Links for Keyword: Obesity

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1265

By Laura Sanders GLP-1 drugs may possess a new power: Easing migraines. In a small, preliminary study, a GLP-1 drug nearly halved the number of days people spent with a migraine in a given month. The results, presented June 21 at the European Academy of Neurology Congress in Helsinki, Finland, expand the possible benefits of the powerful new class of obesity and diabetes drugs. These pernicious, debilitating headaches are estimated to affect one billion people worldwide. Earlier studies have shown that GLP-1 agonists can reduce the pressure inside the skull, a squeeze that’s been implicated in migraines. Neurologist Simone Braca of the University of Naples Federico II in Italy and his colleagues explored whether liraglutide, an older relative of Ozempic and Wegovy, might help migraine sufferers. Thirty-one adults, 26 of them women, got daily injections of liraglutide for 12 weeks. These adults all had obesity and continued to take their current migraine medicines too. At the start of the experiment, participants had headaches on about 20 days out of a month. After 12 weeks of liraglutide, the average number dropped to about 11 days. “Basically, we observed that patients saw their days with headache halved, which is huge,” Braca says. Participants’ weight stayed about the same during the trial, suggesting that headache reductions weren’t tied to weight loss. If the results hold up in larger studies, they may point to treatments for migraine sufferers who aren’t helped by existing drugs. The results may also lead to a deeper understanding of the role of pressure inside the head in migraines, Braca says. © Society for Science & the Public 2000–2025.

Related chapters from BN: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29846 - Posted: 07.02.2025

Diana Kwon There might be a paradox in the biology of ageing. As humans grow older, their metabolisms tend to slow, they lose muscle mass and they burn many fewer calories. But certain cells in older people appear to do the exact opposite — they consume more energy than when they were young. These potential energy hogs are senescent cells, older cells that have stopped dividing and no longer perform the essential functions that they used to. Because they seem idle, biologists had assumed that zombie-like senescent cells use less energy than their younger, actively replicating counterparts, says Martin Picard, a psychobiologist at Columbia University in New York City. But in 2022, Gabriel Sturm, a former graduate student of Picard’s, painstakingly observed the life course of human skin cells cultured in a dish1 and, in findings that have not yet been published in full, found that cells that had stopped dividing had a metabolic rate about double that of younger cells. For Picard and his colleagues, the energetic mismatch wasn’t a paradox at all: ageing cells accumulate energetically costly forms of damage, such as alterations in DNA, and they initiate pro-inflammatory signalling. How that corresponds with the relatively low energy expenditure for ageing organisms is still unclear, but the researchers hypothesize that this tension might be an important driver of many of the negative effects of growing old, and that the brain might be playing a key part as mediator2. As some cells get older and require more energy, the brain reacts by stripping resources from other biological processes, which ultimately results in outward signs of ageing, such as greying hair or a reduction in muscle mass (see ‘Energy management and ageing’). Picard and his colleagues call this concept the ‘brain–body energy-conservation model’. And although many parts of the hypothesis are still untested, scientists are working to decipher the precise mechanisms that connect the brain to processes associated with ageing, such as senescence, inflammation and the shortening of telomeres — the stretches of repetitive DNA that cap the ends of chromosomes and protect them. © 2025 Springer Nature Limited

Related chapters from BN: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory and Learning; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29836 - Posted: 06.18.2025

