Links for Keyword: Parkinsons

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 439

By Pam Belluck When Shawn Connolly was diagnosed with Parkinson’s disease nine years ago, he was a 39-year-old daredevil on a skateboard, flipping and leaping from walls, benches and dumpsters through the streets of San Francisco. He appeared in videos and magazines, and had sponsorships from skateboard makers and shops. But gradually, he began to notice that “things weren’t really working right” with his body. He found that his right hand was cupping, and he began cradling his arm to hold it in place. His balance and alignment started to seem off. Over time, he developed a common Parkinson’s pattern, fluctuating between periods of rapid involuntary movements like “I’ve got ants in my pants” and periods of calcified slowness when, he said, “I could barely move.” A couple of years ago, Mr. Connolly volunteered for an experiment that summoned his daring and determination in a different way. He became a participant in a study exploring an innovative approach to deep brain stimulation. In the study, which was published Monday in the journal Nature Medicine, researchers transformed deep brain stimulation — an established treatment for Parkinson’s — into a personalized therapy that tailored the amount of electrical stimulation to each patient’s individual symptoms. The researchers found that for Mr. Connolly and the three other participants, the individualized approach, called adaptive deep brain stimulation, cut in half the time they experienced their most bothersome symptom. Mr. Connolly, now 48 and still skateboarding as much as his symptoms allow, said he noticed the difference “instantly.” He said the personalization gave him longer stretches of “feeling good and having that get-up-and-go.” © 2024 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29447 - Posted: 08.21.2024

By Scott Sayare As a boy, Les Milne carried an air of triumph about him, and an air of sorrow. Les was a particularly promising and energetic young man, an all-Scottish swim champion, head boy at his academy in Dundee, a top student bound for medical school. But when he was young, his father died; his mother was institutionalized with a diagnosis of manic depression, and he and his younger brother were effectively left to fend for themselves. His high school girlfriend, Joy, was drawn to him as much by his sadness as his talents, by his yearning for her care. “We were very, very much in love,” Joy, now a flaxen-haired 72-year-old grandmother, told me recently. In a somewhat less conventional way, she also adored the way Les smelled, and this aroma of salt and musk, accented with a suggestion of leather from the carbolic soap he used at the pool, formed for her a lasting sense of who he was. “It was just him,” Joy said, a steadfast marker of his identity, no less distinctive than his face, his voice, his particular quality of mind. Listen to this article, read by Robert Petkoff Joy’s had always been an unusually sensitive nose, the inheritance, she believes, of her maternal line. Her grandmother was a “hyperosmic,” and she encouraged Joy, as a child, to make the most of her abilities, quizzing her on different varieties of rose, teaching her to distinguish the scent of the petals from the scent of the leaves from the scent of the pistils and stamens. Still, her grandmother did not think odor of any kind to be a polite topic of conversation, and however rich and enjoyable and dense with information the olfactory world might be, she urged her granddaughter to keep her experience of it to herself. Les only learned of Joy’s peculiar nose well after their relationship began, on a trip to the Scandinavian far north. Joy would not stop going on about the creamy odor of the tundra, or what she insisted was the aroma of the cold itself. Joy planned to go off to university in Paris or Rome. Faced with the prospect of tending to his mother alone, however, Les begged her to stay in Scotland. He trained as a doctor, she as a nurse; they married during his residency. He was soon the sort of capable young physician one might hope to meet, a practitioner of uncommon enthusiasm, and shortly after his 30th birthday, he was appointed consultant anesthesiologist at Macclesfield District General Hospital, outside Manchester, in England, the first in his graduating class to make consultant. © 2024 The New York Times Company

Related chapters from BN: Chapter 9: Hearing, Balance, Taste, and Smell; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 5: The Sensorimotor System
Link ID: 29363 - Posted: 06.15.2024

Matthew Farrer Parkinson’s disease is a neurodegenerative movement disorder that progresses relentlessly. It gradually impairs a person’s ability to function until they ultimately become immobile and often develop dementia. In the U.S. alone, over a million people are afflicted with Parkinson’s, and new cases and overall numbers are steadily increasing. There is currently no treatment to slow or halt Parkinson’s disease. Available drugs don’t slow disease progression and can treat only certain symptoms. Medications that work early in the disease, however, such as Levodopa, generally become ineffective over the years, necessitating increased doses that can lead to disabling side effects. Without understanding the fundamental molecular cause of Parkinson’s, it’s improbable that researchers will be able to develop a medication to stop the disease from steadily worsening in patients. Many factors may contribute to the development of Parkinson’s, both environmental and genetic. Until recently, underlying genetic causes of the disease were unknown. Most cases of Parkinson’s aren’t inherited but sporadic, and early studies suggested a genetic basis was improbable. Nevertheless, everything in biology has a genetic foundation. As a geneticist and molecular neuroscientist, I have devoted my career to predicting and preventing Parkinson’s disease. In our newly published research, my team and I discovered a new genetic variant linked to Parkinson’s that sheds light on the evolutionary origin of multiple forms of familial parkinsonism, opening doors to better understand and treat the disease. In the mid-1990s, researchers started looking into whether genetic differences between people with or without Parkinson’s might identify specific genes or genetic variants that cause the disease. In general, I and other geneticists use two approaches to map the genetic blueprint of Parkinson’s: linkage analysis and association studies. © 2010–2024, The Conversation US, Inc.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29249 - Posted: 04.11.2024

