Chapter 15. Emotions, Aggression, and Stress

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 3458

By Carl Zimmer In the early 1900s, primatologists noticed a group of apes in central Africa with a distinctly slender build; they called them “pygmy chimpanzees.” But as the years passed, it became clear that those animals, now known as bonobos, were profoundly different from chimpanzees. Chimpanzee societies are dominated by males that kill other males, raid the territory of neighboring troops and defend their own ground with border patrols. Male chimpanzees also attack females to coerce them into mating, and sometimes even kill infants. Among bonobos, in contrast, females are dominant. Males do not go on patrols, form alliances or kill other bonobos. And bonobos usually resolve their disputes with sex — lots of it. Bonobos became famous for showing that nature didn’t always have to be red in tooth and claw. “Bonobos are an icon for peace and love, the world’s ‘hippie chimps,’” Sally Coxe, a conservationist, said in 2006. But these sweeping claims were not based on much data. Because bonobos live in remote, swampy rainforests, it has been much more difficult to observe them in the wild than chimpanzees. More recent research has shown that bonobos live a more aggressive life than their reputation would suggest. In a study based on thousands of hours of observations in the wild published on Friday, for example, researchers found that male bonobos commit acts of aggression nearly three times as often as male chimpanzees do. “There is no ‘hippie ape,’” said Maud Mouginot, a biological anthropologist at Boston University who led the analysis. As our closest living relatives, bonobos and chimpanzees can offer us clues about the roots of human behavior. We and the two species share a common ancestor that lived about 7 million years ago. About 5 million years later, bonobos split off from chimpanzees. © 2024 The New York Times Company

Keyword: Aggression; Evolution
Link ID: 29256 - Posted: 04.13.2024

By Joanne Silberner A hug, a handshake, a therapeutic massage. A newborn lying on a mother’s bare chest. Physical touch can buoy well-being and lessen pain, depression and anxiety, according to a large new analysis of published research released on Monday in the journal Nature Human Behaviour. Researchers from Germany and the Netherlands systematically reviewed years of research on touch, strokes, hugs and rubs. They also combined data from 137 studies, which included nearly 13,000 adults, children and infants. Each study compared individuals who had been physically touched in some way over the course of an experiment — or had touched an object like a fuzzy stuffed toy — to similar individuals who had not. For example, one study showed that daily 20-minute gentle massages for six weeks in older people with dementia decreased aggressiveness and reduced the levels of a stress marker in the blood. Another found that massages boosted the mood of breast cancer patients. One study even showed that healthy young adults who caressed a robotic baby seal were happier, and felt less pain from a mild heat stimulus, than those who read an article about an astronomer. Positive effects were particularly noticeable in premature babies, who “massively improve” with skin-to-skin contact, said Frédéric Michon, a researcher at the Netherlands Institute for Neuroscience and one of the study’s authors. “There have been a lot of claims that touch is good, touch is healthy, touch is something that we all need,” said Rebecca Boehme, a neuroscientist at Linkoping University in Sweden, who reviewed the study for the journal. “But actually, nobody had looked at it from this broad, bird’s eye perspective.” © 2024 The New York Times Company

Keyword: Pain & Touch; Emotions
Link ID: 29252 - Posted: 04.11.2024

By Christina Caron Anxious ahead of a big job interview? Worried about giving a speech? First date nerves? The solution, some digital start-ups suggest, is a beta blocker, a type of medication that can slow heart rate and lower blood pressure — masking some of the physical symptoms of anxiety. Typically a trip to the doctor’s office would be necessary to get a prescription, but a number of companies are now connecting patients with doctors for quick virtual visits and shipping the medication to people’s homes. “No more ‘Shaky and Sweaty,’” one online ad promised. “Easy fast 15 minute intake.” That worries Dr. Yvette I. Sheline, a professor of psychiatry at the University of Pennsylvania Perelman School of Medicine. “The first question is: What is going on with this person?” Dr. Sheline said. Are they depressed in addition to anxious? Do they have chronic anxiety or is it just a temporary case of stage fright? “You don’t want to end up prescribing the wrong thing,” she added. In addition, although beta blockers are generally considered safe, experts say they can carry unpleasant side effects and should be used with caution. What are beta blockers? Beta blockers such as propranolol hydrochloride have been approved by the Food and Drug Administration for chest pain, migraine prevention, involuntary tremors, abnormal heart rhythms and other uses. Some are still prescribed for hypertension, although they’re no longer considered the preferred treatment, mainly because other medications are more effective in preventing stroke and death. © 2024 The New York Times Company

