stablemates in hay and I was reminded regularly of those BBC documentaries featuring elephants in apparent (but I would argue edited) tears at the loss of a loved one. © 2018 Guardian News and Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25343 - Posted: 08.17.2018

Laura Sanders Anxiety can run in families. Key differences in how an anxious monkey’s brain operates can be passed along too, a large study suggests. By finding a pattern of brain activity linked to anxiety, and by tracing it through generations of monkeys, the results bring researchers closer to understanding the brain characteristics involved in severe anxiety — and how these characteristics can be inherited. “We can trace how anxiety falls through the family tree,” which parents pass it on to which children, how cousins are affected and so on, says study coauthor Ned Kalin of the University of Wisconsin School of Medicine and Public Health in Madison. The newly identified brain activity pattern takes the same path through the family tree as the anxious behavior, Kalin and colleagues report July 30 in the Journal of Neuroscience. Kalin and colleagues studied rhesus monkeys that, as youngsters, displayed an anxious temperament. Human children with this trait are often painfully shy, and are at much higher risk of going on to develop anxiety and depression than other children, studies have shown. Monkeys can behave similarly. Researchers measured anxious temperament by subjecting young monkeys to a stressful situation: An intruder entered their cage and showed only his or her profile to the monkey. “The monkey isn’t sure what is going to happen, because it can’t see the individual’s eyes,” Kalin says. Faced with this potential threat, monkeys freeze and fall silent. By measuring the degree of this response, as well as levels of the stress hormone cortisol, the researchers figured out which monkeys had anxious temperaments. |© Society for Science & the Public 2000 - 2018

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 25274 - Posted: 07.31.2018

by Maggie Fox A mind-controlling parasite found in cat feces may give people the courage they need to become entrepreneurs, researchers reported Tuesday. They found that people who have been infected with the Toxoplasma gondii parasite are more likely to major in business and to have started their own businesses than non-infected people. The parasite, which makes rodents unafraid of cats, may be reducing the fear of failure in people, Stefanie Johnson of the University of Colorado and colleagues said. They haven’t actually shown that. But toxoplasma does get into the brain, and it’s been linked to a variety of mental effects in mice and people alike. And fear of failure could be a good thing, Johnson said. Toxoplasmosis has been linked to a greater risk of "car accidents, mental illness, neuroticism, drug abuse and suicide,” Johnson and her colleagues wrote in their paper, published in the Proceedings of the Royal Society B. It might be affecting message-carrying chemicals in the brain called neurotransmitters, or hormones such as testosterone, they wrote. In particular, scientists have studied whether the parasite might increase risk-taking behavior. © 2018 NBC UNIVERSAL

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25260 - Posted: 07.27.2018

By Karen Weintraub No one can talk to a horse, of course. But a new study set out to find whether horses are trying to tell us something when they snort. In the study, published Wednesday in the journal PLOS ONE, researchers in France determined that the snorting exhale that horses often make may be a sign of a positive emotion. Mathilde Stomp, a doctoral student at the University of Rennes who led the research, said she set out to understand whether the snort could be used as an measure of the horse’s mood. She and her collaborators recorded 560 snorts among 48 privately owned and riding school horses. All the horses snorted — as little as once or as often as 13 times an hour. The horses mainly snorted during calm and relaxing activities, and those that spent more time out of doors snorted the most, the study found. When a horse was snorting, the researchers also recorded the animal’s ear position; forward-pointing ears are a known signal of a positive internal state, Ms. Stomp said. Researchers also developed a composite score of each animal’s stress level when snorting, with measurements including how much time a horse spent facing the wall in its stall, as well as its level of interaction with or aggressive behavior toward the researcher. Ms. Stomp said her work was motivated by the desire to help people better understand and meet the needs of their animals. “We think that with this acoustic indicator, maybe they will be able to test when their horses are in good conditions or not,” she said. Not all horses may be snorting in contentment, however, but rather in discomfort or simply acting on a physical need, akin to humans blowing their noses. Sue McDonnell, a specialist in equine physiology and behavior at the University of Pennsylvania School of Veterinary Medicine, said not enough is known to draw conclusions about a horse’s emotional state from its snorts. “I think it’s a huge overreach, an over-interpretation of their data,” she said. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25196 - Posted: 07.12.2018

