Links for Keyword: Language

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 663

Christie Wilcox If it walks like a duck and talks like a person, it’s probably a musk duck (Biziura lobata)—the only waterfowl species known that can learn sounds from other species. The Australian species’ facility for vocal learning had been mentioned anecdotally in the ornithological literature; now, a paper published September 6 in Philosophical Transactions of the Royal Society B reviews and discusses the evidence, which includes 34-year-old recordings made of a human-reared musk duck named Ripper engaging in an aggressive display while quacking “you bloody fool.” Ripper quacking "you bloody fool" while being provoked by a person separated from him by a fence The Scientist spoke with the lead author on the paper, Leiden University animal behavior researcher Carel ten Cate, to learn more about these unique ducks and what their unexpected ability reveals about the evolution of vocal learning. The Scientist: What is vocal learning? Carel ten Cate: Vocal learning, as it is used in this case, is that animals and humans, they learn their sounds from experience. So they learn from what they hear around them, which will usually be the parents, but it can also be other individuals. And if they don’t get that sort of exposure, then they will be unable to produce species-specific vocalizations, or in the human case, speech sounds and proper spoken language. © 1986–2021 The Scientist.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27987 - Posted: 09.13.2021

By Carolyn Wilke Babies may laugh like some apes a few months after birth before transitioning to chuckling more like human adults, a new study finds. Laughter links humans to great apes, our evolutionary kin (SN: 6/4/09). Human adults tend to laugh while exhaling (SN: 6/10/15), but chimpanzees and bonobos mainly laugh in two ways. One is like panting, with sound produced on both in and out breaths, and the other has outbursts occurring on exhales, like human adults. Less is known about how human babies laugh. So Mariska Kret, a cognitive psychologist at Leiden University in the Netherlands, and colleagues scoured the internet for videos with laughing 3- to 18-month-olds, and asked 15 speech sound specialists and thousands of novices to judge the babies’ laughs. After evaluating dozens of short audio clips, experts and nonexperts alike found that younger infants laughed during inhalation and exhalation, while older infants laughed more on the exhale. That finding suggests that infants’ laughter becomes less apelike with age, the researchers report in the September Biology Letters. Humans start to laugh around 3 months of age, but early on, “it hasn’t reached its full potential,” Kret says. Both babies’ maturing vocal tracts and their social interactions may influence the development of the sounds, the researchers say.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 13: Memory and Learning
Link ID: 27983 - Posted: 09.11.2021

By Jonathan Lambert At least 65 million years of evolution separate humans and greater sac-winged bats, but these two mammals share a key feature of learning how to speak: babbling. Just as human infants babble their way from “da-da-da-da” to “Dad,” wild bat pups (Saccopteryx bilineata) learn the mating and territorial songs of adults by first babbling out the fundamental syllables of the vocalizations, researchers report in the Aug. 20 Science. These bats now join humans as the only clear examples of mammals who learn to make complex vocalizations through babbling. “This is a hugely important step forward in the study of vocal learning,” says Tecumseh Fitch, an evolutionary biologist at the University of Vienna not involved in the new study. “These findings suggest that there are deep parallels between how humans and young bats learn to control their vocal apparatus,” he says. The work could enable future studies that might allow researchers to peer deeper into the brain activity that underpins vocal learning. Before complex vocalizations, whether words or mating songs, can be spoken or sung, vocalizers must learn to articulate the syllables that make up a species’s vocabulary, says Ahana Fernandez, an animal behavior biologist at the Museum für Naturkunde in Berlin. “Babbling is a way of practicing,” and honing those vocalizations, she says. The rhythmic, repetitive “ba-ba-ba’s” and “ga-ga-ga’s” of human infants may sound like gibberish, but they are necessary exploratory steps toward learning how to talk. Seeing whether babbling is required for any animal that learns complex vocalizations necessitates looking in other species. © Society for Science & the Public 2000–2021.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 27957 - Posted: 08.21.2021