Keyword: Emotions; Stress
Link ID: 29247 - Posted: 04.06.2024

By Saima May Sidik In 2010, Theresa Chaklos was diagnosed with chronic lymphocytic leukaemia — the first in a series of ailments that she has had to deal with since. She’d always been an independent person, living alone and supporting herself as a family-law facilitator in the Washington DC court system. But after illness hit, her independence turned into loneliness. Loneliness, in turn, exacerbated Chaklos’s physical condition. “I dropped 15 pounds in less than a week because I wasn’t eating,” she says. “I was so miserable, I just would not get up.” Fortunately a co-worker convinced her to ask her friends to help out, and her mood began to lift. “It’s a great feeling” to know that other people are willing to show up, she says. Many people can’t break out of a bout of loneliness so easily. And when acute loneliness becomes chronic, the health effects can be far-reaching. Chronic loneliness can be as detrimental as obesity, physical inactivity and smoking according to a report by Vivek Murthy, the US surgeon general. Depression, dementia, cardiovascular disease1 and even early death2 have all been linked to the condition. Worldwide, around one-quarter of adults feel very or fairly lonely, according to a 2023 poll conducted by the social-media firm Meta, the polling company Gallup and a group of academic advisers (see go.nature.com/48xhu3p). That same year, the World Health Organization launched a campaign to address loneliness, which it called a “pressing health threat”. But why does feeling alone lead to poor health? Over the past few years, scientists have begun to reveal the neural mechanisms that cause the human body to unravel when social needs go unmet. The field “seems to be expanding quite significantly”, says cognitive neuroscientist Nathan Spreng at McGill University in Montreal, Canada. And although the picture is far from complete, early results suggest that loneliness might alter many aspects of the brain, from its volume to the connections between neurons.

Keyword: Stress
Link ID: 29245 - Posted: 04.06.2024

By Esther Landhuis When Angela Tang’s teenage son came down with a baffling illness, few households could have been better equipped to deal with it. The family lives in a wealthy Los Angeles suburb. Both parents are doctors — Tang in internal medicine, her husband in infectious disease — and their son, a straight-A student well-liked at school, had been cared for by the family’s pediatrician since birth. Still, the parents worried as their son’s symptoms appeared, seemingly out of the blue, in September 2018: He’d meticulously line up pencils in groups of five, recite prayers unrelentingly, make homework illegible as he had to erase or cross out every C, D, and F. Eating, too, became a chore. If he had a contaminating thought while taking a bite, he’d have to spit out the food, wash his mouth, and try again, but the new bite couldn’t have touched the old one. It got to the point where he could only eat mushy or semi-liquid foods carefully placed “in little aliquots on his plate, so that if one bite got contaminated,” it wouldn’t touch the others, Tang said. Before long, she and her husband were working around the clock just to get him through the day. In a panic, Tang consulted their pediatrician, and recalls the doctor asking an intriguing question: “Has he had any unusual infections recently — because you know about PANDAS, right?” At the time, Tang knew nothing about PANDAS. She had completed her own medical residency two years before the illness — short for pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections — was first outlined in a 1998 paper. That publication detailed how a child’s behavior could change alarmingly after a strep infection, and may include symptoms of obsessive-compulsive behavior and tics. It has also stirred controversy: Many doctors hesitate to diagnose or treat the condition even today.

Keyword: OCD - Obsessive Compulsive Disorder; Neuroimmunology
Link ID: 29241 - Posted: 04.04.2024

