Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1022

By Ryan Cross Whether caused by a car accident that slams your head into the dashboard or repeated blows to your cranium from high-contact sports, traumatic brain injury can be permanent. There are no drugs to reverse the cognitive decline and memory loss, and any surgical interventions must be carried out within hours to be effective, according to the current medical wisdom. But a compound previously used to enhance memory in mice may offer hope: Rodents who took it up to a month after a concussion had memory capabilities similar to those that had never been injured. The study “offers a glimmer of hope for our traumatic brain injury patients,” says Cesario Borlongan, a neuroscientist who studies brain aging and repair at the University of South Florida in Tampa. Borlongan, who reviewed the new paper, notes that its findings are especially important in the clinic, where most rehabilitation focuses on improving motor—not cognitive—function. Traumatic brain injuries, which cause cell death and inflammation in the brain, affect 2 million Americans each year. But the condition is difficult to study, in part because every fall, concussion, or blow to the head is different. Some result in bleeding and swelling, which must be treated immediately by drilling into the skull to relieve pressure. But under the microscope, even less severe cases appear to trigger an “integrated stress response,” which throws protein synthesis in neurons out of whack and may make long-term memory formation difficult. © 2017 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 23825 - Posted: 07.11.2017

By Jennifer Oullette Are brain-training games any better at improving your ability to think, remember and focus than regular computer games? Possibly not, if the latest study is anything to go by. Joseph Kable at the University of Pennsylvania and his colleagues have tested the popular Luminosity brain-training program from Lumos Labs in San Francisco, California, against other computer games and found no evidence that it is any better at improving your thinking skills. Brain-training is a booming market. It’s based on the premise that our brains change in response to learning challenges. Unlike computer games designed purely for entertainment, brain-training games are meant to be adaptive, adjusting challenge levels in response to a player’s changing performance. The thinking is that this should improve a player’s memory, attention, focus and multitasking skills. But there are questions over whether brain-training platforms can enhance cognitive function in a way that is meaningful for wider life. Last year, Lumos Labs paid $2 million to settle a charge from the US Federal Trade Commission for false advertising. Advertising campaigns had claimed that the company’s memory and attention games could reduce the effects of age-related dementia, and stave off Alzheimer’s disease. Most studies on the effects of brain-training games have been small and had mixed results. For this study, Kable and his colleagues recruited 128 young healthy adults for a randomised controlled trial. © Copyright New Scientist Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 23821 - Posted: 07.11.2017

By Diana Kwon By blocking specific enzymes, researchers were able to selectively remove memories stored in the neurons of Aplysia, a sea slug. These findings, published last week (June 22) in Current Biology, demonstrate that distinct memories stored in connections to a single nerve cell can be manipulated separately. “We were able to reverse long-term changes in synaptic strength at synapses known to contribute to different forms of memories,” study coauthor Samuel Schacher, a neuroscientist at Columbia University, told Motherboard. By stimulating multiple Aplysia sensory neurons that make connections with to the same motor neuron, Schacher and colleagues induced associative memory, which involves learning the relationship between two previously unrelated items (a new acquaintance’s name, for example), and non-associative memory, where recollections are unrelated to a specific event. The team measured the strength of the synaptic connections between the sensory and motor neurons and discovered that distinct forms of an enzyme, protein kinase M (PKM), played a role in developing the changes linked to the two types of memory. Selectively blocking these molecules, the researchers found, allowed them to remove the memories of their choice. Molecules associated with memory have been discovered in the past. For example, in a 2006 Science study, another team of researchers was able to erase memories in mice by blocking a related molecule, PKM-zeta. Subsequent papers, however, found that mice lacking this enzyme had no problem forming memories. © 1986-2017 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23791 - Posted: 06.30.2017