By Tina Hesman Saey People trying to lose weight often count calories, carbs, steps and reps and watch the scales. Soon, they may have another number to consider: a genetic score indicating how many calories a person needs to feel full during a meal. This score may help predict whether someone will lose more weight on the drugs liraglutide or phentermine-topiramate, researchers report June 6 in Cell Metabolism. A separate study, posted to medRXiv.org in November, suggests that individuals with a higher genetic propensity for obesity benefit less from semaglutide compared to those with a lower genetic predisposition. Such genetic tests may one day help doctors and patients select personalized weight-loss treatments, some researchers say. But the genetic scores “are not perfect predictors of drug response,” says Paul Franks, a genetic epidemiologist at Queen Mary University of London who was not involved in either study. “They show a tendency.” For the Cell Metabolism study, Mayo Clinic researchers measured how many calories it took for about 700 adults with obesity to feel full when given an all-you-can-eat meal of lasagna, pudding and milk. The calorie intake varied widely, ranging from about 140 to 2,200 calories, with men generally needing more than women. The team used machine learning to compile a genetic score based on variants of 10 genes associated with obesity. That score is designed to reflect the calories people required to feel full. Then, the Mayo team and colleagues from Phenomix Sciences Inc, headquartered in Menlo Park, Calif., conducted two clinical trials. In one 16-week trial, people with obesity received either a placebo or liraglutide­ — a GLP-1 drug branded as Saxenda. GLP-1s are a class of diabetes drugs that have shown promise with weight loss. People with a lower genetic score lost more weight on liraglutide than those with higher genetic scores. © Society for Science & the Public 2000–2025.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29830 - Posted: 06.14.2025

Elie Dolgin Sheree had maintained a healthy weight for 15 years, thanks to a surgery that wrapped a silicone ring around the top of her stomach. But when the gastric band repeatedly slipped and had to be removed, the weight came back — fast. She gained nearly 20 kilograms in just 2 months. Frustrated, she turned to the latest generation of anti-obesity medications, hoping to slow the rapid weight gain. She cycled through various formulations of the blockbuster therapies semaglutide (sold under the brand names Ozempic and Wegovy) and tirzepatide (sold as Zepbound for weight loss), finding some success with higher doses of these drugs, which mimic the effects of the appetite-suppressing hormone GLP-1. But each time, drug shortages disrupted her treatment, forcing her to start again with a new formulation or to go without the drugs for weeks. Tired of the uncertainty around the therapies, she decided to try something different. Sheree, who asked that her middle name be used to protect her privacy, underwent two minimally invasive procedures designed to reduce the size of her stomach and to blunt hunger cues. Developed over the past two decades, these ‘endoscopic’ procedures — performed using flexible tubes inserted through the mouth, and no scalpels — are just one part of a growing toolkit to help people who want to move away from GLP-1 therapy. More-conventional bariatric surgeries, used routinely since the 1980s to reroute the flow of food through the gut or to restrict the stomach’s size, might also gain wider appeal. And the search is picking up for other drugs that could offer lasting alternatives for a post-GLP-1 population. That momentum is driven by a convergence of factors: chronic shortages of GLP-1 therapies, high costs, insurance barriers and debilitating side effects. As a result, many people who start the drugs ultimately stop — with discontinuation rates in clinical trials ranging from 37% to 81% in the first year1. And once treatment ends, the weight lost often piles back on. © 2025 Springer Nature Limited

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29829 - Posted: 06.14.2025

By Amber Dance The experiment was a striking attempt to investigate weight control. For six weeks, a group of mice gorged on lard-enriched mouse chow, then scientists infected the mice with worms. The worms wriggled beneath the animals’ skin, migrated to blood vessels that surround the intestines, and started laying eggs. Bruno Guigas, a molecular biologist at the Leiden University Center for Infectious Diseases in the Netherlands, led this study some years back and the results, he says, were “quite spectacular.” The mice lost fat and gained less weight overall than mice not exposed to worms. Within a month or so, he recalls, the scientists barely needed their scale to see that the worm-infested mice were leaner than their worm-free counterparts. Infection with worms, it seems, reversed obesity, the researchers reported in 2015. While it’s true that worms gobble up food their hosts might otherwise digest, that doesn’t seem to be the only mechanism at work here. There’s also some intricate biology within the emerging scientific field of immunometabolism. Over the past couple of decades, researchers have recognized that the immune system doesn’t just fight infection. It’s also intertwined with organs like the liver, the pancreas and fat tissue, and implicated in the progression of obesity and type 2 diabetes. These and other metabolic disorders generate a troublesome immune response — inflammation — that worsens metabolism still further. Metabolic disease, in other words, is inflammatory disease. Scientists have also observed a metabolic influence of worms in people who became naturally infected with the parasites or were purposely seeded with worms in clinical trials. While the physiology isn’t fully understood, the worms seem to dampen inflammation, as discussed in the 2024 Annual Review of Nutrition.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Emotions, Aggression, and Stress
Link ID: 29828 - Posted: 06.14.2025