By Lucy Cooke When Frans de Waal was a psychology student at Nijmegen University (renamed in 2004 to Radboud University), in the Netherlands, he was tasked with looking after the department’s resident chimpanzees—Koos and Nozem. De Waal couldn’t help but notice how his charges became sexually aroused in the presence of his fellow female students. So, one day, de Waal decided to don a skirt, a pair of heels, and speak “in a high-pitched voice” to test their response. The chimps remained resolutely unstimulated by de Waal’s drag act, leading the young scientist to conclude there must be more to primate sexual discrimination than previously thought. De Waal died from stomach cancer on March 14 at his home in Georgia. He was 75. One of de Waal’s first forays into scientific experimentation demonstrates the playful curiosity and taboo-busting that underscored his extraordinary career as a primatologist. He was the recipient of numerous high-profile awards from the prestigious E.O. Wilson Literary Science Award to the Ig Nobel Prize—a satirical honor for research that makes people laugh and think. De Waal won the latter, with equal pride, for co-authoring a paper on chimpanzees’ tendency to recognize bums better than faces. It was this combination of humor, compassion, and iconoclastic thinking that drew me to his work. I first met him through his popular writing. The acclaimed primatologist was author of hundreds of peer-reviewed academic papers, but he was also that rare genius who could translate the complexities of his research into a highly digestible form, readily devoured by the masses. He was the author of 16 books, translated into over 20 languages. His public lectures were laced with deadpan humor, and a joy to attend. He saw no tension between being taken seriously as a pioneering scientist and hosting a Facebook page devoted to posting funny animal content. De Waal just loved watching animals. He was, by his own admission, a born naturalist. Growing up in a small town in southern Netherlands, he’d bred stickleback fish and raised jackdaw birds. So, it was only natural he’d wind up scrutinizing animal behavior for a career. What set de Waal’s observations apart was his ability to do so with fresh eyes. Where others could only see what they expected to see, de Waal managed to study primates outside of the accepted paradigms of the time. © 2024 NautilusNext Inc.,

Keyword: Evolution; Emotions
Link ID: 29208 - Posted: 03.23.2024

By Alex Traub Frans de Waal, who used his study of the inner lives of animals to build a powerful case that apes think, feel, strategize, pass down culture and act on moral sentiments — and that humans are not quite as special as many of us like to think — died on Thursday at his home in Stone Mountain, Ga. He was 75. The cause was stomach cancer, his wife, Catherine Marin, said. A psychologist at Emory University in Atlanta and a research scientist at the school’s Yerkes National Primate Research Center, Professor de Waal objected to the common usage of the word “instinct.” He saw the behavior of all sentient creatures, from crows to persons, existing on the same broad continuum of evolutionary adaptation. “Uniquely human emotions don’t exist,” he argued in a 2019 New York Times guest essay. “Like organs, the emotions evolved over millions of years to serve essential functions.” The ambition and clarity of his thought, his skills as a storyteller and his prolific output made him an exceptionally popular figure for a primatologist — or a serious scientist of any kind. Two of his books, “Are We Smart Enough to Know How Smart Animals Are?” (2016) and “Mama’s Last Hug: Animal Emotions and What They Tell Us About Ourselves” (2019), were best sellers. In the mid-1990s, when he was speaker of the House, Newt Gingrich put Professor de Waal’s first book, “Chimpanzee Politics” (1982), on a reading list for Republican House freshmen. The novelists Claire Messud and Sigrid Nunez both told The New York Times that they liked his writing. The actress Isabella Rossellini hosted a talk with him in Brooklyn last year. Major philosophers like Christine Korsgaard and Peter Singer wrote long, considered responses to his ideas. © 2024 The New York Times Company

Keyword: Evolution; Emotions
Link ID: 29200 - Posted: 03.21.2024

By Heidi Ledford Two preliminary studies suggest that next-generation engineered immune cells show promise against one of the most feared forms of cancer. A pair of papers published on 13 March, one in Nature Medicine1 and the other in The New England Journal of Medicine2, describe the design and deployment of immune cells called chimeric antigen receptor T (CAR T) cells against glioblastoma, an aggressive and difficult-to-treat form of brain cancer. The average length of survival for people with this tumour is eight months. Both teams found early hints of progress using CAR T cells that target two proteins made by glioblastoma cells, thereby marking those cells for destruction. CAR T cells are currently approved for treating only blood cancers, such as leukaemia, and are typically engineered to home in on only one target. But these results add to mounting evidence that CAR T cells could be modified to treat a wider range of cancers. “It lends credence to the potential power of CAR T cells to make a difference in solid tumours, especially the brain,” says Bryan Choi, a neurosurgeon at Massachusetts General Hospital in Boston, and a lead author of the New England Journal of Medicine study. “It adds to the excitement that we might be able to move the needle.” Glioblastomas offer a formidable challenge. Fast-growing glioblastomas can mix with healthy brain cells, forming diffuse tumours that are difficult to remove surgically. Surgery, chemotherapy and radiation therapy are typically the only treatment options for these tumours, and tend to produce short-lived, partial responses. © 2024 Springer Nature Limited