by Jennifer MacCormack Many people feel more irritable, annoyed or negative when hungry — an experience colloquially called being “hangry.” The idea that hunger affects our feelings and behaviors is widespread. But surprisingly little research investigates how feeling hungry transforms into feeling hangry. Psychologists have traditionally thought of hunger and emotions as separate, with hunger and other physical states as basic drives with different physiological and neural underpinnings from emotions. But growing scientific evidence suggests that your physical states can shape your emotions and cognition in surprising ways. Prior studies show that hunger itself can influence mood, probably because it activates many of the same bodily systems — such as the autonomic nervous system and hormones — that are involved in emotion. For example, when you’re hungry, your body releases a host of hormones including cortisol and adrenaline, often associated with stress. The result is that hunger, especially at greater intensity, can make you feel more tense, unpleasant and primed for action. But is feeling hangry just these hunger-induced feelings, or is there more to it? This question inspired the studies that psychologist Kristen Lindquist and I conducted at the University of North Carolina at Chapel Hill. We wanted to know whether ­hunger-induced feelings can transform how people experience their emotions and the world around them. © 1996-2018 The Washington Post

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 25191 - Posted: 07.11.2018

By Marcus Woo Some laughs are genuine reactions to hilarity. Others are more contrived—fake, even. But, according to a new study, people can usually tell real laughs from fake ones, regardless of cultural differences. In the first cross-cultural experiment of its kind, researchers asked 884 people from 21 different cultures in six regions around the world, from Peru to South Korea, to listen to recordings of real, spontaneous laughter, and fake, “volitional” laughter recorded from college-aged, U.S. women. On average, nearly two-thirds of listeners in each culture could tell the difference, the team reports in a study accepted for publication in Psychological Science. Genuine chuckles were typically higher pitched and louder, analysis of the sound files revealed. Similar characteristics are seen in cries of pain and anguish, the researchers say, suggesting that laughing is a more emotional and primal response that emerged early in human evolution. A fake laugh, however, is a deliberate response that likely evolved later with speech, the team says. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25139 - Posted: 06.26.2018

By Virginia Morell When an adult striped dolphin emerged from the Mediterranean Sea in 2016 pushing, nudging, and circling the carcass of its dead female companion for more than an hour, a nearby boat of scientists fell silent. Afterward, the students aboard said they were certain the dolphin was grieving. But was this grief or some other response? In a new study, researchers are attempting to get to the bottom of a mystery that has plagued behavioral biologists for 50 years. Grief, in humans at least, is a reaction to the permanent severing of a strong social or family bond. Although chimpanzees, baboons, and elephants are thought to experience the complex emotion, scientists don’t yet know enough about it in other animals. There are dozens of photos and YouTube videos of grieflike behavior in dolphins: Some mothers have been seen carrying their dead infants in their mouths or on their backs for a week or longer, even as the body decomposes; a couple adult males have also been seen holding dead calves in their mouths. In the new study, cetacean biologist Giovanni Bearzi of Dolphin Biology and Conservation in Pordenone, Italy, and his colleagues at other institutions analyzed 78 scientific reports from 1970 to 2016 of these kinds of displays—which they labeled “postmortem-attentive behavior.” They found that just 20 of 88 cetacean (dolphin and whale) species engage in them. Of those, most were dolphins from the Sousa and Tursiops genera. Just one was a baleen whale—a humpback. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25110 - Posted: 06.20.2018