Lydia Denworth Lee Reeves always wanted to be a veterinarian. When he was in high school in the Washington, D.C., suburbs, he went to an animal hospital near his house on a busy Saturday morning to apply for a job. The receptionist said the doctor was too busy to talk. But Reeves was determined and waited. Three and a half hours later, after all the dogs and cats had been seen, the veterinarian emerged and asked Reeves what he could do for him. Reeves, who has stuttered since he was three years old, had trouble answering. “I somehow struggled out the fact that I wanted the job and he asked me what my name was,” he says. “I couldn’t get my name out to save my life.” The vet finally reached for a piece of paper and had Reeves write down his name and add his phone number, but he said there was no job available. “I remember walking out of that clinic that morning thinking that essentially my life was over,” Reeves says. “Not only was I never going to become a veterinarian, but I couldn’t even get a job cleaning cages.” More than 50 years have passed. Reeves, who is now 72, has gone on to become an effective national advocate for people with speech impairments, but the frustration and embarrassment of that day are still vivid. They are also emblematic of the complicated experience that is stuttering. Technically, stuttering is a disruption in the easy flow of speech, but the physical struggle and the emotional effects that often go with it have led observers to wrongly attribute the condition to defects of the tongue or voice box, problems with cognition, emotional trauma or nervousness, forcing left-handed children to become right-handed, and, most unfortunately, poor parenting. Freudian psychiatrists thought stuttering represented “oral-sadistic conflict,” whereas the behavioralists argued that labeling a child a stutterer would exacerbate the problem. Reeves’s parents were told to call no attention to his stutter—wait it out, and it would go away. © 2021 Scientific American,

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27942 - Posted: 08.11.2021

By Jonathan Lambert When one naked mole-rat encounters another, the accent of their chirps might reveal whether they’re friends or foes. These social rodents are famous for their wrinkly, hairless appearance. But hang around one of their colonies for a while, and you’ll notice something else — they’re a chatty bunch. Their underground burrows resound with near-constant chirps, grunts, squeaks and squeals. Now, computer algorithms have uncovered a hidden order within this cacophony, researchers report in the Jan. 29 Science. These distinctive chirps, which pups learn when they’re young, help the mostly blind, xenophobic rodents discern who belongs, strengthening the bonds that maintain cohesion in these highly cooperative groups. “Language is really important for extreme social behavior, in humans, dolphins, elephants or birds,” says Thomas Park, a biologist at the University of Illinois Chicago who wasn’t involved in the study. This work shows naked mole-rats (Heterocephalus glaber) belong in those ranks as well, Park says. Naked mole-rat groups seem more like ant or termite colonies than mammalian societies. Every colony has a single breeding queen who suppresses the reproduction of tens to hundreds of nonbreeding worker rats that dig elaborate subterranean tunnels in search of tubers in eastern Africa (SN: 10/18/04). Food is scarce, and the rodents vigorously attack intruders from other colonies. While researchers have long noted the rat’s raucous chatter, few actually studied it. “Naked mole-rats are incredibly cooperative and incredibly vocal, and no one has really looked into how these two features influence one another,” says Alison Barker, a neuroscientist at the Max Delbrück Center for Molecular Medicine in Berlin. © Society for Science & the Public 2000–2021.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27673 - Posted: 01.30.2021

By Lisa Sanders, M.D. “You need to call an ambulance,” the familiar voice from her doctor’s office urged the frightened 59-year-old woman. “Or should I do it for you?” No, she replied shakily. I can do it. The woman looked down at the phone in her hand; there were two of them. She closed one eye and the second phone disappeared. Then she dialed 911. It had been a hellish few days. Five days earlier, she noticed that she was having trouble walking. Her legs couldn’t or wouldn’t follow her brain’s instructions. She had to take these ungainly baby steps to get anywhere. Her muscles felt weak; her feet were inert blocks. Her hands shook uncontrollably. She vomited half a dozen times a day. The week before, she decided to stop drinking, and she recognized the shaking and vomiting as part of that process. The trouble walking, that was new. But that’s not why she called her doctor. The previous day, she was driving home and was just a block away when suddenly there were two of everything. Stone-cold sober and seeing double. There were two dotted lines identifying the middle of her quiet neighborhood street in South Portland, Maine. Two sets of curbs in front of two sets of sidewalks. She stopped the car, rubbed her eyes and discovered that the second objects slid back into the first when one eye stayed covered. She drove home with her face crinkled in an awkward wink. At home, she immediately called her doctor’s office. They wanted to send an ambulance right then. But she didn’t have health insurance. She couldn’t afford either the ambulance or the hospital. She would probably be better by the next day, she told the young woman on the phone. But the next day was the same. And when she called the doctor’s office this time, the medical assistant’s suggestion that she call an ambulance made a lot more sense. The woman was embarrassed by the siren and flashing lights. Her neighbors would be worried. But she couldn’t deny the relief she felt as she watched the ambulance pull up. The E.M.T.s helped her to her feet and onto the stretcher, then drove her to nearby Northern Light Mercy Hospital. © 2020 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27607 - Posted: 12.05.2020