Keyword: Neuroimmunology
Link ID: 29195 - Posted: 03.19.2024

David Robson Scientific discoveries can emerge from the strangest places. In early 1900s France, the doctor Albert Calmette and the veterinarian Camille Guérin aimed to discover how bovine tuberculosis was transmitted. To do so, they first had to find a way of cultivating the bacteria. Sliced potatoes – cooked with ox bile and glycerine – proved to be the perfect medium. As the bacteria grew, however, Calmette and Guérin were surprised to find that each generation lost some of its virulence. Animals infected with the microbe (grown through many generations of their culture) no longer became sick but were protected from wild TB. In 1921, the pair tested this potential vaccine on their first human patient – a baby whose mother had just died of the disease. It worked, and the result was the Bacille Calmette-Guérin (BCG) vaccine that has saved millions of lives. A black and white image pf Camille Guérin and physician Albert Calmette side by side. French veterinarian Camille Guérin and physician Albert Calmette developed the BCG jab in 1921 using sliced potatoes cooked with ox bile and glycerine. Photograph: Musée Pasteur Calmette and Guérin could have never imagined that their research would inspire scientists investigating an entirely different kind of disease more than a century later. Yet that is exactly what is happening, with a string of intriguing studies suggesting that BCG can protect people from developing Alzheimer’s disease. If these preliminary results bear out in clinical trials, it could be one of the cheapest and most effective weapons in our fight against dementia. According to the World Health Organization, 55 million people now have dementia, with about 10 million new cases each year. Alzheimer’s disease is by far the most common form, accounting for about 60%-70% of cases. It is characterised by clumps of a protein called amyloid beta that accumulate within the brain, killing neurons and destroying the synaptic connections between the cells. © 2024 Guardian News & Media Limited

Keyword: Alzheimers; Neuroimmunology
Link ID: 29160 - Posted: 02.25.2024

Nicola Davis Science correspondent From forgetfulness to difficulties concentrating, many people who have long Covid experience “brain fog”. Now researchers say the symptom could be down to the blood-brain barrier becoming leaky. The barrier controls which substances or materials enter and exit the brain. “It’s all about regulating a balance of material in blood compared to brain,” said Prof Matthew Campbell, co-author of the research at Trinity College Dublin. “If that is off balance then it can drive changes in neural function and if this happens in brain regions that allow for memory consolidation/storage then it can wreak havoc.” Writing in the journal Nature Neuroscience, Campbell and colleagues report how they analysed serum and plasma samples from 76 patients who were hospitalised with Covid in March or April 2020, as well 25 people before the pandemic. Among other findings, the team discovered that samples from the 14 Covid patients who self-reported brain fog contained higher levels of a protein called S100β than those from Covid patients without this symptom, or people who had not had Covid. caskets at a funeral home This protein is produced by cells within the brain, and is not normally found in the blood, suggesting these patients had a breakdown of the blood-brain barrier. The researchers then recruited 10 people who had recovered from Covid and 22 people with long Covid – 11 of whom reported having brain fog. None had, at that point, received a Covid vaccine, or been hospitalised for Covid. These participants underwent an MRI scan in which a dye was administered intravenously. The results reveal long Covid patients with brain fog did indeed show signs of a leaky blood-brain barrier, but not those without this symptom, or who had recovered. © 2024 Guardian News & Media Limited