By Elizabeth Bauer Ask a roomful of neuroscientists to define the term “emotion” and you will trigger a lively discussion. Some will argue that emotions involve conscious experiences that can be studied only in humans. Others might counter that insects and other invertebrates exhibit some of the emotion building blocks seen in mammals. Some will contend that different emotions correspond to anatomically distinct areas of the brain, whereas others argue that emotions are produced in a highly distributed manner. Still others will bring up the 19th-century psychologist William James’s argument that emotions are a consequence, not a cause, of behavior. In The Neuroscience of Emotion, Ralph Adolphs and David J. Anderson argue that before we can study it, we must first define what we mean by “emotion.” Only then, they maintain, can we form appropriate and testable hypotheses. Colleagues at Caltech, the authors bring different experimental backgrounds to the topic of emotion. Adolphs studies the neural basis of human social behavior. Anderson uses rodents and fruitflies as model organisms to investigate how internal states elicit emotional behaviors. Their book is less a catalog of recent neuroscientific discoveries and more a conceptual framework for investigating emotional behaviors both in humans and in other animals. Adolphs and Anderson begin by contending that emotions are biological phenomena that cause behavioral and physiological changes in the brain and body and—in some species—subjective feelings. If emotions are a class of internal brain states expressed in measurable ways, they argue, we can study the neurobiological implementation of these states separately from subjective conscious feelings, meaning both humans and other animals are potential subjects. They go on to define, in detail, the basic properties of an emotion, including valence, scalability, persistence, automaticity, and generalization. © 2017 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25109 - Posted: 06.20.2018

Ed Yong Peter, aged 3, was scared of rabbits. So Mary Cover Jones kept bringing him rabbits. At first, she’d take a caged rabbit up to Peter, while he ate some candy and played with other children. At first, Peter was terrified by the mere presence of a rabbit in the same room. But soon, he allowed the animal to get closer—12 feet, then four, then three. Eventually, Peter was happy for rabbits to nibble his fingers. “The case of Peter illustrates how a fear may be removed under laboratory conditions,” Cover Jones wrote in 1924. Cover Jones is now recognized as the "mother of behavioral therapy." Her observations laid the groundwork for what would become known as exposure therapy—the practice of getting people to overcome their fears by facing them in controlled settings. A century later, neuroscientists can watch how the act of facing one’s fears actually plays out inside the brain. Using gene-engineering tools, they can label the exact neurons in a mouse’s brain that store a specific fearful memory. Then, they can watch what happens when the rodent recalls those experiences. By doing this, Ossama Khalaf from the EPFL in Lausanne showed that the extinction of fear depends on reactivating the neurons that encode it. A mouse has to re-experience a deep-rooted fear if it is to lose it. When someone encounters a new experience—say, a terrifying rabbit—groups of neurons in their brain fire together, the connections between them become stronger, and molecules accumulate at the places where neurons meet. Many scientists believe that these preserved patterns of strengthened connections are the literal stuff of memories—the physical representations of the things we remember. These connected neuron groups are called engrams.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 25101 - Posted: 06.18.2018

Angus Chen Hunger can trigger cruel words from kind people. A starved dog lover might fantasize about punting the neighbor's Chihuahua that just will not shut up. A puckish but otherwise nice person might snap at a friend, "Bring me the freaking cheesesteak before I flip this TABLE!" They are, in a word, "hangry" or irrationally irritable, upset or angry because of hunger. But how hunger turns into hangriness is a mystery, says Jennifer MacCormack, a doctoral candidate at the University of North Carolina, Chapel Hill in psychology and neuroscience, who wanted to understand the phenomenon. "The mechanism isn't clear on how [hunger] affects your emotions or the exact emotional processes," she says. To find out, she designed some provocative experiments to rile up hungry people. In one of them, MacCormack had 118 undergraduates fast for five hours or more and 118 others eat a meal before coming to her lab. "Psych 101 students, bless their heart," she says. "They didn't know this was a study about feeling hangry." Unfortunately for them, MacCormack concocted an experiment to annoy them and to see how they responded. First, she had half the people in both groups write an essay about emotions to direct their attention to how they're feeling. The other half wrote an essay about a neutral, unemotional day. "We wanted to see if [self-awareness] halts creating this hangry emotions and behaviors," MacCormack says. Next, she had all of them go through a long, arduous computer exercise. "I designed this fake task with colored circles. The colors are really glaring and bright and hard to look at, and it's a hard task with a hundred trials," she says. © 2018 npr

