Links for Keyword: Evolution
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Calli McMurray, Angie Voyles Askham, Claudia López Lloreda, Shaena Montanari Neuroscience can sometimes feel like an old mouse club—but it wasn’t always that way. In the 1960s and ’70s, neuroscientists routinely put on their field boots to search for the “animal that was expert at doing the task that you were interested in studying,” says Eve Marder, university professor of biology at Brandeis University. “People studied insects and annelids and mollusks and every kind of animal imaginable. And if they could have studied elephants, they would have.” Many fundamental—and Nobel-prize-winning—discoveries emerged from this approach. Recording from the squid’s giant axon, for example, revealed how action potentials work; experiments in sea slugs illuminated the molecular changes that drive learning and memory; work in barn owls unraveled sound localization; and studies in horseshoe crabs first exposed lateral inhibition in photoreceptors. But by the end of the 20th century, model diversity had fallen out of vogue. A small band of neuroethologists continued to explore animals off the beaten path, but the majority of neuroscientists soon jumped over to standard animal models, Marder says. Many of today’s common model organisms—including the mouse, zebrafish, roundworm and fruit fly—soared in popularity because they are cheap, easy to work with and quick to raise in a lab. The invention of molecular and genetic tools tailored to these species only increased their appeal, as did attention from the U.S. federal government. In 1999, the National Institutes of Health (NIH) published a list of 13 canonical model organisms for biomedical research, and in 2004 the organization’s “road map” encouraged the use of research animals for which genetic tools were available. Now, two decades later, a non-model organism “renaissance” is underway, says Ishmail Abdus-Saboor, associate professor of biological sciences at Columbia University, as a growing number of neuroscientists step outside of the model organism box. This shift is largely due to cost reductions and technological advances in “species-neutral” techniques, says Sam Reiter, assistant professor of computational neuroethology at the Okinawa Institute of Science and Technology, such as high-throughput extracellular recordings, machine-learning-based behavioral tracking, genome and transcriptome sequencing, and gene-editing tools. “This lets researchers quickly reach close to the cutting edge, even if working on an animal where little is known.” © 2024 Simons Foundation
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 29605 - Posted: 12.21.2024
By Sofia Quaglia It’s amazing what chimpanzees will do for a snack. In Congolese rainforests, the apes have been known to poke a hole into the ground with a stout stick, then grab a long stem and strip it through their teeth, making a brush-like end. Into the hole that lure goes, helping the chimps fish out a meal of termites. How did the chimps figure out this sophisticated foraging technique and others? “It’s difficult to imagine that it can just have appeared out of the blue,” said Andrew Whiten, a cultural evolution expert from the University of St. Andrews in Scotland who has studied tool use and foraging in chimpanzees. Now Dr. Whiten’s team has set out to demonstrate that advanced uses of tools are an example of humanlike cultural transmission that has accumulated over time. Where bands of apes in Central and East Africa exhibit such complex behaviors, they say, there are also signs of genes flowing between groups. They describe this as evidence that such foraging techniques have been passed from generation to generation, and innovated over time across different interconnected communities. In a study published on Thursday in the journal Science, Dr. Whiten and colleagues go as far as arguing that chimpanzees have a “tiny degree of cumulative culture,” a capability long thought unique to humans. From mammals to birds to reptiles and even insects, many animals exhibit some evidence of culture, when individuals can socially learn something from a nearby individual and then start doing it. But culture becomes cumulative over time when individuals learn from others, each building on the technique so much that a single animal wouldn’t have been able to learn all of it on its own. For instance, some researchers interpret using rocks as a hammer and anvil to open a nut as something chimpanzees would not do spontaneously without learning it socially. Humans excel at this, with individual doctors practicing medicine each day, but medicine is no one single person’s endeavor. Instead, it is an accumulation of knowledge over time. Most chimpanzee populations do not use a complex set of tools, in a specific sequence, to extract food. © 2024 The New York Times Company
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 29573 - Posted: 11.23.2024