Keyword: Neuroimmunology
Link ID: 29158 - Posted: 02.22.2024

By Pam Belluck Jennifer Caldwell was active and energetic, working two jobs and taking care of her daughter and her parents, when she developed a bacterial infection that was followed by intense lightheadedness, fatigue and memory problems. That was nearly a decade ago, and she has since struggled with the condition known as myalgic encephalomyelitis/chronic fatigue syndrome, or ME/CFS. Ms. Caldwell, 56, of Hillsborough, N.C., said she went from being able to ski, dance and work two jobs as a clinical research coordinator and a caterer to needing to stay in bed most of every day. “I haven’t been right since, and I haven’t worked a day since,” said Ms. Caldwell, whose symptoms include severe dizziness whenever her legs are not elevated. The condition has also “messed me up cognitively,” she said. “I can’t read something and comprehend it very well at all, I can’t remember new things. It’s kind of like being in a limbo state. That’s how I describe it, lost in limbo.” Seven years ago, the National Institutes of Health began a study of patients with ME/CFS, and Ms. Caldwell became one of 17 participants who engaged in a series of tests and evaluations of their blood, bodies and brains. Findings from the study, which was published on Wednesday in the journal Nature Communications, showed notable physiological differences in the immune system, cardio-respiratory function, gut microbiome and brain activity of the ME/CFS patients compared with a group of 21 healthy study participants. Medical experts said that even though the study was a snapshot of a small number of patients, it was valuable, partly because ME/CFS has long been dismissed or misdiagnosed. The findings confirm that “it’s biological, not psychological,” said Dr. Avindra Nath, the chief of infections of the nervous system at the National Institute of Neurological Disorders and Stroke, who led the study. © 2024 The New York Times Company

Keyword: Neuroimmunology; Depression
Link ID: 29157 - Posted: 02.22.2024

By Carolyn Todd Any sleep tracker will show you that slumber is far from a passive affair. And no stage of sleep demonstrates that better than rapid eye movement, or REM, commonly called dream sleep. “It’s also called paradoxical sleep or active sleep, because REM sleep is actually very close to being awake,” said Dr. Rajkumar Dasgupta, a sleep medicine and pulmonary specialist at the Keck School of Medicine of the University of Southern California. Before scientists discovered REM sleep in the 1950s, it wasn’t clear that much of anything was happening in the brain at night. Researchers today, however, understand sleep as a highly active process composed of very different types of rest — including REM, which in some ways doesn’t seem like rest at all. While the body typically remains “off” during REM sleep, the brain is very much “on.” It’s generating vivid dreams, as well as synthesizing memories and knowledge. Scientists are still working to unravel exactly how this strange state of consciousness works. “It is fair to say that there is a lot left to learn about REM sleep,” Dr. Dasgupta said. But from what researchers do understand, REM is critical to our emotional health and brain function — and potentially even our longevity. Where does REM sleep fall in the sleep cycle? Throughout the night, “We’re going in and out of this rhythmic, symphonic pattern of the various stages of sleep: non-REM 1, 2, 3 and REM,” said Rebecca Robbins, an instructor in medicine at Harvard Medical School and an associate scientist in the division of sleep and circadian disorders at Brigham and Women’s Hospital. © 2024 The New York Times Company

Keyword: Sleep; Neuroimmunology
Link ID: 29128 - Posted: 02.03.2024

James O’Brien for Quanta Magazine In recent decades, neuroscience has seen some stunning advances, and yet a critical part of the brain remains a mystery. I am referring to the cerebellum, so named for the Latin for “little brain,” which is situated like a bun at the back of the brain. This is no small oversight: The cerebellum contains three-quarters of all the brain’s neurons, which are organized in an almost crystalline arrangement, in contrast to the tangled thicket of neurons found elsewhere. Encyclopedia articles and textbooks underscore the fact that the cerebellum’s function is to control body movement. There is no question that the cerebellum has this function. But scientists now suspect that this long-standing view is myopic. Or so I learned in November in Washington, D.C., while attending the Society for Neuroscience annual meeting, the largest meeting of neuroscientists in the world. There, a pair of neuroscientists organized a symposium on newly discovered functions of the cerebellum unrelated to motor control. New experimental techniques are showing that in addition to controlling movement, the cerebellum regulates complex behaviors, social interactions, aggression, working memory, learning, emotion and more. The connection between the cerebellum and movement has been known since the 19th century. Patients suffering trauma to the brain region had obvious difficulties with balance and movement, leaving no doubt that it was critical for coordinating motion. Over the decades, neuroscientists developed a detailed understanding of how the cerebellum’s unique neural circuitry controls motor function. The explanation of how the cerebellum worked seemed watertight. Then, in 1998, in the journal Brain, neurologists reported on wide-ranging emotional and cognitive disabilities in patients with damage to the cerebellum. For example, in 1991, a 22-year-old female college student had fallen while ice skating; a CT scan revealed a tumor in her cerebellum. After it was removed surgically, she was a completely different person. The bright college student had lost her ability to write with proficiency, do mental arithmetic, name common objects or copy a simple diagram. Her mood flattened. She hid under covers and behaved inappropriately, undressing in the corridors and speaking in baby talk. Her social interactions, including recognizing familiar faces, were also impaired.