Anna Bawden in Málaga and agency Giving obese children weight loss jabs works and could help avoid arguments over mealtimes, according to research. Clinicians treating very obese children at a hospital in Sweden analysed whether liraglutide injections could be used as well as diet and lifestyle changes to increase weight loss. In real-life analysis of 1,000 children under 16 with severe obesity over a number of years, about a quarter of patients in 2023 were given the weight loss drug liraglutide in addition to receiving intensive health behaviour and lifestyle treatment at the National Childhood Obesity Centre in Stockholm. The clinicians found that nearly a third of these children dropped enough weight to improve their health, compared with about 27% in earlier treated groups with no access to the drugs. Patients starting the programme in 2024 have been given semaglutide but results from these children are not yet available. Semaglutide, better known as Wegovy, and liraglutide, sold as Saxenda, are both GLP-1 receptor agonists, which help curb appetite. In the UK they are available on the NHS only for adults with a BMI above 35 with a weight-related condition, although in certain circumstances specialist paediatric clinics can prescribe them. Dr Annika Janson, of Karolinska university hospital in Sweden, the lead author of the study, whose findings were presented at the European Congress on Obesity, said the beneficial impact of weight loss jabs on children’s weight could accelerate in future years. © 2025 Guardian News & Media Limited

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29786 - Posted: 05.14.2025

By Gina Kolata Do we really have free will when it comes to eating? It’s a vexing question that is at the heart of why so many people find it so difficult to stick to a diet. To get answers, one neuroscientist, Harvey J. Grill of the University of Pennsylvania, turned to rats and asked what would happen if he removed all of their brains except their brainstems. The brainstem controls basic functions like heart rate and breathing. But the animals could not smell, could not see, could not remember. Would they know when they had consumed enough calories? To find out, Dr. Grill dripped liquid food into their mouths. “When they reached a stopping point, they allowed the food to drain out of their mouths,” he said. Those studies, initiated decades ago, were a starting point for a body of research that has continually surprised scientists and driven home that how full animals feel has nothing to do with consciousness. The work has gained more relevance as scientists puzzle out how exactly the new drugs that cause weight loss, commonly called GLP-1s and including Ozempic, affect the brain’s eating-control systems. The story that is emerging does not explain why some people get obese and others do not. Instead, it offers clues about what makes us start eating, and when we stop. While most of the studies were in rodents, it defies belief to think that humans are somehow different, said Dr. Jeffrey Friedman, an obesity researcher at Rockefeller University in New York. Humans, he said, are subject to billions of years of evolution leading to elaborate neural pathways that control when to eat and when to stop eating. © 2025 The New York Times Company

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 29762 - Posted: 04.26.2025

By Rachel Brazil Drugs that mimic glucagonlike peptide-1 (GLP-1), such as semaglutide—marketed as Ozempic or Wegovy—have revolutionized the treatment of obesity and type 2 diabetes, but they have major drawbacks. “[They] are expensive to manufacture, they have to be refrigerated, and they often have to be injected because they cannot go through the gastrointestinal tract without being degraded,” explains Alejandra Tomas, a cell biologist at Imperial College London who studies the cellular receptor GLP-1 drugs target. That’s all because they consist of peptides, or long chains of amino acids. A small-molecule version of the therapy, on the other hand, could be given as a daily pill and would be much cheaper to produce. Companies including Eli Lilly, Pfizer, and Roche have launched clinical trials of such compounds. Results from Lilly’s first phase 3 trial of its oral drug are expected later this year. But Pfizer announced this week it was halting development of its candidate after signs of liver injury in a trial participant. The candidates furthest along in development activate the same receptors as peptide drugs do, in much the same way. But several firms are exploring more innovative small molecules that target different sites on those receptors—and could lead to even more effective treatments with fewer side effects. “In the next 4 or 5 years, this field will mature and more patients ultimately should be able to get these medicines,” says Kyle Sloop, a molecular biologist at Lilly Research Laboratories. By mimicking a natural hormone, semaglutide and other drugs in its class help regulate blood sugar by increasing insulin secretion from the pancreas in response to glucose, and suppress appetite by slowing down digestion. The first generation of peptide drugs were essentially copies of GLP-1, with modifications to prevent the peptide from quickly degrading once in the body. Novo Nordisk first won U.S. approval for semaglutide to treat type 2 diabetes in 2017. It needed to be injected, but in 2019 the company added a pill form, which includes an absorption-enhancing ingredient that allows the peptide to penetrate the stomach wall. However, it requires a high dose and has to be taken while fasting, with minimal liquid.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29746 - Posted: 04.16.2025