Andrea Hsu Intuitively, we tend to think of forgetting as failure, as something gone wrong in our ability to remember. Now, Canadian neuroscientists with the University of Toronto are challenging that notion. In a paper published Wednesday in the journal Neuron, they review the current research into the neurobiology of forgetting and hypothesize that our brains purposefully work to forget information in order to help us live our lives. I spoke with Blake Richards, one of the co-authors of the paper, who applies artificial intelligence theories to his study of how the brain learns. He says that in the AI world, there's something called over-fitting — a phenomenon in which a machine stores too much information, hindering its ability to behave intelligently. He hopes that greater understanding of how our brains decide what to keep and what to forget will lead to better AI systems that are able to interact with the world and make decisions in the way that we do. We hear a lot about the study of memory. Is the study of forgetting a relatively new thing? Within psychology, there's a long history of work examining forgetting. So that's not a new field of study. But the neuroscientists — those of us who work with the biology of how the brain works — have not really examined forgetting much in the past. Generally, the focus for the last few decades in neuroscience has been the question of how do the cells in our brains change themselves in order to store information and remember things. It's only been in the last few years that there's been an upswing in scientific studies looking at what's happening inside our brains at the cellular level that might actually produce forgetting. © 2017 npr

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23771 - Posted: 06.24.2017

Staring down a packed room at the Hyatt Regency Hotel in downtown San Francisco this March, Randy Gallistel gripped a wooden podium, cleared his throat, and presented the neuroscientists sprawled before him with a conundrum. “If the brain computed the way people think it computes," he said, "it would boil in a minute." All that information would overheat our CPUs. Humans have been trying to understand the mind for millennia. And metaphors from technology—like cortical CPUs—are one of the ways that we do it. Maybe it’s comforting to frame a mystery in the familiar. In ancient Greece, the brain was a hydraulics system, pumping the humors; in the 18th century, philosophers drew inspiration from the mechanical clock. Early neuroscientists from the 20th century described neurons as electric wires or phone lines, passing signals like Morse code. And now, of course, the favored metaphor is the computer, with its hardware and software standing in for the biological brain and the processes of the mind. In this technology-ridden world, it’s easy to assume that the seat of human intelligence is similar to our increasingly smart devices. But the reliance on the computer as a metaphor for the brain might be getting in the way of advancing brain research. As Gallistel continued his presentation to the Cognitive Neuroscience Society, he described the problem with the computer metaphor. If memory works the way most neuroscientists think it does—by altering the strength of connections between neurons—storing all that information would be way too energy-intensive, especially if memories are encoded in Shannon information, high fidelity signals encoded in binary.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 23764 - Posted: 06.23.2017

By Kerry Grens Memory theories The theory goes that as memories form, they set up temporary shop in the hippocampus, a subcortical region buried deep in the brain, but over time find permanent storage in the cortex. The details of this process are sketchy, so Takashi Kitamura, a researcher in Susumu Tonegawa’s MIT lab, and colleagues wanted to pinpoint the time memories spend in each of these regions. Total recall As mice were subjected to a fearful experience, the team labeled so-called memory engram cells—neurons that are stimulated during the initial exposure and whose later activity drives recollection of the original stimulus (in this case, indicated by a freezing response). Using optogenetics, Kitamura turned off these cells in the prefrontal cortex (PFC) when the memory first formed as mice were exposed to a foot shock. Short-term memory was unaffected, but a couple of weeks later, the animals could not recall the event, indicating that PFC engrams formed contemporaneously with those in the hippocampus, not later, as some had suspected, and that this early memory trace in the cortex was critical for long-term retrieval. Going dark Over time, as untreated mice recalled the fearful event, engrams in the hippocampus became silent as PFC engrams became more active. “It’s a see-saw situation,” says Kitamura, “this maturation of prefrontal engrams and dematuration of hippocampal engrams.” Circuit dynamics Stephen Maren, who researches memory at Texas A&M University and was not part of the study, says the results reveal that the network circuitry involved in memory consolidation (of which Kitamura’s team dissected just one component) is much more dynamic than previously appreciated. “It’s the most sophisticated circuit-level analysis we have to date of these processes.” © 1986-2017 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23735 - Posted: 06.13.2017