Keyword: Emotions; Movement Disorders
Link ID: 29118 - Posted: 01.27.2024

Jon Hamilton Scientists know that Black people are at a greater risk for health problems like heart disease, diabetes and Alzheimer's disease than white people. A growing body of research shows that racism in health care and in daily life contributes to these long-standing health disparities for Black communities. Now, some researchers are asking whether part of the explanation involves how racism, across individual interactions and systems, may physically alter the brain. "That could be behaviors like, let's say, a woman clutching her purse as a black man is walking next to her. Or they could be verbal, like someone saying, like... 'I didn't expect you to be so articulate,'" says Negar Fani, a clinical neuroscientist at Emory University who studies people experiencing Posttraumatic Stress Disorder, or PTSD. Recently, Fani has collaborated with Nate Harnett, an assistant professor of psychiatry at Harvard Medical School, to study how the brain responds to traumatic events and extreme stress, including the events and stress related to racism. So how does one go about measuring the impact of zoomed out, societal-scale issues on the individual? Harnett is the first to admit, it's not the simplest task. "It's very difficult for neuroimaging to look specifically at redlining," notes Harnett. But he can—indirectly. For example, Harnett has used inequities in neighborhood resources as a way of tracking or measuring structural racism. "We're able to look at these sort of proxy measures in these outcomes of structural racism and then correlate those with both brain and behavioral responses to stress or trauma and see how they tie with different psychiatric disorders like PTSD," Harnett says. In other research, Harnett and Fani have looked at correlations between racial discrimination and the response to threat in Black women who had experienced trauma. Fani says patients who experience PTSD tend to be more vigilant or show hyperarousal and be startled easily. Fani says their bodies are in a constant state of fight or flight—even when they're in a safe situation. But in patients who've also experienced racial discrimination, Fani says she sees the opposite effect: They show an increased activation in areas related to emotion regulation. In some ways, Fani says this activation can be adaptive. For example, people may experience microaggressions or discrimination at work and need to regulate their emotional response in order to get through the moment. But when people have to utilize this strategy over long periods of time, Fani and Harnett think it may contribute to the degradation they've seen in other areas in the brain. © 2024 npr

Keyword: Stress; Aggression
Link ID: 29114 - Posted: 01.27.2024

By Jude Coleman When it comes to tail wagging among dogs, some questions still hound researchers. We know that domesticated dogs (Canis familiaris) use their tails to communicate — with other dogs as well as humans — and even what various types of wags mean, researchers note in a new review of the scientific literature. But we don’t know why dogs seem to wag more than other canines or even how much of it is under their control, ethologist Silvia Leonetti and colleagues report January 17 in Biology Letters. “Among all possible animal behavior that humans experience in everyday life, domestic dog tail wagging is one of the most common,” says Leonetti, who is now at the University of Turin in Italy. “But a lot of dog behavior remains a scientific enigma.” So Leonetti and her colleagues pored through previous studies to figure out what elements of tail wagging are understood and which remain mysterious. They also hypothesized about the behavior’s origins: Perhaps tail wagging placates some human need for rhythm, the researchers suggest, or maybe the behavior is a genetic tagalong, a trait tied to others that humans bred into domesticated dogs. “People think wagging tail equals happy dog. But it’s actually a lot more complicated than that,” says Emily Bray, an expert in canine cognition at the University of Arizona in Tucson who was not involved with the work. Understanding why dogs wag their tails is important partly from an animal welfare perspective, she says, as it could help dog owners read their pups’ cues better. One main thing that researchers know about tail wagging is that it’s used predominantly for communication instead of locomotion, like a whale, or swatting away bugs, like a horse. Wagging also means different things depending on how the tail is wagged, such as its height or side-to-side movement. © Society for Science & the Public 2000–2024.

