Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1120

By Ryan Dalton You might be forgiven for having never heard of the NotPetya cyberattack. It didn’t clear out your bank account, or share your social media passwords, or influence an election. But it was one of the most costly and damaging cyberattacks in history, for what it did target: shipping through ports. By the time the engineers at Maersk realized that their computers were infected with a virus, it was too late: worldwide shipping would grind to a halt for days. Imagine a similar situation, in which the target was another port: the synapse, the specialized port of communication between neurons. Much of our ability to learn and remember comes down to the behavior of synapses. What would happen then, if one neuron infected another with malware? Ports and synapses both run on rules, meant to ensure that their cargo can be exchanged not only quickly and reliably, but also adaptably, so that they can quickly adjust to current conditions and demands. This ‘synaptic plasticity’, is fundamental to the ability of animals to learn, and without it we would no more be able to tie our shoes than to remember our own names. Just as shipping rules are determined by treaties and laws, the rules of synaptic plasticity are written into a multitude of genes in our DNA. For example, one gene might be involved in turning up the volume on one side of the synapse, while another gene might ask the other side of the synapse to turn up the gain. Studying the function of these genes has been one of the core approaches to understanding what it is, at the microscopic level, to learn and to remember. © 2018 Scientific American

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25782 - Posted: 12.12.2018

In his enthralling 2009 collection of parables, Sum: Forty Tales from the Afterlives, the neuroscientist David Eagleman describes a world in which a person only truly dies when they are forgotten. After their bodies have crumbled and they leave Earth, all deceased must wait in a lobby and are allowed to pass on only after someone says their name for the last time. “The whole place looks like an infinite airport waiting area,” Eagleman writes. “But the company is terrific.” Most people leave just as their loved ones arrive — for it was only the loved ones who were still remembering. But the truly famous have to hang around for centuries; some, keen to be off, are with an “aching heart waiting for statues to fall”. Eagleman’s tale is an interpretation of what psychologists and social scientists call collective memory. Continued and shared attention to people and events is important because it can help to shape identity — how individuals see themselves as part of a group — and because the choice of what to commemorate, and so remember, influences the structures and priorities of society. This week in Nature Human Behaviour, researchers report a surprising discovery about collective memory: the pattern of its decay follows a mathematical law (C. Candia et al. Nature Hum. Behav. http://doi.org/cxq2; 2018). The attention we pay to academic papers, films, pop songs and tennis players decays in two distinct stages. In theory, the findings could help those who compete for society’s continued attention — from politicians and companies to environmental campaigners — to find ways to stay in the public eye, or at least in the public’s head. © 2018 Springer Nature Publishing AG

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25780 - Posted: 12.12.2018

By Dan Falk When the ghost of King Hamlet commands his son to “remember me,” the prince takes the message to heart, vowing to “wipe away” all that is trivial in his accumulated memory, so that “thy commandment alone shall live / Within the book and volume of my brain.” Of course, it’s not quite that simple, and we often find ourselves doing battle with our memories — struggling to recall something that we’ve forgotten, or wishing to forget something that nonetheless intrudes into consciousness. Humans are masters at leaping through time, vividly imagining the past while making richly detailed plans for the future. A long-forgotten memory can surface at any time. In Marcel Proust’s “In Search of Lost Time,” the narrator bites into a French pastry known as a madeleine and is instantly transported back in time. Suddenly a childhood memory “revealed itself” — it was the recollection of the snack his aunt used to share with him in her bedroom on Sunday mornings before mass. Poets and novelists got a head start, but for some 140 years now scientists, too, have been wrestling with memory. It’s this struggle that two Norwegian sisters, the novelist Hilde Østby and the neuropsychologist Ylva Østby, tackle in their engrossing book, “Adventures in Memory: The Science and Secrets of Remembering and Forgetting.” Copyright 2018 Undark