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25076 - Posted: 06.11.2018

Emine Saner One of the fun parts of being a disgustologist – as researchers who study the emotion of disgust sometimes call themselves – must be coming up with revolting scenarios. Repulsive enough to test a theory, but not quite so stomach-turning as to repel the people who have volunteered to take the test. In a recent study led by Prof Val Curtis, director of the environmental health group at the London School of Hygiene and Tropical Medicine, the vignettes were admirably imaginative. People were asked to rate their levels of disgust at more than 70 scenarios. These included imagining a hairless old cat rubbing up against one’s leg, stepping on a slug in bare feet, shaking hands with someone with “scabby fingers”, finding out a friend eats roadkill, finding out another attempted to have sex with a piece of fruit, and seeing “pus come from a genital sore”. And, my personal favourite, for warped imagination alone: learning your neighbour defecates in his back garden. The findings, published this week in the Royal Society’s Philosophical Transactions B journal, reveal six categories of disgust: poor hygiene, animals that are vectors of disease (such as rats or cockroaches), sexual behaviours, atypical appearance, lesions and visible signs of infection, and food that shows signs of decay. “The fact we’ve found there is an architecture of disgust that has six components to it tells us something about the way in which emotions work,” says Curtis. “It tells us that emotions are for doing particular behaviours. The emotion of disgust is about doing certain things that avoid disease – they’re about not eating spoiled food, not sticking your fingers in somebody’s weeping sore, not having sex with somebody you know is having sex with lots of other people, not picking up cockroaches and kissing them. It confirms the hypothesis that disgust really is about avoiding infection.” © 2018 Guardian News and Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 25060 - Posted: 06.06.2018

By Abdul-Kareem Ahmed “Dad, hold still.” As we entered the hospital room that morning, our patient’s daughter was attempting to give him a shave. He was bed-bound after his operation and had grown a salt-and-pepper stubble. A week earlier, his wife had brought him to the emergency room . He was behaving oddly, mumbling nonsensical sentences and stumbling through the house. Sixty-two years old, male, Caucasian, new and profound neurological symptoms. An M.R.I. of his brain seemed redundant but confirmed the diagnosis: A four-centimeter malignant tumor was invading his right frontal cortex, the seat of his personality, where “Dad” lived. I’m drawn to the human brain, its unforgiving and protean nature. Just five minutes without oxygen, and the brain loses function. The occipital cortex processes visual information and allows us to see faces, trees, the stars. However, in a young child who becomes blind, as with Helen Keller, this same cortex can be repurposed for entirely distinct functions, like language processing. Early astronomers looked to the heavens for answers. But in the human brain, a three-pound ball of fat, there resides enough mystery and potential to have satisfied Galileo, Kepler and Brahe. And so I found myself, on what had now been a four-year foray toward a career in neurosurgery, helping care for this patient. I was the sub-intern at a hospital away from home for the month. It was my first week on the job. The resident and I stood around his bed in our cerulean scrubs and white coats and watched him smiling. His daughter looked toward me, the only other male in the room, and paused, razor in hand. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24985 - Posted: 05.17.2018

/ By David Dobbs If you think of beauty as something absolute — if you think Beyoncé or George Clooney is just beautiful, simple as that — Michael J. Ryan is here to tell you you’re wrong. Beauty, he asserts in this lovely and learned new book, exists only as a value-laden, capricious, and sometimes fleeting perception generated by the brain. Sexual selection is a counterintuitive theory that tries to explain bizarre forms and behavior. Even Darwin couldn’t quite wrap his mind around it. Beauty is literally in the eye of the beholder: It reveals itself only where and when the beholder thinks it does. In effect, then, to perceive beauty is to create it. And virtually all sexual species have evolved both the neural systems to perceive beauty and the traits that are or become so perceived. If you’re thinking this sounds circular and suspiciously chicken-and-egg, I’m here to tell you you’re right. Sexual selection is a complex, counterintuitive, three-pronged theory that seeks to explain both everyday sexual attraction and some of nature’s most bizarre forms, phenomena, and behavior. Even Darwin, who conceived the theory a century and a half ago, couldn’t quite wrap his mind around it, and the mature version that Ryan explores here is much and savagely disputed. The difficulty of explaining how sexual selection creates beauty is only Ryan’s first challenge. His second is that at least two notable books have already explained it memorably. The first, of course, was “The Descent of Man, and Selection in Relation to Sex” (Darwin’s “second most famous book,” notes Ryan), which explained it memorably but incompletely. Copyright 2018 Undark