By Ann Gibbons As the parent of any teenager knows, humans need a long time to grow up: We take about twice as long as chimpanzees to reach adulthood. Anthropologists theorize that our long childhood and adolescence allow us to build comparatively bigger brains or learn skills that help us survive and reproduce. Now, a study of an ancient youth’s teeth suggests a slow pattern of growth appeared at least 1.8 million years ago, half a million years earlier than any previous evidence for delayed dental development. Researchers used state-of-the art x-ray imaging methods to count growth lines in the molars of a member of our genus, Homo, who lived 1.77 million years ago in what today is Dmanisi, Georgia. Although the youth developed much faster than children today, its molars grew as slowly as a modern human’s during the first 5 years of life, the researchers report today in Nature. The finding, in a group whose brains are hardly larger than chimpanzees, could provide clues to why humans evolved such long childhoods. “One of the main questions in paleoanthropology is to understand when this pattern of slow development evolves in [our genus] Homo,” says Alessia Nava, a bioarchaeologist at the Sapienza University of Rome who is not part of the study. “Now, we have an important hint.” Others caution that although the teeth of this youngster grew slowly, other individuals, including our direct ancestors, might have developed faster. Researchers have known since the 1930s that humans stay immature longer than other apes. Some posit our ancestors evolved slow growth to allow more time and energy to build bigger brains, or to learn how to adapt to complex social interactions and environments before they had children. To pin down when this slow pattern of growth arose, researchers often turn to teeth, especially permanent molars, because they persist in the fossil record and contain growth lines like tree rings. What’s more, the dental growth rate in humans and other primates correlates with the development of the brain and body.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 7: Vision: From Eye to Brain
Link ID: 29562 - Posted: 11.16.2024
Ari Daniel The birds of today descended from the dinosaurs of yore. Researchers have known relatively little, however, about how the bird's brain took shape over tens of millions of years. "Birds are one of the most intelligent groups of living vertebrate animals," says Daniel Field, a vertebrate biologist at the University of Cambridge. "They really rival mammals in terms of their relative brain size and the complexity of their behaviors, social interactions, breeding displays." Now, a newly discovered fossil provides the most complete glimpse to date of the brains of the ancestral birds that once flew above the dinosaurs. The species was named Navaornis hestiae, and it's described in the journal Nature. Piecing together how bird brains evolved has been a challenge. First, most of the fossil evidence dates back to tens of millions of years before the end of the Cretaceous period when dinosaurs went extinct and birds diversified. In addition, the fossils of feathered dinosaurs that have turned up often have a key problem. "They're beautiful, but they're all like roadkill," says Luis Chiappe, a paleontologist and curator at the Natural History Museum of Los Angeles County. "They're all flattened and there are aspects that you're never going to be able to recover from those fossils." The shape and three-dimensional structure of the brain are among those missing aspects. But in 2016, Brazilian paleontologist William Nava discovered a remarkably well-preserved fossil in São Paulo state. It came from a prehistoric bird that fills in a crucial gap in understanding of how modern bird brains evolved. © 2024 npr
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 29561 - Posted: 11.16.2024
By Kerri Smith Infographics by Nik Spencer There must be something about the human brain that’s different from the brains of other animals — something that enables humans to plan, imagine the future, solve crossword puzzles, tell sarcastic jokes and do the many other things that together make our species unique. And something that explains why humans get devastating conditions that other animals don’t — such as bipolar disorder and schizophrenia. Brain size is tightly correlated with body size in most animals. But humans break the mould. Our brains are much larger than expected given our body size. Here are some animals’ brains ranked according to size. Researchers often use a ratio called the encephalization quotient (EQ) to get an idea of how much larger or smaller an animal’s brain is compared with what would be expected given its body size. The EQ is 1.0 if the brain to body mass ratio meets expectations. Here are their brains scaled according to their EQ, with the actual brain sizes represented by dotted lines. The mouse brain is half as big as expected for its body size. The human brain is more than seven times the expected size. Although evolution has enlarged the human brain, it hasn’t done so uniformly: some brain areas have ballooned more than others. One particularly enlarged region is the cortex, an area that carries out planning, reasoning, language and many other behaviours that humans excel at. Other areas, such as the cerebellum — an area at the back of the brain that is densely populated with neurons, and which helps to conduct movement and planning — have expanded too. The prefrontal cortex has a similar structure in both chimps and humans, although it takes up much more real estate in the human brain than in the chimp brain.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 29539 - Posted: 11.02.2024