By Emily Kwong You probably know the feeling of having a hearty meal at a restaurant, and feeling full and satisfied … only to take a peek at the dessert menu and decide the cheesecake looks just irresistible. So why is it that you just absolutely couldn't have another bite, but you somehow make an exception for a sweet treat? Or as Jerry Sienfeld might put it back in the day "Whhaaaat's the deal with dessert?!" Scientists now have a better understanding of the neural origins of this urge thanks to a recent study published in the journal Science. Sponsor Message Working with mice, researchers tried to set up a scenario similar to the human experience described above. They started by offering a standard chow diet to mice who hadn't eaten since the previous day. That "meal" period lasted for 90 minutes, and the mice ate until they couldn't eat any more. Then it was time for a 30-minute "dessert" period. The first round of the experiment, researchers offered mice more chow for dessert, and the mice ate just a little bit more. The second time around, during the "dessert" period, they offered a high sugar feed to the mice for 30 minutes. The mice really went for the sugary feed, consuming six times more calories than when they had regular chow for dessert. In the mice, researchers monitored the activity of neurons that are associated with feelings of fullness, called POMC neurons. They're located in a part of the brain called the hypothalamus, which is "very important for promoting satiety," says Henning Fenselau, one of the study authors and a researcher at the Max Planck Institute for Metabolism Research in Cologne, Germany. © 2025 npr

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29706 - Posted: 03.15.2025

By Elie Dolgin For Kristian Cook, every pizza box he opened was another door closed on the path to overcoming obesity. “I had massive cravings for pizza,” he says. “That was my biggest downfall.” At 114 kilograms and juggling a daily regimen of medications for high cholesterol, hypertension and gout, the New Zealander resolved to take action. In late 2022, at the age of 46, Cook joined a clinical trial that set out to test a combination of the weight-loss drug semaglutide — better known by its brand names, Ozempic or Wegovy — and an experimental drug designed to preserve muscle while shedding fat. Muscle loss is a big concern for people on anti-obesity medications such as semaglutide. These ‘GLP-1 agonists’ mimic a natural gut hormone — glucagon-like peptide 1 — to suppress appetite and regulate metabolism. But reducing calories leads to an energy deficit, which the body often makes up for by burning muscle. The experimental drug that Cook received, called bimagrumab, seems to counteract this muscle loss. It’s one of more than 100 anti-obesity drug candidates that are in various stages of development. The next wave of medications, which are likely to hit pharmacy shelves in the next few years, resemble drugs that are already on the market. But close behind are numerous therapies being developed specifically for their muscle-sparing weight-loss potential. Dozens more are aimed at different biological pathways and could redefine obesity treatment in decades to come. “We’re working to create the next generation of healthy weight-loss solutions,” says Philip Larsen, who played a key part in the early development of GLP-1 drugs and is now chief executive of SixPeaks Bio, an obesity-focused start-up company in Basel, Switzerland. The surge in anti-obesity drug development has been made possible by the blockbuster success of semaglutide and its rival drug tirzepatide — sold as Zepbound or Mounjaro. These drugs have unlocked the potential for a global market that is projected to surpass US$100 billion by the end of the decade. © 2025 Springer Nature Limited