Amber Dance Gerald Maguire has stuttered since childhood, but you might not guess it from talking to him. For the past 25 years, he has been treating his disorder with antipsychotic medications not officially approved for the condition. Only with careful attention might you discern his occasional stumble on multisyllabic words like "statistically" and "pharmaceutical." Maguire has plenty of company: More than 70 million people worldwide, including about 3 million Americans, stutter — they have difficulty with the starting and timing of speech, resulting in halting and repetition. That number includes approximately 5 percent of children (many of whom outgrow the condition) and 1 percent of adults. Their numbers include presidential candidate Joe Biden, deep-voiced actor James Earl Jones, and actress Emily Blunt. Though they and many others, including Maguire, have achieved career success, stuttering can contribute to social anxiety and draw ridicule or discrimination. Maguire, a psychiatrist at the University of California, Riverside, has been treating people who stutter, and researching potential treatments, for decades. He's now embarking on a clinical trial of a new medication, ecopipam, that streamlined speech and improved quality of life in a small pilot study in 2019. Others, meanwhile, are delving into the root causes of stuttering. In past decades, therapists mistakenly attributed stuttering to defects of the tongue and voice box, to anxiety, trauma, or even poor parenting — and some still do. Yet others have long suspected that neurological problems might underlie stuttering, says J. Scott Yaruss, a speech-language pathologist at Michigan State University. The first data to back up that hunch came in 1991, when researchers reported altered blood flow in the brains of people who stuttered. Since then research has made it more apparent that stuttering is all in the brain. "We are in the middle of an absolute explosion of knowledge being developed about stuttering," Yaruss says. ® 2020 The Week Publications Inc.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27565 - Posted: 11.04.2020

By Benedict Carey For a couple of minutes on Thursday, the sprawling, virtual Democratic National Convention seemed to hold its collective breath as 13-year-old Brayden Harrington of Concord, N.H., addressed the nation from his bedroom, occasionally stumbling on his words. “I’m a regular kid,” he said into a home camera, and a recent meeting with the candidate “made me feel confident about something that has bothered me my whole life.” Joe Biden and Mr. Harrington have had to manage stuttering, and the sight of the teenager openly balking on several words, including “stutter,” was a striking reminder of how the speech disorder can play havoc with sociability, relationships, even identity. Movies like “The King’s Speech,” and books like Philip Roth’s “American Pastoral,” explore how consequential managing the disorder can be, just as Mr. Biden’s own story does. How many people stutter? The basic numbers are known: About one in 10 children will exhibit some evidence of a stutter — it usually starts between ages 2 and 7 — and 90 percent of them will grow out of it before adulthood. Around 1 percent of the population carries the speech problem for much of their lives. For reasons not understood, boys are twice as likely to stutter, and nearly four times as likely to continue doing so into adulthood. And it is often anxiety that triggers bursts of verbal stumbling — which, in turn, create a flood of self-conscious stress. When Mr. Harrington got stuck for a couple of seconds on the “s” in “stutter,” he turned his head and his eyes fluttered — an embodiment of physical and mental effort — before saying, “It is really amazing that someone like me could get advice from” a presidential candidate. About half of children who stutter are related to someone else who does, but it is impossible to predict who will develop the speech disorder. There are no genes for stuttering; and scientists do not know what might happen after conception, during development, that predisposes children to struggle with speaking in this way. © 2020 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 14: Attention and Higher Cognition
Link ID: 27431 - Posted: 08.22.2020