By Brandon Keim 1 How We Think About Animals Has a Long, Complicated History Back when I first started writing about scientific research on animal minds, I had internalized a straightforward historical narrative: The western intellectual tradition held animals to be unintelligent, but thanks to recent advances in the science, we were learning otherwise. The actual history is so much more complicated. The denial of animal intelligence does have deep roots, of course. You can trace a direct line from Aristotle, who considered animals capable of feeling only pain and hunger, to medieval Christian theologians fixated on their supposed lack of rationality, to Enlightenment intellectuals who likened the cries of beaten dogs to the squeaking of springs. But along the way, a great many thinkers, from early Greek philosopher Plutarch on through to Voltaire, pushed back. They saw animals as intelligent and therefore deserving of ethical regard, too. Those have always been the stakes of this debate: If animals are mindless then we owe them nothing. Through that lens it’s no surprise that societies founded on exploitation—of other human beings, of animals, of the whole natural world—would yield knowledge systems that formally regarded animals as dumb. The Plutarchs and Voltaires of the world were cast to the side. The scientific pendulum did swing briefly in the other direction, thanks in no small part to the popularity of Charles Darwin. He saw humans as related to other animals not only in body but in mind, and recognized rich forms of consciousness even in earthworms. But the backlash to that way of thinking was fierce, culminating in a principle articulated in the 1890s and later enshrined as Morgan’s Canon: An animal’s behavior should not be interpreted as evidence of a higher psychological faculty until all other explanations could be ruled out. Stupidity by default. © 2024 NautilusNext Inc.,
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Higher Cognition
Link ID: 29399 - Posted: 07.23.2024
By Dennis Normile For several decades, evidence has accumulated that animals turn to medicinal plants to relieve their ailments. Chimpanzees (and some other species) swallow leaves to mechanically clear the gut of parasites. Chimps also rely on the ingested pith of an African relative of the daisy, Vernonia amygdalina, to rid themselves of intestinal worms. Dolphins rub against antibacterial corals and sponges to treat skin infections. And recently, a male Sumatran orangutan was observed chewing the leaves of Fibraurea tinctoria, a South Asian plant with antibacterial and anti-inflammatory properties, and dabbing the juice onto a wound. These instances of animals playing doctor with therapeutic plants have typically been identified one by one. Today, in PLOS ONE, a multinational team proposes adding 17 samples from 13 plant species to the chimpanzee pharmacopia. “The paper provides important new findings about self-medication behavior in wild chimpanzees,” a topic that’s still relatively unknown, says Isabelle Laumer, a cognitive biologist at the Max Planck Institute of Animal Behavior and lead author on the orangutan self-medication paper who was not involved in the new chimp research. Observers with the team behind today's paper spent 4 months with each of two chimp communities habituated to human observers in Uganda’s Budongo Forest. The researchers supplemented their own observations with historical data. From the 170 chimps in the two communities, the observers zeroed in on 51 individuals suffering bacterial infections and inflammation as indicated by abnormal urine composition, diarrhea, traces of parasites, or apparent wounds. For 10 hours a day they followed the sick chimps through the forest, noting which plants they ate and when, and watching in particular to see whether the animals went out of their way to find and consume plants not part of their usual diet. In one example, researchers observed an individual suffering from diarrhea very briefly venture outside the group’s safe home territory to eat a small amount of dead wood from Alstonia boonei, a tree in the dogbane family. Chimps rarely eat dead wood, which is not nutritious for them, the team says.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 29364 - Posted: 06.24.2024