Alex Burmester When you need to remember a phone number, a shopping list or a set of instructions, you rely on what psychologists and neuroscientists refer to as working memory. It’s the ability to hold and manipulate information in mind, over brief intervals. It’s for things that are important to you in the present moment, but not 20 years from now. Researchers believe working memory is central to the functioning of the mind. It correlates with many more general abilities and outcomes – things like intelligence and scholastic attainment – and is linked to basic sensory processes. Given its central role in our mental life, and the fact that we are conscious of at least some of its contents, working memory may become important in our quest to understand consciousness itself. Psychologists and neuroscientists focus on different aspects as they investigate working memory: Psychologists try to map out the functions of the system, while neuroscientists focus more on its neural underpinnings. Here’s a snapshot of where the research stands currently. How much working memory do we have? Capacity is limited – we can keep only a certain amount of information “in mind” at any one time. But researchers debate the nature of this limit. Many suggest that working memory can store a limited number of “items” or “chunks” of information. These could be digits, letters, words or other units. Research has shown that the number of bits that can be held in memory can depend on the type of item – flavors of ice cream on offer versus digits of pi. © 2010–2017, The Conversation US, Inc.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 23711 - Posted: 06.06.2017

In a pair of studies, scientists at the National Institutes of Health explored how the human brain stores and retrieves memories. One study suggests that the brain etches each memory into unique firing patterns of individual neurons. Meanwhile, the second study suggests that the brain replays memories faster than they are stored. The studies were led by Kareem Zaghloul, M.D., Ph.D., a neurosurgeon-researcher at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS). Persons with drug resistant epilepsy in protocols studying surgical resection of their seizure focus at the NIH’s Clinical Center enrolled in this study. To help locate the source of the seizures, Dr. Zaghloul’s team surgically implanted a grid of electrodes into the patients’ brains and monitored electrical activity for several days. “The primary goal of these recordings is to understand how to stop the seizures. However, it’s also a powerful opportunity to learn how the brain works,” said Dr. Zaghloul. For both studies, the researchers monitored brain electrical activity while testing the patients’ memories. The patients were shown hundreds of pairs of words, like “pencil and bishop” or “orange and navy,” and later were shown one of the words and asked to remember its pair. In one study, published in the Journal of Neuroscience, the patients correctly remembered 38 percent of the word pairs they were shown. Electrical recordings showed that the brain waves the patients experienced when they correctly stored and remembered a word pair often occurred in the temporal lobe and prefrontal cortex regions. Nevertheless, the researchers showed that the waves that appeared when recalling the words happened faster than the waves that were present when they initially stored them as memories.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23704 - Posted: 06.03.2017

By Gary Stix In April, DARPA announced contracts for a program to develop practical methods to help someone learn more quickly. In the ensuing press coverage, the endeavor drew immediate comparisons to the The Matrix—in which Neo, the Keanu Reeves character, has his brain reprogrammed so that he instantly masters Kung Fu. DARPA is known for setting ambitious goals for its technology development programs. But it is not requiring contractors for the $50 million, four-year effort to find a way to let a special forces soldier upload neural codes to instantaneously execute a flawless Wushu butterfly kick. The agency did award contracts, though, to find some means of zapping nerves in the peripheral nervous system outside the brain to speed the rate at which a foreign language can be learned by as much as 30 percent, a still not-too-shabby goal. Sending an electrical current into the vagus nerve in the neck from a surgically implanted device is already approved for treating epilepsy and depression. The DARPA program, in tacit acknowledgement that mandatory surgery might be unacceptable for students contemplating an accelerated Mandarin class, wants to develop a non-invasive device to stimulate a peripheral nerve, perhaps in the ear. The goal is to hasten, not just the learning of foreign languages, but also to facilitate pattern recognition tasks such as combing through surveillance imagery. © 2017 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23699 - Posted: 06.02.2017