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29674 - Posted: 02.15.2025

By Giorgia Guglielmi Amid the rising buzz around Ozempic and similar weight-loss drugs, a group of 58 researchers is challenging the way obesity is defined and diagnosed, arguing that current methods fail to capture the complexity of the condition. They offer a more nuanced approach. The group’s revised definition, published in The Lancet Diabetes & Endocrinology1 on 14 January, focuses on how excess body fat, a measure called adiposity, affects the body, rather than relying only on body mass index (BMI), which links a person’s weight to their height. They propose two categories: preclinical obesity, when a person has extra body fat but their organs work normally, and clinical obesity, when excess fat harms the body’s organs and tissues. This shift could improve clinical care, public-health policies and societal attitudes toward obesity, says Elisabeth van Rossum, an endocrinologist at the Erasmus University Medical Center Rotterdam in the Netherlands. “Now the idea is, eat less, move more, and you’ll lose weight,” says van Rossum, who wasn’t involved in the work. Although a healthy lifestyle is important, she adds, “if it would be so simple, we wouldn’t have an epidemic, and this paper is an excellent contribution to the discussion about the complexity of obesity”. Global problem More than 1 billion people worldwide live with obesity, and the condition is linked to about 5 million deaths every year2 from disorders such as diabetes and cardiovascular disease. Because it is easy to measure and compare, BMI has long been used as a tool to diagnose obesity. But it doesn’t offer a full picture of a person’s health, because it doesn’t account for differences in body composition, such as muscle versus fat. © 2025 Springer Nature Limited

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29629 - Posted: 01.15.2025

By Mitch Leslie It’s a dismaying thought during a holiday season full of cookies and big meals, but severely restricting calories consumed is one of the best supported strategies for a healthier, longer life. Slicing food consumption stretches the lives of animals in lab experiments, and similar deprivation seems to improve health in people, although almost no one can sustain such a calorie-depleted diet for long. Now, researchers in China studying animals on lean rations have identified a molecule made by gut bacteria that delivers some of the same benefits. When given on its own, the molecule makes flies and worms live longer and refurbishes age-weakened muscles in mice, all without leaving the animals hungry. Although the molecule’s effects in people remain unclear, the discovery is “a really important step forward,” says gerontologist Richard Miller of the University of Michigan, who wasn’t connected to the research. The work, reported in two studies today in Nature, “is very thorough.” Research over the past 90 years has shown that calorie restriction—which to scientists typically means a diet with between 10% and 50% fewer calories than normal—can extend longevity in organisms as diverse as yeast, nematodes, and mice. One experiment also found an effect in monkeys. Trials to test whether calorie restriction increases human life span would take too long, but participants in the 2-year CALERIE trial, which ran from 2007 to 2010 and aimed to cut calorie intake by 25%, enjoyed a slew of improvements, including lower levels of low-density lipoprotein cholesterol, increased sensitivity to insulin, and a 10% reduction in weight. However, the trial also illustrates what makes calorie restriction so challenging: Participants on average cut their caloric intake by only half the experiment’s goal. So, scientists have been hunting for molecules that trigger health-promoting, longevity-stretching effects without privation. To identify new candidates, molecular biologist and biochemist Sheng-Cai Lin of Xiamen University and colleagues took a systematic approach, analyzing the levels of more than 1200 metabolic molecules in blood samples from calorically restricted mice and from counterparts with no dietary limits. They discovered that just over 200 molecules became more abundant when food was in short supply.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29607 - Posted: 12.21.2024

By Calli McMurray A strong, long-lasting sensory stimulus—be it visual, auditory, olfactory or tactile—triggers plasticity in the neurons that respond to it. But as a scientist long interested in temperature, Jan Siemens wondered: Does the same principle apply to prolonged heat? In mammals, the body changes when temperatures soar—blood vessels dilate, heat-generating brown adipose tissue shuts off, the heart rate lowers, locomotion slows—but it wasn’t clear if the brain played a role in these changes, or even changed itself, says Siemens, professor of pharmacology at the University of Heidelberg. Siemens and his team started a search for heat-induced neuronal plasticity in the ventromedial preoptic area of the hypothalamus (VMPO) in mice. They chose the region because of its involvement in regulating body temperature and generating fever; neurons there receive temperature information downstream from cells innervating the skin, whereas others are themselves warm-sensitive. They identified cells to target by measuring the expression of c-FOS, a gene that is activated by neuronal activity, after housing the mice at 36 degrees Celsius for up to eight hours. At first, however, their investigative trail went cold. In brain slices, those warm-responding cells showed only slight and inconsistent changes in synaptic plasticity. “That was actually quite humbling and disappointing,” Siemens says. But then they made a “serendipitous observation,” he says: A subgroup of neurons expressing the leptin receptor became almost constantly active after four weeks of heat acclimation. The firing was so synchronized and regular that Wojciech Ambroziak, a postdoctoral scholar in the lab at the time, described it as “soldiers marching in a line,” Siemens recalls. © 2024 Simons Foundation