Keyword: Animal Communication; Emotions
Link ID: 29103 - Posted: 01.18.2024

By Elissa Welle Many of the physicians who worked on the current diagnostic and treatment guidelines for psychiatric conditions in the United States have financial ties to pharmaceutical companies, according to a study published today in The BMJ. Nearly 60 percent of the 92 U.S.-based physicians who shepherded the Diagnostic and Statistical Manual of Mental Disorders, fifth edition, text revision (DSM-5-TR) accepted industry payments totaling $14.2 million during the three years prior to working on the manual, the study shows. The results raise questions about systemic “economies of influence” over a document used by public health officials, health insurance plans and drug regulators, says lead investigator Lisa Cosgrove, professor of counseling and school psychology and a faculty fellow at the Applied Ethics Center at the University of Massachusetts, Boston. “Financial conflicts of interest, industry ties don’t point to wrongdoing — we’re not saying that people did anything wrong consciously,” Cosgrove says. “It’s just implicit bias.” DSM-5-TR decision-makers were not allowed to receive more than $5,000 from industry, according to a statement to The Transmitter by a spokesperson for the American Psychiatric Association (APA), which published the DSM-5-TR in March 2022. And an independent committee reviewed financial and non-financial disclosures for all other contributors to the revision. The text revision centered on literature searches to incorporate new scientific findings since the publication of the DSM-5 in 2013, the spokesperson wrote. “Any rare, minor instances of content that connected a diagnosis to a therapy were omitted from DSM-5-TR,” the spokesperson wrote. “No content was found in the submitted text that related to a specific treatment for which industry funding may have been provided for related research.” © 2023 Simons Foundation.

Keyword: Depression; Schizophrenia
Link ID: 29096 - Posted: 01.13.2024

By Amber Dance 01.08.2024 We all want to be happy — and for decades, psychologists have tried to figure out how we might achieve that blissful state. The field’s many surveys and experiments have pointed to a variety of approaches, from giving stuff away to quitting Facebook to forcing one’s face into a toothy grin. But psychology has undergone serious upheaval over the last decade, as researchers realized that many studies were unreliable and unrepeatable. That has led to a closer scrutiny of psychological research methods, with the study of happiness no exception. So — what really makes us happy? Under today’s more careful microscope, some routes to happiness seem to hold up, while others appear not to, or have yet to re-prove themselves. Here’s what we know so far, and what remains to be reassessed, according to a new analysis in the Annual Review of Psychology. One long-standing hypothesis is that smiling makes you feel happier. In a classic 1988 study, researchers asked 92 Illinois undergraduates to hold a felt tip pen in their mouth either with their teeth, forcing an unnatural grin, or with their lips, making them pout. The students then looked at four examples of The Far Side comics. On average, those with the forced smiles found the one-panel comics slightly funnier than those with the forced pouts. But when 17 different research labs got together to retest the pen-clench smile’s effects on 1,894 new participants, the finding failed to hold up, the researchers reported in 2016. The repetition study was part of a broader effort to counter psychology’s reproducibility crisis, which in part has been attributed to the variety of ways in which researchers could examine and reanalyze their data until they arrived at publishable results. “It’s kind of like shooting a bunch of arrows at the wall and drawing the bullseye on after,” says Elizabeth Dunn, a social psychologist at the University of British Columbia in Vancouver and coauthor of the new Annual Review of Psychology paper.

Keyword: Emotions
Link ID: 29086 - Posted: 01.09.2024

By Max Kozlov Shredded iboga root, the main ingredient in the psychedelic drug ibogaine, is prepared for use in a traditional ceremony in Gabon.Credit: Rachel Nuwer Psychedelic drugs such as MDMA and psilocybin, the hallucinogenic compound found in magic mushrooms, have promised to revolutionize psychiatric treatments. Now, a small trial in military veterans suggests that a lesser-known, potent psychedelic drug called ibogaine could be used to treat traumatic brain injury (TBI). One month after ibogaine treatment, the veterans reported that TBI symptoms such as post-traumatic stress disorder (PTSD) and depression had decreased by more than 80%, on average1. “The drug seems to have a broad, dramatic and consistent effect,” says Nolan Williams, a neuroscientist at Stanford University in California and a co-author of the study. The results of the trial, which did not include a control group, are published today in Nature Medicine. These data support launching rigorous trials to test the drug, says Alan Davis, a clinical psychologist at the Ohio State University in Columbus. However, they note that MDMA and psilocybin, which are already in late-stage trials, will be “much better candidates for meeting the needs of this community”. Ibogaine will require years of study to determine its efficacy and safety, Davis says. Warfare’s lasting effects Ibogaine is made from the bark of a shrub (Tabernanthe iboga) native to Central Africa, where it is used for ceremonial purposes. Researchers have tended to shy away from exploring the use of ibogaine for the treatment of conditions other than opioid dependence and withdrawal2, because it is tightly regulated in many countries and can cause fatal heartbeat irregularities, says Maria Steenkamp, a clinical psychologist who studies PTSD in veterans at the NYU Grossman School of Medicine in New York City. But the available therapies for PTSD and other conditions don’t help everybody, Steenkamp says. “We are desperately in need of new interventions.” © 2024 Springer Nature Limited