By Ulrich Boser A TECHNICIAN SNAPPED a stretchy electrode cap onto my head, and I felt a cold pinch as she affixed each sensor to my scalp with a dose of icy gel. Perched on an office chair, with a rainbow of wires spiraling from my head, I followed the tech’s instructions to stare at a small orange object while an EEG recording device measured the electrical activity in various regions of my brain. I was checking out the Palm Beach Gardens, Fla., branch of Neurocore, a “brain performance” company owned by the family of Education Secretary Betsy DeVos. DeVos resigned her Neurocore board seat when she joined the Trump Cabinet, but she and her husband maintain a financial stake of between $5 million and $25 million, according to a financial disclosure statement filed with the Office of Government Ethics. The DeVoses’ private-equity firm, Windquest, identifies Neurocore as part of its “corporate family.” The Windquest website posts Neurocore news and includes links for job seekers to apply to Neurocore openings. In other words, the family has a lot riding on Neurocore’s claims that it can help you “train your brain to function better” — addressing problems as diverse as attention-deficit/hyperactivity disorder, autism, anxiety, stress, depression, poor sleep, memory loss and migraines. “Unlike medication, which temporarily masks your symptoms, neurofeedback promotes healthy changes in your brain to provide you with a lasting solution,” touts a Neurocore overview video. “. . . We’ve helped thousands of people strengthen their brain to achieve a happy, healthier, more productive life for years to come.” The company currently has nine offices in Michigan and Florida, though there’s been talk of making a national move. © 1996-2017 The Washington Post

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23671 - Posted: 05.29.2017

Shelly Fan The first time I heard that shooting electrical currents across your brain can boost learning, I thought it was a joke. But evidence is mounting. According to a handful of studies, transcranial direct current stimulation (tDCS), the poster child of brain stimulation, is a bona fide cognitive booster: By directly tinkering with the brain’s electrical field, some research has found that tDCS enhances creativity, bolsters spatial and math learning and even language aquisition – sometimes weeks after the initial zap. For those eager to give their own brains a boost, this is good news. Various communities have sprung up to share tips and tricks on how to test the technique on themselves, often using self-rigged stimulators powered by 9-volt batteries. Scientists and brain enthusiasts aren’t the only people interested. The military has also been eager to support projects involving brain stimulation with the hope that the technology could one day be used to help soldiers suffering from combat-induced memory loss. But here’s the catch: The end results are inconsistent at best. While some people swear by the positive effects anecdotally, others report nothing but a nasty scalp burn from the electrodes. In a meta-analysis covering over 20 studies, a team from Australia found no significant effects of tDCS on memory. Similar disparities pop up for other brain stimulation techniques. It’s not that brain stimulation isn’t doing anything – it just doesn’t seem to be doing something consistently across a diverse population. So what gives? © 2010–2017, The Conversation US, Inc.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23624 - Posted: 05.17.2017

By BENEDICT CAREY MONTREAL — The driving instructor wiped his brow with a handkerchief, and not just because of the heat. His student — a grown woman, squinting over the dashboard — was ramming the curb in an effort to parallel park. “We reached an agreement, right then and there: He let me pass the test, and I promised never to drive,” Brenda Milner said, smiling to herself at the decades-old memory. “You see, my spatial skills aren’t so good. That’s primarily a right-brain function.” Dr. Milner, a professor of psychology in the department of neurology and neurosurgery at McGill University in Montreal, is best known for discovering the seat of memory in the brain, the foundational finding of cognitive neuroscience. But she also has a knack for picking up on subtle quirks of human behavior and linking them to brain function — in the same way she had her own, during the driving test. At 98, Dr. Milner is not letting up in a nearly 70-year career to clarify the function of many brain regions — frontal lobes, and temporal; vision centers and tactile; the left hemisphere and the right — usually by painstakingly testing people with brain lesions, often from surgery. Her prominence long ago transcended gender, and she is impatient with those who expect her to be a social activist. It’s science first with Dr. Milner, say close colleagues, in her lab and her life. Perched recently on a chair in her small office, resplendent in a black satin dress and gold floral pin and banked by moldering towers of old files, she volleyed questions rather than answering them. “People think because I’m 98 years old I must be emerita,” she said. “Well, not at all. I’m still nosy, you know, curious.” Dr. Milner continues working, because she sees no reason not to. Neither McGill nor the affiliated Montreal Neurological Institute and Hospital has asked her to step aside. She has funding: In 2014 she won three prominent achievement awards, which came with money for research. She has a project: a continuing study to investigate how the healthy brain’s intellectual left hemisphere coordinates with its more aesthetic right one in thinking and memory. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23615 - Posted: 05.16.2017