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29602 - Posted: 12.14.2024

Jon Hamilton Not all brain cells are found in the brain. For example, a team at Caltech has identified two distinct types of neurons in the abdomens of mice that appear to control different aspects of digestion. The finding, reported in the journal Nature, helps explain how clusters of neurons in the body play a key role in the gut-brain connection, a complex two-way communication system between the brain and digestive system. It also adds to the evidence that neurons in the body can take on specialized functions, "just like in the brain," says Yuki Oka, an author of the study. "The peripheral nervous system is smart," says Frank Duca of the University of Arizona, who was not involved in the study. "You have specific neurons within this system that are performing a wide variety of functions, either with the brain's help or sometimes even without the brain's input," he says. The study focused on a subset of the peripheral nervous system called the sympathetic nervous system, which becomes active when the brain detects danger. "Your adrenaline goes up and your glucose level in the blood is really high because you need to fight or flight," Oka says. At the same time, the sympathetic nervous system dials back functions that are less urgent, like digestion and moving food through the gut. © 2024 npr

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29601 - Posted: 12.14.2024

By Max Kozlov A popular weight-loss regimen stunts hair growth, data collected from mice and humans suggest1. The study’s findings show that intermittent fasting, which involves short bouts of food deprivation, triggers a stress response that can inhibit or even kill hair-follicle stem cells, which give rise to hair. The results, published in today in Cell, suggest that although short-term fasting can provide health benefits, such as increased lifespan in mice, not all tissue and cell types benefit. “I was shocked to hear these results,” says Ömer Yilmaz, a stem-cell biologist at the Massachusetts Institute of Technology in Cambridge who was not involved in the study. “We’ve come to expect that fasting is going to be beneficial for most, if not all cell types and good for stem cells. This is the inverse of what we expected, and the finding seems to hold true in humans.” Deliberate deprivation During the past decade, intermittent fasting has become one of the most popular dieting regimens; by one count, about 12% of adults in the United States practised it in 2023. One of the most common forms is time-restricted eating, which involves eating only within a limited time frame each day. Stem cells seem to be particularly vulnerable to changes in diet. For example, Yilmaz and his colleagues reported2 in August that stem cells in the guts of mice showed a burst of activity during post-fast feasting. This activity helped to repair damage in the animals’ intestines. To learn whether dieting affects hair regrowth, which can be affected by stress, Bing Zhang, a regenerative biologist at Westlake University in Zhejiang, China, and his colleagues shaved mice and subjected them to one of two intermittent-fasting regimens: time-restricted eating and alternate-day fasting, in which animals fasted for 24 hours and then ate their normal diet for the following 24 hours. By the end of the three-month study, the dieting mice had not regrown as much hair as control animals that ate a similar number of calories, the authors found. © 2024 Springer Nature Limited

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29600 - Posted: 12.14.2024

By Joshua Cohen Earlier this fall, the Centers for Disease Control and Prevention reported data showing that adult obesity rates — long trending upwards — had fallen modestly over the past few years, from 41.9 to 40.3 percent. The decline sparked discussion on social media and in major news outlets about whether the U.S. has passed so-called “peak obesity” — and whether the growing use of certain weight-loss drugs might account for the shift. An opinion piece in the Financial Times suggested that the public health world might look back on the current moment in much the same way that it now reflects on 1963, when cigarette sales hit their high point and then dropped dramatically over the following decades. The article’s author, John Burn-Murdoch, speculated that the dip is “highly likely” to be caused by the use of glucagon-like peptide-1 receptor agonists, or GLP-1s, for weight loss. It’s easy to see why one might make that connection. Although GLP-1s have been used for nearly two decades in the treatment of type 2 diabetes, their use for obesity only took off more recently. In 2014, the Food and Drug Administration approved a GLP-1 agonist named Saxenda specifically for this purpose. Then in the late 2010s, a GLP-1 drug named Ozempic, made from the active ingredient semaglutide, began to be used off-label. The FDA also authorized Wegovy, another semaglutide-based GLP-1 medication, explicitly for weight loss in 2021. Still, it is premature to declare that GLP-1s have caused overall declining obesity rates in the U.S. There are a number of ways to interpret the CDC data, and not all of them suggest that obesity rates have actually fallen. Further, recent evidence indicates that GLP-1s might not be as effective for weight loss as initially thought. And there are reasons to question the comparison to cigarette sales. Taken together, all of this suggests that we may need to wait to understand how this new class of drugs affects weight loss at the population level.