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25762 - Posted: 12.08.2018

Laura Sanders The uterus is best known for its baby-growing job. But the female organ may also have an unexpected role in memory, a study in rats suggests. The results, published online December 6 in Endocrinology, counter the idea that the nonpregnant uterus is an extraneous organ. That may have implications for the estimated 20 million women in the United States who have had hysterectomies. In the study, female rats either underwent removal of the uterus, ovaries, both organs or neither. Six weeks after surgery, researchers led by behavioral neuroscientist Heather Bimonte-Nelson of Arizona State University in Tempe began testing the rats on water mazes with platforms that were hidden just below the surface. Compared with the other groups, rats that lacked only a uterus were worse at remembering where to find the platforms as the tests turned progressively harder. The results suggest that signals that go from the uterus to the brain are somehow involved in remembering multiple bits of information at the same time. Rats lacking just a uterus had differences in their hormone levels, too, even though these rats kept their hormone-producing ovaries. Researchers have known for decades that hormones released by the ovaries can influence the brain. But finding that the uterus on its own can influence memory is a surprise, says neuroendocrinologist Victoria Luine of Hunter College of the City University of New York. Because many women have their uteruses removed but keep their ovaries, “this revelation brings up some interesting questions to explore.” |© Society for Science & the Public 2000 - 2018

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 25757 - Posted: 12.07.2018

By Neuroskeptic The science story of the past week was the claim from Chinese scientist He Jiankui that he has created gene-edited human babies. Prof. He reports that two twin girls have been born carrying modifications of the gene CCR5, which is intended to protect them against future HIV risk. It’s far from clear yet whether the gene-editing that He described has actually taken place – no data has yet been presented. The very prospect of genetically-modifying human beings has, however, led to widespread concern, with He’s claims being described as “monstrous“, “crazy” and “unethical”. All of which got me wondering: could there ever be a neuroscience experiment which attracted the same level of condemnation? What I’m asking here is whether there are neuroscience advances that would be considered inherently unethical. It would, of course, be possible to carry out any neuroscience experiment in an unethical way, by forcing or tricking people into participation. But are there experiments which would be unethical even if all the participants gave full, informed consent at every stage? Here are a couple of possibilities: Intelligence enhancement: Suppose it were possible to substantially boost human intelligence through some kind of technological means, perhaps a drug, or through brain stimulation. I suspect that many people would see this prospect as an ethical problem, because it would give users a definite advantage over non-users and thus, in effect, force people to use the technology in order to keep up. It would be a similar situation to the problem of doping in sports: if doping were widespread, it would be very difficult for non-dopers to compete.

Related chapters from BN8e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 25738 - Posted: 12.01.2018

Jef Akst After publishing a 2014 study showing that noninvasive magnetic stimulation of the brain boosted people’s ability to remember an association between two items, Northwestern University neuroscientist Joel Voss began fielding a lot of questions from patients and their families. “We’re of course guarded in the publication talking about what we found—small but reliable increases in memory ability,” he says (Science, 345:1054–57). But some of the news coverage of that paper alluded to the procedure’s potential to treat Alzheimer’s disease and other memory-related disorders. “I got calls—at least two a day for quite a long period of time—and emails: ‘My loved one is suffering from X, Y, or Z; thank God now you can cure it. How do we get to your lab?’” Voss says. He would have to explain to them that this was a scientific study, not an approved treatment. “There are a million steps between here and there, and maybe it would never work—we don’t really know.” But Voss’s team continues to connect those dots, in hopes that one day the technique—the use of magnetic fields to influence activity in neurons close to the brain’s surface—could help patients with any number of brain disorders, and perhaps cognitively healthy people as well. In August, the researchers reported that transcranial magnetic stimulation (TMS) could moderately improve episodic memory—the ability to remember people, events, and other things you’ve encountered in your life (as opposed to, say, how to do something)—when targeted at the correct part of the brain. Voss and his colleagues were interested in activating the hippocampus, a structure near the brain’s center that serves as a hub of memory production and storage. Because the hippocampus itself is inaccessible by TMS—the magnetic field falls off precipitously with depth, explains Voss—the researchers instead targeted areas of the brain where activity correlated with activity in the hippocampus, to try to activate the networks that link more-superficial regions with the deep-brain structure. © 1986 - 2018 The Scientist