By SHIVANI VORA Forget that he’s 87. Eric R. Kandel, who specializes in the biology of memory and is a professor in the neuroscience and psychiatry departments at Columbia University, works more than he ever has before, he said. Dr. Kandel, who won a Nobel Prize in 2000, continues to write books and is co-director of the Mortimer B. Zuckerman Mind Brain Behavior Institute at Columbia and a senior investigator at the Howard Hughes Medical Institute in Chevy Chase, Md. He lives with his wife of 60 years, Denise Kandel, 84, an epidemiology professor at Columbia, in Harlem. AN EXTRA HOUR Denise and I usually get up at 6:30, but on Sundays we’re out of bed between 7:30 and 8, so instead of sleeping eight hours, we sleep nine. I wake refreshed and ready to go. CREATURES OF HABIT We eat breakfast first thing and have had the same meal for the last five years: a half a grapefruit each, a cup of coffee and oatmeal. We eat at our kitchen table while we read The New York Times. We compete for the National section, but I also like the Book Review. JOG THE MEMORY I’ve been an exerciser my whole life. I think that activity is good for your memory, your body and your mental state. Plus, it’s fun. During the week I swim, and on Saturdays I play tennis, but on Sundays I work out at home. I start with shoulder stretches on the floor, do 15 push-ups and then walk for 15 minutes on our treadmill. Then, our trainer, Chris, comes over and takes us through an hourlong routine of weight lifting and more stretching. THE JOY OF SEPARATE BATHROOMS Right after Chris leaves, we get dressed for the day. Denise and I each have our own bathrooms, which means two things: I don’t have to deal with her nudging me to put away my toiletries I leave on the counter. Also, we can shower and get ready at the same time. LIGHT LUNCH It may be a banana and a yogurt or a vegetable soup. New York has so many great restaurants, but we like eating at home. Denise is a great cook, we have a nice collection of wine that we like to drink, and we have more control over what we eat. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 23582 - Posted: 05.06.2017

By Brian Handwerk When you go to a movie or a concert with your friend, oftentimes it seems that you shared a similar experience. Your brains, you say, are on the same wavelength. Now, neurological science gives that phrase some new backing. Using new portable headsets that monitor brain activity, researchers have found that the brainwaves of people who are engaged in the same class really do “sync up.” Thanks to studies performed in laboratory settings, we had an inkling that this might be the case. A growing body of brain-scanning research is beginning to reveal how human brains display synchronicity—likely a key factor that makes many of our cooperative behaviors possible, from performance art to team sport. “If you pay more attention, you're more in sync,” explains Suzanne Dikker, a cognitive neuroscientist at both New York University and Utrecht University in the Netherlands and a co-author on the new study. “Now we've gone out there and confirmed that this is true in a real world setting,” she says. That remarkable feat was made possible thanks to portable electroencephalogram (EEG) headsets, which researchers used to monitor students' brain activity during an entire semester of biology classes at a New York high school. Each week, 12 high school seniors and their teacher attended class wearing the headsets, for a total of 11 classes overall. The more engaged those students were with their teacher and classmates, it turned out, the more their brainwave patterns were in sync with one another.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23551 - Posted: 04.29.2017