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29594 - Posted: 12.11.2024

By Yasemin Saplakoglu Bacteria are in, around and all over us. They thrive in almost every corner of the planet, from deep-sea hydrothermal vents to high up in the clouds, to the crevices of your ears, mouth, nose and gut. But scientists have long assumed that bacteria can’t survive in the human brain. The powerful blood-brain barrier, the thinking goes, keeps the organ mostly free from outside invaders. But are we sure that a healthy human brain doesn’t have a microbiome of its own? Over the last decade, initial studies have presented conflicting evidence. The idea has remained controversial, given the difficulty of obtaining healthy, uncontaminated human brain tissue that could be used to study possible microbial inhabitants. Recently, a study published in Science Advances provided the strongest evidence yet (opens a new tab) that a brain microbiome can and does exist in healthy vertebrates — fish, specifically. Researchers at the University of New Mexico discovered communities of bacteria thriving in salmon and trout brains. Many of the microbial species have special adaptations that allow them to survive in brain tissue, as well as techniques to cross the protective blood-brain barrier. Matthew Olm (opens a new tab), a physiologist who studies the human microbiome at the University of Colorado, Boulder and was not involved with the study, is “inherently skeptical” of the idea that populations of microbes could live in the brain, he said. But he found the new research convincing. “This is concrete evidence that brain microbiomes do exist in vertebrates,” he said. “And so the idea that humans have a brain microbiome is not outlandish.” While fish physiology is, in many ways, similar to humans’, there are some key differences. Still, “it certainly puts another weight on the scale to think about whether this is relevant to mammals and us,” said Christopher Link (opens a new tab), who studies the molecular basis of neurodegenerative disease at the University of Colorado, Boulder and was also not involved in the work. © 2024 Simons Foundation

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 2: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 29588 - Posted: 12.04.2024

By Giorgia Guglielmi For years, scientists have thought of hunger regulation as a tug-of-war between two types of neurons in the hypothalamus: those that express the AGRP gene and increase hunger, and those that express the POMC gene and act as a brake. Now a new study challenges this long-standing model, revealing a third player in the hunger-satiety network—a neuron type that expresses the BNC2 gene and suppresses hunger faster than those that express POMC. These BNC2 neurons are activated by leptin—a hormone that helps suppress appetite and boost metabolism. Their discovery “reshapes our understanding of feeding behavior,” says lead investigator Han Tan, “and how leptin regulates body weight.” Tan is a research associate in Jeffrey Friedman’s lab at Rockefeller University. “We’ve known for a long time there must be [other] neurons in the brain that are sensing leptin and decreasing appetite, but we didn’t know who they were until now,” says John Campbell, assistant professor of biology at the University of Virginia, who wasn’t involved in the study. The results jibe with two other recent reports of leptin-sensitive neurons in the arcuate nucleus—a region in the hypothalamus that processes signals related to hunger and satiety. The neurons generate feelings of fullness, an independent team reported in Science in June, and they dampen appetite by inhibiting AGRP-expressing “hunger neurons,” according to a preprint Campbell and his colleagues posted on bioRxiv in July. The studies all point to a unique group of neurons that inhibit hunger, says Martin Myers, professor of internal medicine and molecular and integrative physiology at the University of Michigan, who was not involved in the work. “The three groups essentially found [these neurons] simultaneously.” © 2024 Simons Foundation