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 25722 - Posted: 11.27.2018

Ashley Yeager For an hour a day, five days a week, mice in Hiroshi Maejima’s physiology lab at Hokkaido University in Sapporo, Japan, hit the treadmill. The researcher’s goal in having the animals follow the exercise routine isn’t to measure their muscle mass or endurance. He wants to know how exercise affects their brains. Researchers have long recognized that exercise sharpens certain cognitive skills. Indeed, Maejima and his colleagues have found that regular physical activity improves mice’s ability to distinguish new objects from ones they’ve seen before. Over the past 20 years, researchers have begun to get at the root of these benefits, with studies pointing to increases in the volume of the hippocampus, development of new neurons, and infiltration of blood vessels into the brain. Now, Maejima and others are starting to home in on the epigenetic mechanisms that drive the neurological changes brought on by physical activity. In October, Maejima’s team reported that the brains of rodents that ran had greater than normal histone acetylation in the hippocampus, the brain region considered the seat of learning and memory.1 The epigenetic marks resulted in higher expression of Bdnf, the gene for brain-derived neurotrophic factor (BDNF). By supporting the growth and maturation of new nerve cells, BDNF is thought to promote brain health, and higher levels of it correlate with improved cognitive performance in mice and humans. With a wealth of data on the benefits of working out emerging from animal and human studies, clinicians have begun prescribing exercise to patients with neurodegenerative diseases such as Parkinson’s and Alzheimer’s, as well as to people with other brain disorders, from epilepsy to anxiety. Many clinical trials of exercise interventions for neurodegenerative diseases, depression, and even aging are underway. Promising results could bolster the use of exercise as a neurotherapy. © 1986 - 2018 The Scientist

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 25713 - Posted: 11.24.2018

Andrew Anthony Of all the mysteries of the mind, perhaps none is greater than memory. Why do we remember some things and forget others? What is memory’s relationship to consciousness and our identities? Where and how is memory stored? How reliable are our memories? And why did our memory evolve to be so rich and detailed? In a sense there are two ways of looking at memory: the literary and the scientific. There is the Proustian model in which memory is about meaning, an exploration of the self, a subjective journey into the past. And then there is the analytical model, where memory is subjected to neurological study, psychological experiments and magnetic resonance imaging. A new book – or rather a recent translation of a two-year-old book – by a pair of Norwegian sisters seeks to marry the two approaches. The co-authors of Adventures in Memory: The Science and Secrets of Remembering and Forgetting are Ylva Østby, a clinical neuropsychologist, and Hilda Østby, an editor and novelist. Their book begins in 1564, with Julius Caesar Arantius performing a dissection of a human brain. Cutting deep into the temporal lobe, where it meets the brain stem, he encounters a small, wormlike ridge of tissue that resembles a sea horse. He calls it hippocampus – or “horse sea monster” in Latin. The significance of this discovery would take almost 400 years to come to light. As with so much to do with our understanding of the brain, the breakthrough came through a malfunction. An American named Henry Molaison suffered from acute epilepsy, and in 1953 he underwent an operation in which the hippocampi from both sides of his brain were removed. The surgery succeeded in controlling his epilepsy but at the cost of putting an end to his memory. © 2018 Guardian News and Media Limited

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25699 - Posted: 11.19.2018

Ned Rozell Alaska chickadees have proven themselves brainier than Colorado chickadees. A researcher at the University of California Davis once compared black-capped chickadees from Anchorage to chickadees from Windsor, Colorado, and found that the Alaska birds cached more sunflower seeds and found the seeds quicker when they later searched for them. The Alaska chickadees also had brains that contained more neurons than those of Colorado chickadees. Vladimir Pravosudov of the UC Davis psychology department performed the study to test the notion that northern birds would be better at hiding and finding seeds than birds in a more moderate climate. He chose to capture birds in Anchorage, which has a day length of about 5 hours, 30 minutes on Dec. 22, and compare them to birds he captured near Windsor, about 50 miles north of Denver, where the Dec. 22 day length is about 9 hours, 15 minutes. With the help of biologist Colleen Handel of the U.S. Geological Survey in Anchorage, Pravosudov captured 15 black-capped chickadees using a mist net at bird feeders around Anchorage in fall 2000. He later captured 12 black-capped chickadees near Windsor. All the birds went to his lab in Davis, where he gave them the same food and amount of daylight for 45 days. After 45 days he tested eight birds from Alaska and eight from Colorado in a room with 70 caching holes drilled in wooden blocks and trees. In late summer through fall, black-capped chickadees gather and hide seeds, insects and other foods to retrieve later, when they have fewer hours of daylight to feed and less food is available. Though black-capped chickadees live their entire lives within a few square acres, the species ranges from as far north as Anaktuvuk Pass in Alaska to as far south as New Mexico. © 2018 Anchorage Daily News