Dean Burnett Every now and then, you see news reports of people with incredible memories, able to recall every single thing from their life at a moment’s notice. Initially, it may sound like an incredibly useful ability. No more searching for your car keys that you had in your hand minutes ago, no more desperately stalling for time as you flounder to remember the name of the casual acquaintance who’s just said hello to you, no more taking notes at all. Why would you need to? It’s no wonder it pops up often in pop culture. Indeed, there are many people who can demonstrate incredible memory prowess, having trained their memories to be as efficient and thorough as possible via useful and approved techniques, in order to compete in memory sports, which are an actual thing. Clearly, for some people at least, there is potential to greatly boost the brain’s ability to store and recall information to well above average levels. Ben Carson even claimed to be able to induce this with a simple bit of surgery (which is utterly wrong) What’s far more rare are reports of people who do this without even trying, without having to learn and train with an endless series of mnemonics and so on. Like one of Marvel’s mutants discovering a hitherto unexpected super power, some people seem to be born with seemingly-infallible memories. There are a number of terms that are used to describe such abilities. Photographic memory, eidetic memory, Hyperthymesia, Highly Superior Autobiographical Memory, perfect recall, there are a number of labels to choose from when discussing formidable memory prowess.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23549 - Posted: 04.28.2017

By NICHOLAS BAKALAR Diabetes may be bad for the brain, especially if you are overweight. Researchers studied 50 overweight and 50 normal weight people in the early stages of Type 2 diabetes. All had been given a diagnosis within the previous five years. They compared both groups with 50 healthy control subjects. The scientists performed M.R.I. examinations of their brains and psychological tests of memory, reaction time and planning. Those with diabetes scored worse than the healthy controls on tests of memory and reaction times. M.R.I. scans revealed significant differences in brain areas related to memory, planning and the visual processing of information. Compared with the controls, those with Type 2 diabetes had more severe thinning of the cortex and more white matter abnormalities. Overweight people with diabetes had more brain deterioration than diabetic people of normal weight. Are these changes reversible? Probably not, according to a co-author, Dr. Donald C. Simonson of Brigham and Women’s Hospital in Boston. “When structural changes are seen on an M.R.I. scan, the processes leading up to them have probably been going on for years,” he said. “On the positive side, patients who maintain good control of their diabetes do seem to have a slower rate of deterioration.” The findings were published in Diabetologia. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 23546 - Posted: 04.28.2017

By Sam Wong Six years ago, a chimpanzee had the bright idea to use moss to soak up water, then drink from it, and seven others soon learned the trick. Three years later, researchers returned to the site to see if the practice had persisted to become part of the local chimp culture. They now report that the technique has continued to spread, and it’s mostly been learned by relatives of the original moss-spongers. This adds to earlier evidence that family ties are the most important routes for culture to spread in animals. After the first report of chimps using moss as a sponge in Budongo Forest, Uganda, researchers rarely saw the behaviour again, and wondered whether chimps still knew how to do it. So they set up an experiment, providing moss and leaves at the clay pit where the chimps had demonstrated the technique before. Then they watched to see whether chimpanzees would use leaves – a more common behaviour – or moss to soak up the mineral-rich water from the pit. The eight original moss-spongers all used moss again during the experiment, and so did another 15 chimps, showing the practice had become more widespread. The researchers wondered what factors influenced which individuals adopted it: were they connected socially, or through families, for instance? © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23543 - Posted: 04.27.2017