By Bruce Bower An aptitude for mentally stringing together related items, often cited as a hallmark of human language, may have deep roots in primate evolution, a new study suggests. In lab experiments, monkeys demonstrated an ability akin to embedding phrases within other phrases, scientists report June 26 in Science Advances. Many linguists regard this skill, known as recursion, as fundamental to grammar (SN: 12/4/05) and thus peculiar to people. But “this work shows that the capacity to represent recursive sequences is present in an animal that will never learn language,” says Stephen Ferrigno, a Harvard University psychologist. Recursion allows one to elaborate a sentence such as “This pandemic is awful” into “This pandemic, which has put so many people out of work, is awful, not to mention a health risk.” Ferrigno and colleagues tested recursion in both monkeys and humans. Ten U.S. adults recognized recursive symbol sequences on a nonverbal task and quickly applied that knowledge to novel sequences of items. To a lesser but still substantial extent, so did 50 U.S. preschoolers and 37 adult Tsimane’ villagers from Bolivia, who had no schooling in math or reading. Those results imply that an ability to grasp recursion must emerge early in life and doesn’t require formal education. Three rhesus monkeys lacked humans’ ease on the task. But after receiving extra training, two of those monkeys displayed recursive learning, Ferrigno’s group says. One of the two animals ended up, on average, more likely to form novel recursive sequences than about three-quarters of the preschoolers and roughly half of the Bolivian villagers. © Society for Science & the Public 2000–2020.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27332 - Posted: 06.27.2020

By Julia Hollingsworth, CNN (CNN)Laura Molles is so attuned to birds that she can tell where birds of some species are from just by listening to their song. She's not a real-world Dr Doolittle. She's an ecologist in Christchurch, New Zealand, who specializes in a little-known area of science: bird dialects. While some birds are born knowing how to sing innately, many need to be taught how to sing by adults -- just like humans. Those birds can develop regional dialects, meaning their songs sound slightly different depending on where they live. Think Boston and Georgia accents, but for birds. Just as speaking the local language can make it easier for humans to fit in, speaking the local bird dialect can increase a bird's chances of finding a mate. And, more ominously, just as human dialects can sometimes disappear as the world globalizes, bird dialects can be shaped or lost as cities grow. The similarities between human language and bird song aren't lost on Molles -- or on her fellow bird dialect experts. "There are wonderful parallels," said American ornithologist Donald Kroodsma, the author of "Birdsong for the Curious Naturalist: Your Guide to Listening." "Culture, oral traditions -- it's all the same." For centuries, bird song has inspired poets and musicians, but it wasn't until the 1950s that scientists really started paying attention to bird dialects. One of the pioneers of the field was a British-born behaviorist named Peter Marler, who became interested in the subject when he noticed that chaffinches in the United Kingdom sounded different from valley to valley. At first, he transcribed bird songs by hand, according to a profile of him in a Rockefeller University publication. Later, he used a sonagram, which Kroodsma describes on his website as "a musical score for birdsong." ("You really need to see these songs to believe them, our eyes are so much better than our ears," Kroodsma said.) © 2020 Cable News Network.Turner Broadcasting System, Inc.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 27303 - Posted: 06.17.2020

Nicola Davis Reading minds has just come a step closer to reality: scientists have developed artificial intelligence that can turn brain activity into text. While the system currently works on neural patterns detected while someone is speaking aloud, experts say it could eventually aid communication for patients who are unable to speak or type, such as those with locked in syndrome. “We are not there yet but we think this could be the basis of a speech prosthesis,” said Dr Joseph Makin, co-author of the research from the University of California, San Francisco. Writing in the journal Nature Neuroscience, Makin and colleagues reveal how they developed their system by recruiting four participants who had electrode arrays implanted in their brain to monitor epileptic seizures. These participants were asked to read aloud from 50 set sentences multiple times, including “Tina Turner is a pop singer”, and “Those thieves stole 30 jewels”. The team tracked their neural activity while they were speaking. This data was then fed into a machine-learning algorithm, a type of artificial intelligence system that converted the brain activity data for each spoken sentence into a string of numbers. To make sure the numbers related only to aspects of speech, the system compared sounds predicted from small chunks of the brain activity data with actual recorded audio. The string of numbers was then fed into a second part of the system which converted it into a sequence of words. © 2020 Guardian News & Media Limited