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25689 - Posted: 11.16.2018

Jon Hamilton You hear a new colleague's name. You get directions to the airport. You glance at a phone number you're about to call. These are the times you need working memory, the brain's system for temporarily holding important information. "Working memory is the sketchpad of your mind; it's the contents of your conscious thoughts," says Earl Miller, a professor of neuroscience at MIT's Picower Institute for Learning and Memory. It's also "a core component of higher cognitive functions like planning or language or intelligence," says Christos Constantinidis, a professor of neurobiology and anatomy at Wake Forest University. Miller and Constantinidis agree that working memory is critical to just about everything the brain does. They also agree that problems with working memory are a common symptom of brain disorders such as autism and schizophrenia. But they are on opposite sides of a lively debate about how working memory works. Both scientists are presenting evidence to support their position at the Society for Neuroscience meeting in San Diego this week. They also faced off with dual perspectives in the Journal of Neuroscience in August. Constantinidis backs what he calls the standard model of working memory, which has been around for decades. It says that when we want to keep new information like a phone number, neurons in the front of the brain start firing — and keep firing. © 2018 npr

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25647 - Posted: 11.05.2018

The transmission speed of neurons fluctuates in the brain to achieve an optimal flow of information required for day-to-day activities, according to a National Institutes of Health study. The results, appearing in PNAS, suggest that brain cells called astrocytes alter the transmission speed of neurons by changing the thickness of myelin, an insulation material, and the width of gaps in myelin called nodes of Ranvier, which amplify signals. “Scientists used to think that myelin could not be thinned except when destroyed in demyelinating diseases, such as multiple sclerosis,” said R. Douglas Fields, Ph.D., senior author and chief of the Section on Nervous System Development and Plasticity at NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). “Our study suggests that under normal conditions, the myelin sheath and structure of the nodes of Ranvier are dynamic, even in adults.” The brain is composed of neurons, which have extensions called axons that can stretch for long distances. Axons are wrapped by layers of myelin, which serve as insulation to increase the speed of signals relayed by neurons. Gaps between segments of myelin are called nodes of Ranvier, and the number and width of these gaps can also regulate transmission speed. “Myelin can be located far from the neuron’s synapse, where signals originate,” said NICHD’s Dipankar Dutta, Ph.D., the lead author of the study. “We wanted to understand how myelin, and the cells that regulate it, help synchronize signals that come from different areas of the brain.”

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25627 - Posted: 10.31.2018

By Gretchen Reynolds Ten minutes of mild, almost languorous exercise can immediately alter how certain parts of the brain communicate and coordinate with one another and improve memory function, according to an encouraging new neurological study. The findings suggest that exercise does not need to be prolonged or intense to benefit the brain and that the effects can begin far more quickly than many of us might expect. We already know that exercise can change our brains and minds. The evidence is extensive and growing. Multiple studies with mice and rats have found that when the animals run on wheels or treadmills, they develop more new brain cells than if they remain sedentary. Many of the new cells are clustered in the hippocampus, a portion of the brain that is essential for memory creation and storage. The active animals also perform better on tests of learning and memory. Equivalent experiments examining brain tissue are not possible in people. But some past studies have shown that people who exercise regularly tend to have a larger, healthier hippocampus than those who do not, especially as they grow older. Even one bout of exercise, research suggests, can help most of us to focus and learn better than if we sit still. But these studies usually have involved moderate or vigorous exercise, such as jogging or brisk walking and often for weeks or months at a time. Whether a single, brief spurt of very easy exercise will produce desirable changes in the brain has remained unclear. So for the new study, which was published in September in Proceedings of the National Academy of Sciences, scientists from the University of California, Irvine, and the University of Tsukuba in Japan turned to a group of healthy, young college students. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 25608 - Posted: 10.24.2018