Keyword: Stress; Drug Abuse
Link ID: 29082 - Posted: 01.06.2024

Saga Briggs Trauma is not merely a phenomenon of the mind but also a condition physically embedded in the body, often eluding our conscious awareness and affecting our overall health. That was the main argument in psychiatrist Bessel van der Kolk’s 2014 bestseller The Body Keeps the Score, which quickly became a modern classic among trauma researchers, clinicians, and survivors. The book shifted how many in the West view psychiatric illness, which was often viewed solely through a psychological or neurochemical lens, and it sparked new interest in more holistic treatments for trauma that had long been considered alternative: yoga, eye movement desensitization and reprocessing therapy (EMDR), the performing arts, and psychedelics, to name a few. But what does it really mean for the body to “keep the score”? Is it biologically possible for the viscera to actually store and release trauma? In his book, van der Kolk writes: “The body keeps the score. If the memory of trauma is encoded in the viscera, in heartbreaking and gut-wrenching emotions, in autoimmune disorders and skeletal/muscular problems, and if mind/brain/visceral communication is the royal road to emotion regulation, this demands a radical shift in our therapeutic assumptions.” Can the body “keep score”? Recently, neuroscientists have expressed skepticism over the notion that the body can “keep score” of anything. In a 2023 Big Think video, Lisa Feldman Barrett argued that everything, including trauma, is in our heads, and that “the brain keeps the score and the body is the scorecard.” In her view, everything we experience is constructed by the brain, which learns to predict how we will feel based on past experiences, issues, and sensations that seem to come from our body but actually come from our brain. “When you feel your heart beating, you are not feeling it in your chest, you are feeling it in your brain,” she said. “Your body is always sending sensory signals to the brain, of course, but emotions are made in the brain, not in the body. They are experienced in the brain, like everything else you experience, not in the body. If you experience a trauma, you experience it in your brain.”

Keyword: Emotions; Stress
Link ID: 29031 - Posted: 12.06.2023

By Ellen Barry At the root of post-traumatic stress disorder, or PTSD, is a memory that cannot be controlled. It may intrude on everyday activity, thrusting a person into the middle of a horrifying event, or surface as night terrors or flashbacks. Decades of treatment of military veterans and sexual assault survivors have left little doubt that traumatic memories function differently from other memories. A group of researchers at Yale University and the Icahn School of Medicine at Mount Sinai set out to find empirical evidence of those differences. The team conducted brain scans of 28 people with PTSD while they listened to recorded narrations of their own memories. Some of the recorded memories were neutral, some were simply “sad,” and some were traumatic. The brain scans found clear differences, the researchers reported in a paper published on Thursday in the journal Nature Neuroscience. The people listening to the sad memories, which often involved the death of a family member, showed consistently high engagement of the hippocampus, part of the brain that organizes and contextualizes memories. When the same people listened to their traumatic memories — of sexual assaults, fires, school shootings and terrorist attacks — the hippocampus was not involved. “What it tells us is that the brain is in a different state in the two memories,” said Daniela Schiller, a neuroscientist at the Icahn School of Medicine at Mount Sinai and one of the authors of the study. She noted that therapies for PTSD often sought to help people organize their memory so they can view it as distant from the present. “Now we find something that potentially can explain it in the brain,” she said. “The brain doesn’t look like it’s in a state of memory; it looks like it is a state of present experience.” Indeed, the authors conclude in the paper, “traumatic memories are not experienced as © 2023 The New York Times Company

Keyword: Learning & Memory; Stress
Link ID: 29030 - Posted: 12.02.2023