Related chapters from BN8e: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 24966 - Posted: 05.12.2018

In a study of mice, National Institutes of Health-funded researchers describe a new circuit involved in fine-tuning the brain’s decision either to hide or confront threats. The study, published in Nature, was partially funded by the NIH’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. “Being able to manipulate specific circuits can uncover surprising relationships between brain areas and provide great insight into how the sensory, emotional, and behavioral centers work together to drive reactions,” said Jim Gnadt, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and a team lead for the BRAIN Initiative. “The tools and technologies developed through the BRAIN Initiative have made studies such as this one possible.” A team of researchers led by Andrew Huberman, Ph.D., professor of neurobiology and of ophthalmology at Stanford University in California, investigated the role of the ventral midline thalamus (vMT) in determining how animals respond to visual threats. The thalamus is a brain region that acts as a relay station, taking in sensory information, such as what is seen and heard, and sorting out where in the brain to send that information. Dr. Huberman and his colleagues showed that the vMT was activated when mice were confronted with a threat, specifically a black circle that grew larger on top of their cage, mimicking the experience of something looming over them. When faced with the looming threat, the mice spent most of the time freezing or hiding and very little time rattling their tails, which is typically an aggressive response.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24962 - Posted: 05.11.2018

Why do you look so angry? This article hasn’t even begun and already you disapprove. Why can’t I ever win with you? I see it in your face. If this sounds unfamiliar, good for you. You don’t need this. For the rest of us, it may be helpful to know that some people seem to have outsized difficulty with reading neutral faces as neutral, even if they are exceptionally accurate at interpreting other facial expressions. Over the past decade psychologists have been piecing together why this occurs.. .. A study published in March in the Journal of Social and Personal Relationships suggests that some people who grew up with parents who fought a lot never learned to properly read those in-between faces, perhaps because they spent so much time watching out for signs of conflict. “Angry interactions could be a cue for them to retreat to their room,” said Alice Schermerhorn, a developmental psychologist at the University of Vermont and the author of the study. “By comparison, neutral interactions might not offer much information, so children may not value them and therefore may not learn to recognize them.” These findings build on previous research indicating that depression, anxiety and irritability can affect how a person perceives other people’s faces. It has also been shown that adults who were exposed to violence, neglect or physical abuse in childhood are more likely to see hostility where there is none. This can create a self-reinforcing cycle. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 24895 - Posted: 04.24.2018

By NATALIE ANGIER A friend will help you move, goes an old saying, while a good friend will help you move a body. And why not? Moral qualms aside, that good friend would likely agree the victim was an intolerable jerk who had it coming and, jeez, you shouldn’t have done this but where do you keep the shovel? Researchers have long known that people choose friends who are much like themselves in a wide array of characteristics: of a similar age, race, religion, socioeconomic status, educational level, political leaning, pulchritude rating, even handgrip strength. The impulse toward homophily, toward bonding with others who are the least other possible, is found among traditional hunter-gatherer groups and advanced capitalist societies alike. New research suggests the roots of friendship roots extend even deeper than previously suspected. Scientists have found that the brains of close friends respond in remarkably similar ways as they view a series of short videos: the same ebbs and swells of attention and distraction, the same peaking of reward processing here, boredom alerts there. The neural response patterns evoked by the videos — on subjects as diverse as the dangers of college football, the behavior of water in outer space, and Liam Neeson trying his hand at improv comedy — proved so congruent among friends, compared to patterns seen among people who were not friends, that the researchers could predict the strength of two people’s social bond based on their brain scans alone. “I was struck by the exceptional magnitude of similarity among friends,” said Carolyn Parkinson, a cognitive scientist at the University of California, Los Angeles. The results “were more persuasive than I would have thought.” Dr. Parkinson and her colleagues, Thalia Wheatley and Adam M. Kleinbaum of Dartmouth College, reported their results in Nature Communications. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 11: Emotions, Aggression, and Stress
Link ID: 24871 - Posted: 04.16.2018