By BENEDICT CAREY Well-timed pulses from electrodes implanted in the brain can enhance memory in some people, scientists reported on Thursday, in the most rigorous demonstration to date of how a pacemaker-like approach might help reduce symptoms of dementia, head injuries and other conditions. The report is the result of decades of work decoding brain signals, helped along in recent years by large Department of Defense grants intended to develop novel treatments for people with traumatic brain injuries, a signature wound of the Iraq and Afghanistan wars. The research, led by a team at the University of Pennsylvania, is published in the journal Current Biology. Previous attempts to stimulate human memory with implanted electrodes had produced mixed results: Some experiments seemed to sharpen memory, but others muddled it. The new paper resolves this confusion by demonstrating that the timing of the stimulation is crucial. Zapping memory areas when they are functioning poorly improves the brain’s encoding of new information. But doing so when those areas are operating well — as they do for stretches of the day in most everyone, including those with deficits — impairs the process. “We all have good days and bad days, times when we’re foggy, or when we’re sharp,” said Michael Kahana, who with Youssef Ezzyat led the research team. “We found that jostling the system when it’s in a low-functioning state can jump it to a high-functioning one.” Researchers cautioned that implantation is a delicate procedure and that the reported improvements may not apply broadly. The study was of epilepsy patients; scientists still have much work to do to determine whether this approach has the same potential in people with other conditions, and if so how best to apply it. But in establishing the importance of timing, the field seems to have turned a corner, experts said. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23520 - Posted: 04.21.2017

By Dina Fine Maron A bizarre medical mystery can be added to the list of growing concerns about opioid use in the U.S. Since 2012 more than a dozen illicit drug users have shown up in hospitals across eastern Massachusetts with inexplicable amnesia. In some cases the patients’ memory difficulties had persisted for more than a year. Yet this bewildering condition does not appear to be the result of a simple case of tainted goods: The drug users do not appear to have used the same batch of drugs—or even the same type of substance. To get some answers, the state’s public health officials are rolling out a new requirement that clinicians who come across any patients (not just opioid users) with these types of memory deficits—along with damage to the hippocampus—must report the cases to the state. On April 3 state public health officials received the legal green light from the Massachusetts public health commissioner to make this a required, reportable condition. This technical change, which will last for one year, authorizes public health workers to collect this information and reassures clinicians that they can—and must—share case reports. In the next couple of days workers will notify emergency room personnel as well as addiction counselors and neurology specialists about the new designation via e-mail. The new reporting requirement, state officials hope, will help epidemiologists learn how widespread the issue of potential opioid-linked amnesia may be and whether patients have specific factors in common. The change was first reported by BuzzFeed News. © 2017 Scientific American,

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory, Learning, and Development
Link ID: 23513 - Posted: 04.20.2017

By LISA SANDERS, M.D. “I feel very pain,” the 62-year-old mumbled incoherently as he sat in a wheelchair. He had said almost nothing since arriving at the office of Dr. Joel Geerling, a neurologist at Beth Israel Deaconess Medical Center in Boston. A year ago, he was fine, explained the patient’s sister. He was married, working as an auto mechanic, happy, normal. Then, six or seven months ago, he became forgetful. Little things at first — he couldn’t think of the right word, remember people’s names. But then big things — like forgetting who he was talking to on the phone or how to drive to places he had known for decades. That was fall 2014. By that Christmas, walking became difficult. He fell frequently. He had trouble feeding himself. He slept most of the day and night. Over the course of this illness, he lost almost everything. He was fired from his job; his wife left him. He didn’t even have his car anymore: His daughter took the keys after an accident. He had always been friendly and talkative, but now he was withdrawn and nearly wordless. In a few months, the man went from being completely independent to requiring round-the-clock care. This daughter tried to take care of him, but recently she had to hire someone; she couldn’t miss any more college classes. The patient first saw his regular doctor, but she couldn’t figure out what was wrong and sent him to a neurologist. When the specialist was stumped, she sent the patient to Geerling, a neurologist who focused on dementia and other cognitive diseases. In the exam room, the patient slumped in the wheelchair and held his head tipped back so that he was looking straight at the doctor above him, giving him a childlike appearance. When Geerling examined him, he found out why. The patient could not make his eyes move up. When he tried to walk, his feet remained on the ground — as if there were a magnet holding them down — giving him an odd, shuffling, gliding gait. He was unable to count down from 10 and didn’t know where he lived. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23509 - Posted: 04.19.2017