By Kermit Pattison Since the Stone Age, hunters have brought down big game with spears, atlatls, and bows and arrows. Now, a new study reveals traditional societies around the globe also relied on another deadly but often-overlooked weapon: our legs. According to a report published today in Nature Human Behaviour, running down big game such as antelope, moose, and even kangaroos was far more widespread than previously recognized. Researchers documented nearly 400 cases of endurance pursuits—a technique in which prey are chased to exhaustion—by Indigenous peoples around the globe between the 16th and 21st centuries. And in some cases, they suggest, it can be more efficient than stealthy stalking. The findings bolster the idea that humans evolved to be hunting harriers, says Daniel Lieberman, an evolutionary biologist at Harvard University. “Nobody else has come up with any other explanation for why humans evolved to run long distances,” says Lieberman, who adds that he’s impressed with the paper’s “depth of scholarship.” For decades, some anthropologists have argued that endurance running was among the first hunting techniques employed by early hominins in Africa. Advocates suggest subsequent millennia spent chasing down prey shaped many unique human features, including our springy arched feet, slow-twitch muscle fibers optimized for efficiency, heat-shedding bare skin, and prodigious ability to sweat. The “born to run” idea has become something of an origin story among many endurance athletes. But a pack of skeptics has dogged the theory. Critics cited the higher energetic costs of running over walking and noted that accounts of persistence hunting among modern foragers are rare. Yet hints of such pursuits kept popping up as Eugène Morin, an archaeologist at Trent University and co-author of the new paper, scoured the literature for a book he was writing on hunting among traditional societies. As he pored over early accounts by missionaries, travelers, and explorers, he repeatedly found descriptions of long-distance running and tracking. © 2024 American Association for the Advancement of Science.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29309 - Posted: 05.16.2024
By Lucy Cooke When Frans de Waal was a psychology student at Nijmegen University (renamed in 2004 to Radboud University), in the Netherlands, he was tasked with looking after the department’s resident chimpanzees—Koos and Nozem. De Waal couldn’t help but notice how his charges became sexually aroused in the presence of his fellow female students. So, one day, de Waal decided to don a skirt, a pair of heels, and speak “in a high-pitched voice” to test their response. The chimps remained resolutely unstimulated by de Waal’s drag act, leading the young scientist to conclude there must be more to primate sexual discrimination than previously thought. De Waal died from stomach cancer on March 14 at his home in Georgia. He was 75. One of de Waal’s first forays into scientific experimentation demonstrates the playful curiosity and taboo-busting that underscored his extraordinary career as a primatologist. He was the recipient of numerous high-profile awards from the prestigious E.O. Wilson Literary Science Award to the Ig Nobel Prize—a satirical honor for research that makes people laugh and think. De Waal won the latter, with equal pride, for co-authoring a paper on chimpanzees’ tendency to recognize bums better than faces. It was this combination of humor, compassion, and iconoclastic thinking that drew me to his work. I first met him through his popular writing. The acclaimed primatologist was author of hundreds of peer-reviewed academic papers, but he was also that rare genius who could translate the complexities of his research into a highly digestible form, readily devoured by the masses. He was the author of 16 books, translated into over 20 languages. His public lectures were laced with deadpan humor, and a joy to attend. He saw no tension between being taken seriously as a pioneering scientist and hosting a Facebook page devoted to posting funny animal content. De Waal just loved watching animals. He was, by his own admission, a born naturalist. Growing up in a small town in southern Netherlands, he’d bred stickleback fish and raised jackdaw birds. So, it was only natural he’d wind up scrutinizing animal behavior for a career. What set de Waal’s observations apart was his ability to do so with fresh eyes. Where others could only see what they expected to see, de Waal managed to study primates outside of the accepted paradigms of the time. © 2024 NautilusNext Inc.,
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 29208 - Posted: 03.23.2024
By Shaena Montanari When Nacho Sanguinetti-Scheck came across a seal study in Science in 2023, he saw it as confirmation of the “wild” research he had recently been doing himself. In the experiment, the researchers had attached portable, noninvasive electroencephalogram caps, custom calibrated to sense brain waves through blubber, to juvenile northern elephant seals. After testing the caps on five seals in an outdoor pool, the team attached the caps to eight seals free-swimming in the ocean. The results were striking: In the pool, the seals slept for six hours a day, but in the open ocean, they slept for just about two. And when seals were in REM sleep in the ocean, they flipped belly up and slowly spiraled downward, hundreds of meters below the surface. It was “one of my favorite papers of the past