Ian Sample Science editor Modern humans might never have raised a quizzical eyebrow had Homo sapiens not lost the thick, bony brows of its ancient ancestors in favour of smoother facial features, a new study suggests. Researchers at the University of York believe early humans bore prominent brow ridges as a mark of physical dominance, and as the human face evolved to become smaller and flatter, it became a canvas on which the eyebrows could portray a much richer range of emotions. “We traded dominance or aggression for a wider palette of expression,” said Paul O’Higgins, a professor of anatomy and lead author on the study. “As the face became smaller and the forehead flattened, the muscles in the face could move the eyebrows up and down and we could express all these subtler feelings.” The York team stress their conclusions are speculative, but if they are right, the evolution of smaller, flatter faces may have unleashed the social power of the eyebrow, allowing humans to communicate at a distance in more complex and nuanced ways. “We moved from a position where we wanted to compete, where looking more intimidating was an advantage, to one where it was better to get on with people, to recognise each other from afar with an eyebrow flash, and to sympathise and so on,” said Penny Spikins, a palaeolithic archaeologist at York and co-author on the study, published in Nature Ecology & Evolution. © 2018 Guardian News and Media Limited

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 24845 - Posted: 04.10.2018

By Virginia Morell As every dog lover—and scientist—knows, man’s best friend is good at reading faces. Dogs can tell the difference between happy and not-so-happy expressions, such as anger and sadness. Like us, they watch the left sides of peoples’ faces—where emotional cues first appear. And they even seem to be able to interpret our emotions and modulate their behavior accordingly. But what are the neural mechanisms that control how dogs process human faces? To find out, scientists trained eight dogs—mostly border collies—to lie still in a functional magnetic resonance imaging scanner while viewing photos of strangers with either happy or neutral expressions. The faces matched the gender of the dogs’ chief caretakers, because dogs have been shown to score lower on tasks involving faces of the opposite sex. The results: A happy human face produces a distinctive signature in a dog’s temporal lobe and other neural regions, the scientists report online this week on the preprint server bioRxiv. In a follow-up experiment, the pooches’ brains were scanned as they looked at faces expressing happiness, anger, fear, or sadness. The happiness pattern was so distinctive that a machine learning program could pick it out from brain activity linked to all the other emotions. (A similar “happiness” signature is found in humans.) That means, the researchers say, that our human emotions are represented in our pooches’ brains—which suggests that our canine pals really do know what we’re feeling. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 24790 - Posted: 03.28.2018

/ By Dinsa Sachan When reporting a rape to police or testifying during a trial, it’s not uncommon for women to face a barrage of intrusive questions: What were you wearing at the time of the assault? Were you intoxicated? Why were you walking home alone at night? For decades, social psychologists have documented links between the ways society perceives women and their bodies — ones that often lead to this line of questioning — and attitudes towards gender violence. But only recently have neuroscientists begun to investigate what sexual objectification actually looks like in the brain. In a study published in the journal Cortex in December, European researchers explored the relationship between empathy — the ability to feel others’ emotions — and sexual objectification. Their findings, based on measuring brain activity in response to viewing a woman being left out of a social activity, suggest that people feel less empathy for women dressed in revealing clothing compared to those dressed more conservatively. To conduct the research, Giorgia Silani, a neuroscientist at the University of Vienna, Austria, along with her colleagues, asked 36 participants — both men and women — to participate in and watch videos of others playing a digital ball-tossing game. The videos featured a model who either wore long pants, a plain top, and light makeup, or a short dress, high heels, and heavy makeup. At different points in the videos, the model was included or excluded from the game. Copyright 2018 Undark

Related chapters from BN8e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 24661 - Posted: 02.15.2018