By Cade Metz REDWOOD CITY, Calif. — In the global race to build artificial intelligence, it was a missed opportunity. Jeff Hawkins, a Silicon Valley veteran who spent the last decade exploring the mysteries of the human brain, arranged a meeting with DeepMind, the world’s leading A.I. lab. Scientists at DeepMind, which is owned by Google’s parent company, Alphabet, want to build machines that can do anything the brain can do. Mr. Hawkins runs a little company with one goal: figure out how the brain works and then reverse engineer it. The meeting, set for April at DeepMind’s offices in London, never happened. DeepMind employs hundreds of A.I. researchers along with a team of seasoned neuroscientists. But when Mr. Hawkins chatted with Demis Hassabis, one of the founders of DeepMind, before his visit, they agreed that almost no one at the London lab would understand his work. Mr. Hawkins says that before the world can build artificial intelligence, it must explain human intelligence so it can create machines that genuinely work like the brain. “You do not have to emulate the entire brain,” he said. “But you do have to understand how the brain works and emulate the important parts.” At his company, called Numenta, that is what he hopes to do. Mr. Hawkins, 61, began his career as an engineer, created two classic mobile computer companies, Palm and Handspring, and taught himself neuroscience along the way. Now, after more than a decade of quiet work at Numenta, he thinks he and a handful of researchers working with him are well on their way to cracking the problem.On Monday, at a conference in the Netherlands, he is expected to unveil their latest research, which he says explains the inner workings of cortical columns, a basic building block of brain function. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25575 - Posted: 10.15.2018

Laura Sanders The brain’s hippocampi may be the film editors of our lives, slicing our continuous experiences into discrete cuts that can be stored away as memories. That’s the idea raised by a new study that analyzed brain scan data from people watching films such as “Forrest Gump.” “Research like this helps us identify ‘What is an event, from the point of view of the brain?’ ” says memory psychologist Gabriel Radvansky of the University of Notre Dame in Indiana. Many laboratory tests of memory involve taking in discrete, dull lists of information. “So much research is done with these little bits and pieces — words, pictures, things like that,” Radvansky says. But those dry tidbits aren’t what the human brain usually handles. “The mind is built to deal with complex events.” As a closer approximation to real life, researchers used brain imaging data collected earlier as part of a larger project: While undergoing a functional MRI, 15 people watched “Forrest Gump,” and 253 people watched Alfred Hitchcock’s television drama “Bang! You’re Dead.” A separate group of 16 observers watched each of the productions and pressed buttons to indicate when they thought one event ended and another began. With the data in hand, cognitive neuroscientists Aya Ben-Yakov and Rik Henson, both of the University of Cambridge, aligned participants’ brain activity with the transition points marked by the 16 observers. A brain structure called the hippocampus, known to be important for memory and navigation, seemed particularly active at these junctures, the team reports October 8 in the Journal of Neuroscience. When the researchers looked at hippocampus behavior over the entire shows, the brain structure was most active when the observers had indicated a shift from one event to another. |© Society for Science & the Public 2000 - 2018.

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25548 - Posted: 10.09.2018

By Daniel T. Willingham You must read this article to understand it, but many people feel reading is not how they learn best. They would rather listen to an explanation or view a diagram. Researchers have formalized those intuitions into theories of learning styles. These theories are influential enough that many states (including New York) require future teachers to know them and to know how they might be used in the classroom. But there’s no good scientific evidence that learning styles actually exist. Over the last several decades, researchers have proposed dozens of theories, each suggesting a scheme to categorize learners. The best known proposes that some of us like words and others like pictures, but other theories make different distinctions: whether you like to solve problems intuitively or by analyzing them, for example, or whether you prefer to tackle a complex idea with an overview or by diving into details. If one of these theories were right, it would bring important benefits. In the classroom, a brief test would categorize children as this type of learner or that, and then a teacher could include more of this or that in their schooling. In the workplace, a manager might send one employee a memo but communicate the same information to another in a conversation. Does such matching work? To find out, researchers must determine individuals’ supposed learning style and then ask them to learn something in a way that matches or conflicts with it. For example, in an experiment testing the visual-auditory theory, researchers determined subjects’ styles by asking about their usual mental strategies: Do you spell an unfamiliar word by sounding it out or visualizing the letters? Do you give directions in words or by drawing a map? Next, researchers read statements, and participants rated either how easily the statement prompted a mental image (a visual learning experience) or how easy it was to pronounce (an auditory learning experience). The auditory learners should have remembered statements better if they focused on the sound rather than if they created visual images, and visual learners should have shown the opposite pattern. But they didn’t. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25547 - Posted: 10.08.2018