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29584 - Posted: 12.04.2024

By Margot Sanger-Katz The Biden administration, in one of its last major policy directives, proposed on Tuesday that Medicare and Medicaid cover obesity medications, a costly and probably popular move that the Trump administration would need to endorse to become official. The proposal would extend access of the drugs to millions of Americans who aren’t covered now. The new obesity drugs, including Wegovy from Novo Nordisk and Zepbound from Eli Lilly, have been shown to improve health in numerous ways, but legislation passed 20 years ago prevents Medicare from covering drugs for “weight loss.” The new proposal sidesteps that restriction, specifying that the drugs would be covered to treat the disease of obesity and prevent its related conditions. “We don’t want to see people having to wait until they have these additional diseases before they get treatment,” said Chiquita Brooks-LaSure, the administrator of the Centers for Medicare and Medicaid Services, or C.M.S., noting the growing medical consensus that obesity is a chronic health condition. The classification would also mean that every state Medicaid program would be required to cover the drugs. Currently, only a handful do. C.M.S. estimates that around 3.4 million more patients in Medicare would become eligible for obesity drugs, and around four million patients in Medicaid would gain coverage, costing the programs billions of dollars. Medicare mostly covers Americans 65 and older; Medicaid mostly covers poor and disabled Americans. The proposal is part of an annual policy update for all Medicare drug plans and private Medicare Advantage plans starting in 2026. In a conference call with reporters Tuesday, Daniel Tsai, the top Medicaid official, said Medicaid coverage could start sooner than 2026. © 2024 The New York Times Company

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29580 - Posted: 11.30.2024

By Tomas Weber Trinian Taylor, a 52-year-old car dealer, pushed his cart through the aisles of a supermarket as I pretended not to follow him. It was a bright August day in Northern California, and I had come to the store to meet Emily Auerbach, a relationship manager at Mattson, a food-innovation firm that creates products for the country’s largest food and beverage companies: McDonald’s and White Castle, PepsiCo and Hostess. Auerbach was trying to understand the shopping behavior of Ozempic users, and Taylor was one of her case studies. She instructed me to stay as close as I could without influencing his route around the store. In her experience of shop-alongs, too much space, or taking photos, would be a red flag for the supermarket higher-ups, who might figure out we were not here to shop. “They’d be like, ‘You need to exit,’” she said. Auerbach watched in silence as Taylor, who was earning $150 in exchange for being tailed, propelled his cart through snack aisles scattered with products from Mattson’s clients. He took us straight past the Doritos and the Hostess HoHos, without a side glance at the Oreos or the Cheetos. We rushed past the Pop-Tarts and the Hershey’s Kisses, the Lucky Charms and the Lay’s — they all barely registered. Clumsily, close on his heels, Auerbach and I stumbled right into what has become, under the influence of the revolutionary new diet drug, Taylor’s happy place: the produce section. He inspected the goods. “I’m on all of these,” he told us. “I eat a lot of pineapple. A lot of pineapple, cucumber, ginger. Oh, a lot of ginger.” Taylor, who lives in Hayward, Calif., used to nurse a sugar addiction, he said, but he can no longer stomach Hostess treats. A few days earlier, his daughter fed him some candy. “I just couldn’t,” he said. “It was so sweet it choked me.” His midnight snack used to be cereal, but now he stirs at night with strange urges. Salads. Chicken. He has sworn off canned sodas and fruit juices and infuses his water with lemon and cucumber. He dropped a heavy bag of lemons into the cart and sauntered over to the leafy vegetables. “I love Swiss chard,” he said. “I eat a lot of kale.” For decades, Big Food has been marketing products to people who can’t stop eating, and now, suddenly, they can. The active ingredient in Ozempic, as in Wegovy, Zepbound and several other similar new drugs, mimics a natural hormone, called glucagon-like peptide-1 (GLP-1), that slows digestion and signals fullness to the brain. Around seven million Americans now take a GLP-1 drug, and Morgan Stanley estimates that by 2035 the number of U.S. users could expand to 24 million. © 2024 The New York Times Company

Related chapters from BN: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29569 - Posted: 11.20.2024