years,” says Sanguinetti-Scheck, a Harvard University neuroscience postdoctoral researcher who studies rodent behavior in the wild. “It’s just beautiful.” It was also the kind of experiment that needed to be done beyond the confines of a lab setting, he says. “You cannot see that in a pool.” Sanguinetti-Scheck is part of a growing cadre of researchers who champion the importance of studying animal behavior in the wild. Studying animals in the environment in which they evolved, these researchers say, can provide neuroscientific insight that is truly correlated with natural behavior. But not everyone agrees. In February, a group of about two dozen scientists and philosophers gathered in snowy, mountainous Terzolas, Italy, to wrestle with what, exactly, “natural behavior” means. “People don’t really think, ‘Well, what does it mean?’” says Mateusz Kostecki, a doctoral student at Nencki Institute of Experimental Biology in Poland. He helped organize the four-day workshop as “a good occasion to think critically about this trend.” © 2024 Simons Foundation
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 29205 - Posted: 03.21.2024
By Alex Traub Frans de Waal, who used his study of the inner lives of animals to build a powerful case that apes think, feel, strategize, pass down culture and act on moral sentiments — and that humans are not quite as special as many of us like to think — died on Thursday at his home in Stone Mountain, Ga. He was 75. The cause was stomach cancer, his wife, Catherine Marin, said. A psychologist at Emory University in Atlanta and a research scientist at the school’s Yerkes National Primate Research Center, Professor de Waal objected to the common usage of the word “instinct.” He saw the behavior of all sentient creatures, from crows to persons, existing on the same broad continuum of evolutionary adaptation. “Uniquely human emotions don’t exist,” he argued in a 2019 New York Times guest essay. “Like organs, the emotions evolved over millions of years to serve essential functions.” The ambition and clarity of his thought, his skills as a storyteller and his prolific output made him an exceptionally popular figure for a primatologist — or a serious scientist of any kind. Two of his books, “Are We Smart Enough to Know How Smart Animals Are?” (2016) and “Mama’s Last Hug: Animal Emotions and What They Tell Us About Ourselves” (2019), were best sellers. In the mid-1990s, when he was speaker of the House, Newt Gingrich put Professor de Waal’s first book, “Chimpanzee Politics” (1982), on a reading list for Republican House freshmen. The novelists Claire Messud and Sigrid Nunez both told The New York Times that they liked his writing. The actress Isabella Rossellini hosted a talk with him in Brooklyn last year. Major philosophers like Christine Korsgaard and Peter Singer wrote long, considered responses to his ideas. © 2024 The New York Times Company
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 29200 - Posted: 03.21.2024
By Elise Cutts In March 2019, on a train headed southwest from Munich, the neuroscientist Maximilian Bothe adjusted his careful grip on the cooler in his lap. It didn’t contain his lunch. Inside was tissue from half a dozen rattlesnake spinal cords packed in ice — a special delivery for his new research adviser Boris Chagnaud, a behavioral neuroscientist based on the other side of the Alps. In his lab at the University of Graz in Austria, Chagnaud maintains a menagerie of aquatic animals that move in unusual ways — from piranhas and catfish that drum air bladders to produce sound to mudskippers that hop around on land on two fins. Chagnaud studies and compares these creatures’ neuronal circuits to understand how new ways of moving might evolve, and Bothe was bringing his rattlesnake spines to join the endeavor. The ways that animals move are just about as myriad as the animal kingdom itself. They walk, run, swim, crawl, fly and slither — and within each of those categories lies a tremendous number of subtly different movement types. A seagull and a hummingbird both have wings, but otherwise their flight techniques and abilities are poles apart. Orcas and piranhas both have tails, but they accomplish very different types of swimming. Even a human walking or running is moving their body in fundamentally different ways. The tempo and type of movements a given animal can perform are set by biological hardware: nerves, muscle and bone whose functions are bound by neurological constraints. For example, vertebrates’ walking tempos are set by circuits in their spines that fire without any conscious input from the brain. The pace of that movement is dictated by the properties of the neuronal circuits that control them. For an animal to evolve a novel way of moving, something in its neurological circuitry has to change. Chagnaud wants to describe exactly how that happens. “In evolution, you don’t just invent the wheel. You take pieces that were already there, and you modify them,” he said. “How do you modify those components that are shared across many different species to make new behaviors?” © 2024 Simons Foundation.
Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29194 - Posted: 03.16.2024
By Erin Garcia de Jesús A genetic parasite may have robbed humans and other apes of their tails. Around 25 million years ago, this parasite, a small stretch of repetitive DNA called an Alu element, ended up in a gene important for tail development, researchers report in the Feb. 29 Nature. The single insertion altered the gene Tbxt in a way that seems to have sparked one of the defining differences between monkeys and apes: Monkeys have tails, apes don’t. “It was like lightning struck once,” says Jef Boeke, a geneticist at New York University Langone Health, and ape behinds ultimately became bare. The genetic tweak may also give insight into why some babies are born with spinal cord defects such as spina bifida, when the tube that holds the cord doesn’t close all the way (SN: 12/6/16). Alu elements are part of a group of genetic parasites known as transposons or jumping genes that can hop across genetic instruction books, inserting themselves into their hosts’ DNA (SN: 5/16/17). Sometimes, when the gene slips itself into a piece of DNA that is passed down to offspring, these insertions become permanent parts of our genetic code. Transposons, including more than 1 million Alu elements, are found throughout our genome, says geneticist and systems biologist Bo Xia of the Broad Institute in Cambridge, Mass. Researchers once thought of transposons as genetic garbage, but some have central roles in evolution. Without transposons, the placenta, immune system and insulation around nerve fibers may not exist (SN: 2/16/24). And humans might still have tails. To find out how apes lost their tails, Xia, then at NYU Langone Health, Boeke and colleagues analyzed 140 genes involved in vertebrate tail development. © Society for Science & the Public 2000–2024.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 29170 - Posted: 02.29.2024
By Annie Melchor When the first known flying dinosaurs took to the skies some 150 million years ago, the evolutionary leap relied on adaptations to their nervous system. The changes remained a mystery, though, because of the paucity of fossilized neural tissue. Now fresh clues have emerged from a study that started with the long-gone dinosaurs’ living kin: the common pigeon, Columba livia. Flight taps neural pathways involving the pigeon’s cerebellum, the new works shows, which prompted study investigator Amy Balanoff and her team to look specifically at that structure in digital brain “endocasts,” created by CT scanning fossilized dinosaur skulls. “The birds can help us look for certain things within these extinct animals,” says Balanoff, assistant professor of evolutionary biology at Johns Hopkins University. “Then these extinct animals can tell us about the evolutionary history leading up to living birds.” An analysis of the endocasts — from 10 dinosaur specimens dating to between 90 and 150 million years ago — revealed that the volume of the cerebellum expanded in birds’ closest relatives, but not in more distant ones. And at some point, the cerebellum began folding — instead of growing — to accommodate more neurons within a fixed cranial space, Balanoff says. The results suggest that the cerebellum was “flight-ready before flying,” says Crístian Gutiérrez-Ibáñez, an evolutionary biology research associate at the University of Alberta who was not involved in the study. “So the question is, why did dinosaurs get such a big cerebellum?” © 2024 Simons Foundation
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29162 - Posted: 02.25.2024