Jon Hamilton As a specialist in Alzheimer's prevention, Jessica Langbaum knows that exercising her mental muscles can help keep her brain sharp. But Langbaum, who holds a doctorate in psychiatric epidemiology, has no formal mental fitness program. She doesn't do crossword puzzles or play computer brain games. "Just sitting down and doing Sudoku isn't probably going to be the one key thing that's going to prevent you from developing Alzheimer's disease," she says. Instead of using a formal brain training program, she simply goes to work. "My job is my daily cognitive training," says Langbaum, the associate director of the Alzheimer's Prevention Initiative at the Banner Alzheimer's Institute in Phoenix. And that's true of most working people. "While you're still in the work force you are getting that daily challenge of multitasking, of remembering things, of processing information," she says. Langbaum offers that perspective as someone who has spent years studying the effects of brain training programs, and as someone who has seen Alzheimer's up close. "My grandfather was diagnosed with mild cognitive impairment when I was in graduate school getting my Ph.D.," she says. "That transitioned into full-blown Alzheimer's dementia." So Langbaum began to ask herself a question: "How can I in my career help ensure that we aren't suffering from the disease when we reach that age?" And she realized early on that puzzles and games weren't the answer because they tend to focus on one very narrow task. The result is like exercising just one muscle in your body, Langbaum says. That muscle will get stronger, but your overall fitness isn't going to change. © 2018 npr

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 25546 - Posted: 10.08.2018

By Rowan Hooper Let’s start with a number that many have come across in math class: pi, the ratio of a circle’s circumference to its diameter. It begins with 3.14159 . . . and carries on forever. It is infinite and irrational, never ending and never repeating, and people are drawn into its orbit. To some, the attraction is spiritual; to others, the pull may be explained by the “because it’s there” reasoning of mountaineers. Memory athletes — so called because of their intensive training in games of the mind — in particular are drawn to the endlessness of pi. Akira Haraguchi of Kisarazu, near Tokyo, recited pi to more than 100,000 digits in 2006, a feat that lasted more than 16 hours. To him, pi represents a religious quest for meaning. “Reciting pi’s digits has the same meaning as chanting the Buddhist mantra and meditating,” Haraguchi, who is 72, says. He is widely recognized as the champion of pi, although Guinness World Records has not validated his recitation. The official Guinness record holder is Rajveer Meena, 23, from Rajasthan, India. On March 21, 2015, Meena recited pi to 70,000 decimal places. (It took him 9 hours 7 minutes.) He said he wanted to show that despite a humble background, he could win the world’s toughest memory challenge. Memory wizards have varying motivations and use different techniques, but they all essentially convert the exercise into a story. When they recite the numbers, they are telling themselves a tale in their head and rendering it into digits. Haraguchi uses a system based on the Japanese kana alphabet. Translated roughly into English, the first 50 digits of his translation reads: “Well, I, that fragile being who left my hometown to find a peace of mind, is going to die in the dark corners; it’s easy to die, but I stay positive.” © 1996-2018 The Washington Post

Related chapters from BN8e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25545 - Posted: 10.08.2018