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 27155 - Posted: 03.31.2020

By James Gorman There’s something about a really smart dog that makes it seem as if there might be hope for the world. China is in the midst of a frightening disease outbreak and nobody knows how far it will spread. The warming of the planet shows no signs of stopping; it reached a record 70 degrees in Antarctica last week. Not to mention international tensions and domestic politics. But there’s a dog in Norway that knows not only the names of her toys, but also the names of different categories of toys, and she learned all this just by hanging out with her owners and playing her favorite game. So who knows what other good things could be possible? Right? This dog’s name is Whisky. She is a Border collie that lives with her owners and almost 100 toys, so it seems like things are going pretty well for her. Even though I don’t have that many toys myself, I’m happy for her. You can’t be jealous of a dog. Or at least you shouldn’t be. Whisky’s toys have names. Most are dog-appropriate like “the colorful rope” or “the small Frisbee.” However, her owner, Helge O. Svela said on Thursday that since the research was done, her toys have grown in number from 59 to 91, and he has had to give some toys “people” names, like Daisy or Wenger. “That’s for the plushy toys that resemble animals like ducks or elephants (because the names Duck and Elephant were already taken),” he said. During the research, Whisky proved in tests that she knew the names for at least 54 of her 59 toys. That’s not just the claim of a proud owner, and Mr. Svela is quite proud of Whisky, but the finding of Claudia Fugazza, an animal behavior researcher from Eötvös Loránd University in Budapest, who tested her. That alone makes Whisky part of a very select group, although not a champion. You may recall Chaser, another Border collie that knew the names of more than 1,000 objects and also knew words for categories of objects. And there are a few other dogs with shockingly large vocabularies, Dr. Fugazza said, including mixed breeds, and a Yorkie. These canine verbal prodigies are, however, few and far between. “It is really, really unusual, and it is really difficult to teach object names to dogs,” Dr. Fugazza said. © 2020 The New York Times Company

Related chapters from BN: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory and Learning
Link ID: 27063 - Posted: 02.21.2020

Thomas R. Sawallis and Louis-Jean Boë Sound doesn’t fossilize. Language doesn’t either. Even when writing systems have developed, they’ve represented full-fledged and functional languages. Rather than preserving the first baby steps toward language, they’re fully formed, made up of words, sentences and grammar carried from one person to another by speech sounds, like any of the perhaps 6,000 languages spoken today. So if you believe, as we linguists do, that language is the foundational distinction between humans and other intelligent animals, how can we study its emergence in our ancestors? Happily, researchers do know a lot about language – words, sentences and grammar – and speech – the vocal sounds that carry language to the next person’s ear – in living people. So we should be able to compare language with less complex animal communication. And that’s what we and our colleagues have spent decades investigating: How do apes and monkeys use their mouth and throat to produce the vowel sounds in speech? Spoken language in humans is an intricately woven string of syllables with consonants appended to the syllables’ core vowels, so mastering vowels was a key to speech emergence. We believe that our multidisciplinary findings push back the date for that crucial step in language evolution by as much as 27 million years. The sounds of speech Say “but.” Now say “bet,” “bat,” “bought,” “boot.” The words all begin and end the same. It’s the differences among the vowel sounds that keep them distinct in speech. © 2010–2019, The Conversation US, Inc.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26893 - Posted: 12.12.2019

By Viorica Marian Psycholinguistics is a field at the intersection of psychology and linguistics, and one if its recent discoveries is that the languages we speak influence our eye movements. For example, English speakers who hear candle often look at a candy because the two words share their first syllable. Research with speakers of different languages revealed that bilingual speakers not only look at words that share sounds in one language but also at words that share sounds across their two languages. When Russian-English bilinguals hear the English word marker, they also look at a stamp, because the Russian word for stamp is marka. Even more stunning, speakers of different languages differ in their patterns of eye movements when no language is used at all. In a simple visual search task in which people had to find a previously seen object among other objects, their eyes moved differently depending on what languages they knew. For example, when looking for a clock, English speakers also looked at a cloud. Spanish speakers, on the other hand, when looking for the same clock, looked at a present, because the Spanish names for clock and present—reloj and regalo—overlap at their onset. The story doesn’t end there. Not only do the words we hear activate other, similar-sounding words—and not only do we look at objects whose names share sounds or letters even when no language is heard—but the translations of those names in other languages become activated as well in speakers of more than one language. For example, when Spanish-English bilinguals hear the word duck in English, they also look at a shovel, because the translations of duck and shovel—pato and pala, respectively—overlap in Spanish. © 2019 Scientific American