By Cara Giovanetti The human brain's billions of neurons represent a menagerie of cells that are among both the most highly specialized and variable ones in our bodies. Neurons convert electrical signals to chemical signals, and in humans, their lengths can be so tiny as to span just the tip of a sharpened pencil or, in some cases, even stretch the width of a doorway. Their flexible control of movement and decision-making explains why they are so key to survival in the animal kingdom. Most animals depend on their allotment of neurons for survival. It might stand to reason, then, that the common ancestor of all of these animals also moved about the Earth millions of years ago under the guidance of electrochemical signals transmitted and received by networks of neurons. The idea that these pivotal cells evolved multiple times seems implausible because neurons are highly complex cells, and they are also quite similar among animal lineages. But a series of recent evolutionary biology studies are straining the assumption that all animal neurons have a single origin. These findings are the culmination of several years’ worth of research on and debate about early evolutionary animal lineages and the cells and systems present in those species. The first such finding came from studying relationships among early animals, with a focus on two particular types of organisms: sponges (including sea sponges and freshwater varieties) and ctenophores, invertebrates often known as comb jellies, though they are unrelated to jellyfish. For roughly 15 years, evolutionary biologists have been divided over whether ctenophores or sponges were the first animals to branch from all other animals in the evolutionary tree. Hundreds of millions of years ago the common ancestor to all living animals branched into two species. On one side was the common ancestor of all groups of animals except for one. On the other side was that “one”—the “sister group” that was the first to diverge from all other animals. A persistent question has been whether the sister group was the sponges or ctenophores. A compelling paper published last year lends strong support to the hypothesis that ctenophores are, in fact, the long-sought sister group. Ctenophores, the researchers found, branched off before sponges and are therefore the group most distantly related to all other animals. Yet despite the new evidence, what exactly happened in evolutionary history is still unsettled because of the puzzle it poses in explaining the evolution of neurons. © 2023 SCIENTIFIC AMERICAN,
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 29081 - Posted: 01.06.2024
By Joseph Howlett Garter snakes have something in common with elephants, orcas, and naked mole rats: They form social groups that center around females. The snakes have clear “communities” composed of individuals they prefer hanging out with, and females act as leaders that tie the groups together and guide their members’ movements, according to the most extensive field study of snake sociality ever carried out. “This is an important first step in understanding how a community of snakes is organized in the wild,” says Gordon Burghardt, an ecologist at the University of Tennessee, Knoxville, who was not involved in the research. Other experts agree: “This is a big deal,” says integrative biologist Robert Mason of Oregon State University. “It’s a whole new avenue of research that I don’t think people have really given any thought to.” Ecologists had long assumed snakes are antisocial loners that hang out together only for core functions such as mating and hibernation. However, in 2020, Morgan Skinner, a behavioral ecologist at Wilfrid Laurier University, and collaborators showed in laboratory experiments that captive garter snakes have “friends”—specific snakes whose company they prefer over others. Still, studies of wild snakes were lacking “because they’re so secretive and difficult to find,” Skinner says. Then he learned that the Ontario Ministry of Transportation had funded an unprecedented long-term study of a huge population of Butler’s garter snakes (Thamnophis butleri) in Windsor, Canada. Ecologists began to monitor the flute-size slitherers in 2009 to keep them safe from nearby road construction. They regularly captured snakes in the 250-hectare study area, using identifying markings to track more than 3000 individuals over a 12-year span—about the lifetime of a garter snake. “We were mainly monitoring the population after they were relocated, to make sure they were thriving,” says Megan Hazell, a biologist with the consulting firm WSP, who led the field research as a graduate student at Queen’s University.