By Laura M. Holson Cat lovers of the world rejoice! In the long-simmering dispute over whether dogs are smarter than cats, a recent study published in the journal Learning & Behavior suggests that dogs are no more exceptional than other animals when it comes to canniness and intelligence. The news is sure to ignite debate (watch the fur fly!) among dog owners and scientists who study canine behavior. The authors reviewed existing studies and data on animal cognition and found that while dogs are smart and trainable, they are not “super smart,” despite what most dog owners will tell you. The idea for the study came about when Stephen Lea, an emeritus professor in the psychology department at the University of Exeter in Britain, was editor of Animal Cognition, a journal that seeks to explain cognition among humans and animals in the context of evolution. Dog research, he said in an interview last week, was quite popular in the 1990s and continues to be so. “I was getting a number of papers showing how remarkable the things were that dogs could do,” he said. When it came to other animals, though, scientific studies on intelligence barely trickled in, despite evidence to suggest that horses, chimpanzees and cats had tricks of their own. “Almost everything a dog claimed to do, other animals could do too,” Dr. Lea said. “It made me quite wary that dogs were special.” Sure, there is Chaser, a Border collie from Spartanburg, S.C., who was trained to understand 1,022 nouns. (His owner, John Pilley, a scientist who studied canine cognition, recently died.) Before that was a Border collie named Rico who learned to recognize the names of 200 items. But beyond those examples, Dr. Lea wondered: Had dog lovers (and scientists, for that matter) imbued their pets with extraordinary capabilities they did not possess? © 2018 The New York Times Company

Related chapters from BN8e: Chapter 6: Evolution of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 25544 - Posted: 10.08.2018

By Jim Hopper On Monday October 1, Republican senators released “Analysis of Dr. Christine Blasey Ford’s Allegations,” a memo written by Rachel Mitchell, the prosecutor they hired to question Christine Blasey Ford and review other evidence. Ms. Mitchell’s “analysis” includes descriptions of Ford’s memories as not “consistent,” lacking “key details,” and uncorroborated by people she said were at the “party.” In the final two weeks of September, many Americans learned from the media (e.g., USA Today, Rolling Stone, Vox, NBC News, NPR) the distinction that memory researchers make between “central” and “peripheral” details, terms that reflect the commonsense understanding that we remember things that had significance to us and got our attention. Many people have also learned that stress and trauma greatly enhance the differential storage of central over peripheral details, and that the central details of traumatic experiences can get burned into our brains for the rest of our lives. But most people already knew that too, even if they hadn’t stopped to think about it. Advertisement These past few weeks, I’ve tried to help with that learning, by talking with reporters and sharing the expert testimony on trauma and memory that I could have provided to senators and the country, which was published by Scientific American and on my blog with Psychology Today, Sexual Assault and the Brain. There I explain central versus peripheral details, that stress amplifies their differential encoding and storage, and how sexual assault survivors—like traumatized soldiers and police—may protect themselves by clinging for years to superficial descriptions of events, which keep the most disturbing details out of their minds. © 2018 Scientific American

Related chapters from BN8e: Chapter 17: Learning and Memory; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 25534 - Posted: 10.06.2018

By Sarah Hepola One of the trickiest things about blackouts is that you don’t necessarily know you’re having one. I wrote a memoir, so centered around the slips of memory caused by heavy drinking that it is actually called “Blackout,” and in the years since its 2015 release, I’ve heard from thousands of people who experienced them. No small number of those notes contain some version of this: “For years, I was having blackouts without knowing what they were.” Blackouts are like a philosophical riddle inside a legal conundrum: If you can’t remember a thing, how do you know it happened? In the days leading up to the Senate Judiciary Committee hearing on the Supreme Court nomination of Brett Kavanaugh, a theory arose that he might have drunk so much as a teenager that he did not remember his alleged misdeeds. The blackout theory was a way to reconcile two competing narratives. It meant that Christine Blasey Ford was telling the truth but so was Brett Kavanaugh. He simply did not remember what happened that night and therefore believed himself falsely accused. Several questions at the hearing were designed to get at this theory, but it gained little ground. I want to be clear, up front, that I cannot know whether Judge Kavanaugh experienced a blackout. But what I do know is that blackouts are both common and tragically misunderstood. Before the prosecutor Rachel Mitchell was mysteriously dispatched, she was aiming toward the above line of inquiry. “Have you ever passed out from drinking?” she asked. Kavanaugh’s answer was dismissive but slightly confusing: “I’ve gone to sleep, but I’ve never blacked out. That’s the allegation? That’s wrong.” A few clarifications. First, I dare you to find the heavy drinker who hasn’t passed out from too much booze. To say you were just sleeping is like my dad saying he’s resting his eyes when he’s napping. It’s a semantic dodge. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory, Learning, and Development
Link ID: 25514 - Posted: 10.01.2018