Related chapters from BN: Chapter 18: Attention and Higher Cognition; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 14: Attention and Higher Cognition; Chapter 15: Language and Lateralization
Link ID: 26875 - Posted: 12.06.2019

By Virginia Morell Say “sit!” to your dog, and—if he’s a good boy—he’ll likely plant his rump on the floor. But would he respond correctly if the word were spoken by a stranger, or someone with a thick accent? A new study shows he will, suggesting dogs perceive spoken words in a sophisticated way long thought unique to humans. “It’s a very solid and interesting finding,” says Tecumseh Fitch, an expert on vertebrate communication at the University of Vienna who was not involved in the research. The way we pronounce words changes depending on our sex, age, and even social rank. Some as-yet-unknown neural mechanism enables us to filter out differences in accent and pronunciation, helping us understand spoken words regardless of the speaker. Animals like zebra finches, chinchillas, and macaques can be trained to do this, but until now only humans were shown to do this spontaneously. In the new study, Holly Root-Gutteridge, a cognitive biologist at the University of Sussex in Brighton, U.K., and her colleagues ran a test that others have used to show dogs can recognize other dogs from their barks. The researchers filmed 42 dogs of different breeds as they sat with their owners near an audio speaker that played six monosyllabic, noncommand words with similar sounds, such as “had,” “hid,” and “who’d.” The words were spoken—not by the dog’s owner—but by several strangers, men and women of different ages and with different accents. © 2019 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26866 - Posted: 12.04.2019

Jon Hamilton When we hear a sentence, or a line of poetry, our brains automatically transform the stream of sound into a sequence of syllables. But scientists haven't been sure exactly how the brain does this. Now, researchers from the University of California, San Francisco, think they've figured it out. The key is detecting a rapid increase in volume that occurs at the beginning of a vowel sound, they report Wednesday in Science Advances. "Our brain is basically listening for these time points and responding whenever they occur," says Yulia Oganian, a postdoctoral scholar at UCSF. The finding challenges a popular idea that the brain monitors speech volume continuously to detect syllables. Instead, it suggests that the brain periodically "samples" spoken language looking for specific changes in volume. The finding is "in line" with a computer model designed to simulate the way a human brain decodes speech, says Oded Ghitza, a research professor in the biomedical engineering department at Boston University who was not involved in the study. Detecting each rapid increase in volume associated with a syllable gives the brain, or a computer, an efficient way to deal with the "stream" of sound that is human speech, Ghitza says. And syllables, he adds, are "the basic Lego blocks of language." Oganian's study focused on a part of the brain called the superior temporal gyrus. "It's an area that has been known for about 150 years to be really important for speech comprehension," Oganian says. "So we knew if you can find syllables somewhere, it should be there." The team studied a dozen patients preparing for brain surgery to treat severe epilepsy. As part of the preparation, surgeons had placed electrodes over the area of the brain involved in speech. © 2019 npr

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 26841 - Posted: 11.21.2019

By Nicholas Bakalar People who never learned to read and write may be at increased risk for dementia. Researchers studied 983 adults 65 and older with four or fewer years of schooling. Ninety percent were immigrants from the Dominican Republic, where there were limited opportunities for schooling. Many had learned to read outside of school, but 237 could not read or write. Over an average of three and a half years, the participants periodically took tests of memory, language and reasoning. Illiterate men and women were 2.65 times as likely as the literate to have dementia at the start of the study, and twice as likely to have developed it by the end. Illiterate people, however, did not show a faster rate of decline in skills than those who could read and write. The analysis, in Neurology, controlled for sex, hypertension, diabetes, heart disease and other dementia risk factors. “Early life exposures and early life social opportunities have an impact on later life,” said the senior author, Jennifer J. Manly, a professor of neuropsychology at Columbia. “That’s the underlying theme here. There’s a life course of exposures and engagements and opportunities that lead to a healthy brain later in life.” “We would like to expand this research to other populations,” she added. “Our hypothesis is that this is relevant and consistent across populations of illiterate adults.” © 2019 The New York Times Company

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 4: Development of the Brain; Chapter 15: Language and Lateralization
Link ID: 26838 - Posted: 11.21.2019