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 8: Hormones and Sex
Link ID: 29050 - Posted: 12.16.2023
By Carl Zimmer Sign up for Science Times Get stories that capture the wonders of nature, the cosmos and the human body. Get it sent to your inbox. If a troop of baboons encounters another troop on the savanna, they may keep a respectful distance or they may get into a fight. But human groups often do something else: They cooperate. Tribes of hunter-gatherers regularly come together for communal hunts or to form large-scale alliances. Villages and towns give rise to nations. Networks of trade span the planet. Human cooperation is so striking that anthropologists have long considered it a hallmark of our species. They have speculated that it emerged thanks to the evolution of our powerful brains, which enable us to use language, establish cultural traditions and perform other complex behaviors. But a new study, published in Science on Thursday, throws that uniqueness into doubt. It turns out that two groups of apes in Africa have regularly mingled and cooperated with each other for years. “To have extended, friendly, cooperative relationships between members of other groups who have no kinship ties is really quite extraordinary,” said Joan Silk, a primatologist at Arizona State University who was not involved in the study. The new research comes from long-term observations of bonobos, an ape species that lives in the forests of the Democratic Republic of Congo. A century ago, primatologists thought bonobos were a slender subspecies of chimpanzee. But the two species are genetically distinct and behave in some remarkably different ways. Among chimpanzees, males hold a dominant place in society. They can be extremely violent, even killing babies. In bonobo groups, however, females dominate, and males have never been observed to commit infanticide. Bonobos often defuse conflict with sex, a strategy that primatologists have not observed among chimpanzees. Scientists made most of their early observations of bonobos in zoos. But in recent years they’ve conducted long-term studies of the apes in the wild. © 2023 The New York Times Company
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 29011 - Posted: 11.18.2023
COMIC: When, why and how did neurons first evolve? Scientists are piecing together the ancient story. By Tim Vernimmen Illustrated by Maki Naro 09.14.2023 © 2023 Annual Reviews
Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 28920 - Posted: 09.21.2023
By Kenneth S. Kosik Before our evolutionary ancestors had a brain—before they had any organs—18 different cell types got together to make a sea sponge. Remarkably, some of these cells had many of the genes needed to make a brain, even though the sponge has neither neurons nor a brain. In my neuroscience lab at the University of California, Santa Barbara, my colleagues and collaborators discovered this large repository of brain genes in the sponge. Ever since, we have asked ourselves why this ancient, porous blob of cells would contain a set of neural genes in the absence of a nervous system? What was evolution up to? The sea sponge first shows up in the fossil record about 600 million years ago. They live at the bottom of the ocean and are immobile, passive feeders. In fact, early biologists thought they were plants. Often encased by a hard exterior, a row of cells borders a watery center. Each cell has a tiny cilium that gently circulates a rich flow of microorganisms on which they feed. This seemingly simple organization belies a giant step in evolution. For the previous 3 billion years, single-celled creatures inhabited the planet. In one of evolution’s most creative acts, independent cells joined together, first into a colony and later into a truly inseparable multicellular organism. Colonies of single cells offered the first inkling that not every cell in the colony had to be identical. Cells in the interior might differ subtly from those on the periphery that are subject to the whims of the environment. Colonies offered the advantages of cooperation among many nearly identical cells. The next evolutionary innovation, multicellularity, broke radically from the past. © 2023 NautilusNext Inc.,
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:None
Link ID: 28913 - Posted: 09.16.2023
by Adam Kirsch Giraffes will eat courgettes if they have to, but they really prefer carrots. A team of researchers from Spain and Germany recently took advantage of this preference to investigate whether the animals are capable of statistical reasoning. In the experiment, a giraffe was shown two transparent containers holding a mixture of carrot and courgette slices. One container held mostly carrots, the other mostly courgettes. A researcher then took one slice from each container and offered them to the giraffe with closed hands, so it couldn’t see which vegetable had been selected. In repeated trials, the four test giraffes reliably chose the hand that had reached into the container with more carrots, showing they understood that the more carrots were in the container, the more likely it was that a carrot had been picked. Monkeys have passed similar tests, and human babies can do it at 12 months old. But giraffes’ brains are much smaller than primates’ relative to body size, so it was notable to see how well they grasped the concept. Such discoveries are becoming less surprising every year, however, as a flood of new research overturns longstanding assumptions about what animal minds are and aren’t capable of. A recent wave of popular books on animal cognition argue that skills long assumed to be humanity’s prerogative, from planning for the future to a sense of fairness, actually exist throughout the animal kingdom – and not just in primates or other mammals, but in birds, octopuses and beyond. In 2018, for instance, a team at the University of Buenos Aires found evidence that zebra finches, whose brains weigh half a gram, have dreams. Monitors attached to the birds’ throats found that when they were asleep, their muscles sometimes moved in exactly the same pattern as when they were singing out loud; in other words, they seemed to be dreaming about singing. © 2023 Guardian News & Media Limited
Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 28808 - Posted: 05.31.2023