By Natalia Sylvester My parents refused to let my sister and me forget how to speak Spanish by pretending they didn’t understand when we spoke English. Spanish was the only language we were allowed to speak in our one-bedroom apartment in Miami in the late 1980s. We both graduated from English as a second language lessons in record time as kindergartners and first graders, and we longed to play and talk and live in English as if it were a shiny new toy. “No te entiendo,” my mother would say, shaking her head and shrugging in feigned confusion anytime we slipped into English. My sister and I would let out exasperated sighs at having to repeat ourselves in Spanish, only to be interrupted by a correction of our grammar and vocabulary after every other word. One day you’ll thank me, my mother retorted. That day has come to pass 30 years later in ordinary places like Goodwill, a Walmart parking lot, a Costco Tire Center. I’m most thankful that I can speak Spanish because it has allowed me to help others. There was the young mother who wanted to know whether she could leave a cumbersome diaper bin aside at the register at Goodwill while she shopped. The cashier shook her head dismissively and said she didn’t understand. It wasn’t difficult to read the woman’s gestures — she was struggling to push her baby’s carriage while lugging the large box around the store. Even after I told the cashier what the woman was saying, her irritation was palpable. The air of judgment is one I’ve come to recognize: How dare this woman not speak English, how dare this other woman speak both English and Spanish. It was a small moment, but it speaks to how easy it would have been for the cashier to ignore a young Latina mother struggling to care for her child had there not been someone around to interpret. “I don’t understand,” she kept saying, though the mother’s gestures transcended language. I choose not to understand is what she really meant. © 2019 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26629 - Posted: 09.21.2019

By Catherine Matacic Italians are some of the fastest speakers on the planet, chattering at up to nine syllables per second. Many Germans, on the other hand, are slow enunciators, delivering five to six syllables in the same amount of time. Yet in any given minute, Italians and Germans convey roughly the same amount of information, according to a new study. Indeed, no matter how fast or slowly languages are spoken, they tend to transmit information at about the same rate: 39 bits per second, about twice the speed of Morse code. “This is pretty solid stuff,” says Bart de Boer, an evolutionary linguist who studies speech production at the Free University of Brussels, but was not involved in the work. Language lovers have long suspected that information-heavy languages—those that pack more information about tense, gender, and speaker into smaller units, for example—move slowly to make up for their density of information, he says, whereas information-light languages such as Italian can gallop along at a much faster pace. But until now, no one had the data to prove it. Scientists started with written texts from 17 languages, including English, Italian, Japanese, and Vietnamese. They calculated the information density of each language in bits—the same unit that describes how quickly your cellphone, laptop, or computer modem transmits information. They found that Japanese, which has only 643 syllables, had an information density of about 5 bits per syllable, whereas English, with its 6949 syllables, had a density of just over 7 bits per syllable. Vietnamese, with its complex system of six tones (each of which can further differentiate a syllable), topped the charts at 8 bits per syllable. © 2019 American Association for the Advancement of Science

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26576 - Posted: 09.05.2019

By Carolyn Wilke In learning to read, squiggles and lines transform into letters or characters that carry meaning and conjure sounds. A trio of cognitive neuroscientists has now mapped where that journey plays out inside the brain. As readers associate symbols with pronunciation and part of a word, a pecking order of brain areas processes the information, the researchers report August 19 in the Proceedings of the National Academy of Sciences. The finding unveils some of the mystery behind how the brain learns to tie visual cues with language (SN Online: 4/27/16). “We didn’t evolve to read,” says Jo Taylor, who is now at University College London but worked on the study while at Aston University in Birmingham, England. “So we don’t [start with] a bit of the brain that does reading.” Taylor — along with Kathy Rastle at Royal Holloway University of London in Egham and Matthew Davis at the University of Cambridge — zoomed in on a region at the back and bottom of the brain, called the ventral occipitotemporal cortex, that is associated with reading. Over two weeks, the scientists taught made-up words written in two unfamiliar, archaic scripts to 24 native English–speaking adults. The words were assigned the meanings of common nouns, such as lemon or truck. Then the researchers used functional MRI scans to track which tiny chunks of brain in that region became active when participants were shown the words learned in training. © Society for Science & the Public 2000–2019

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 26548 - Posted: 08.27.2019