By David Adam A diabetes drug related to the latest generation of obesity drugs can slow the development of the symptoms of Parkinson’s disease, a clinical trial suggests1. Participants who took the drug, called lixisenatide, for 12 months showed no worsening of their symptoms — a gain in a condition marked by progressive loss of motor control. Further work is needed to control side effects and determine the best dose, but researchers say that the trial marks another promising step in the decades-long effort to tackle the common and debilitating disorder. “This is the first large-scale, multicentre clinical trial to provide the signs of efficacy that have been sought for so many years,” says Olivier Rascol, a Parkinson’s researcher at Toulouse University Hospital in France, who led the study. The diabetes connection Lixisenatide is a glucagon-like peptide-1 (GLP-1) receptor agonist, making it part of a large family of similar compounds used to treat diabetes and, more recently, obesity. (The weight-loss drug semaglutide, sold under the brand name Wegovy, is a GLP-1 compound.) Many studies have shown a link between diabetes and Parkinson’s2. People with diabetes are around 40% more likely to develop Parkinson’s. And people who have both Parkinson’s and diabetes often see more rapid progression of symptoms than do those who have only Parkinson’s. Animal studies3 have suggested that some GLP-1 drugs, which influence levels of insulin and glucose, can slow the symptoms of Parkinson’s. Smaller trials, published in 20134 and 20175, suggested that the GLP-1 molecule exenatide, another diabetes drug, could do the same in people.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29240 - Posted: 04.04.2024

By Dennis Normile By the time a person shows symptoms of Parkinson’s disease, neurons in a part of their brain key to movement have already quietly died. To learn how this process unfolds, identify warning signs, and test treatments, researchers have long wanted an animal model of the disease’s early stages. Now, they may have one: a cohort of transgenic marmosets, described at a conference on nonhuman primate models in Hong Kong last month. The animals, which neuroscientist Hideyuki Okano of Keio University and colleagues created using a mutated protein that seems to drive Parkinson’s in some people, closely mimic the disease’s onset and progression. And they have enabled Okano’s team to identify what could be an early, predictive sign of disease in brain imaging. The model could be “transformative” for Parkinson’s studies, says neurobiologist Peter Strick of the University of Pittsburgh, who attended the meeting, organized by the Hong Kong University of Science and Technology, Stanford University, and the University of California San Francisco. “We desperately need nonhuman primate models that recapitulate the natural onset and progression” of conditions like Parkinson’s, he says. Parkinson’s, which afflicts an estimated 8.5 million people, is thought to be triggered by a combination of genetic and environmental factors, such as exposure to toxic chemicals. It sets in as neurons that produce the chemical messenger dopamine in the substantia nigra, an area of the brain that controls movement, die off. Early symptoms include tremors, muscle stiffness, and hesitant motions. The disease can later affect cognition and lead to dementia. Researchers think one cause of neuronal death may be abnormal versions of a protein called alpha-synuclein that misfold and form toxic clumps in the brain years before symptoms emerge. © 2024 American Association for the Advancement of Science.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29221 - Posted: 03.28.2024

By David Levin It can start small: a peculiar numbness; a subtle facial tic; an inexplicably stiff muscle. But then time goes by — and eventually, the tremors set in. Roughly a million people in the United States (and roughly 10 million people worldwide) live with Parkinson’s disease, a potent neurological disorder that progressively kills neurons in the brain. As it does so, it can trigger a host of crippling symptoms, from violent tremors to excruciating muscle cramps, terrifying nightmares and constant brain fog. While medical treatments can alleviate some of these effects, researchers still don’t know exactly what causes the disease to occur in the first place. A growing number of studies, however, are suggesting that it may be tied to an unlikely culprit: bacteria living inside our guts. Every one of us has hundreds or thousands of microbial species in our stomach, small intestine and colon. These bacteria, collectively called our gut microbiome, are usually considerate guests: Although they survive largely on food that passes through our insides, they also give back, cranking out essential nutrients like niacin (which helps our body convert food into energy) and breaking down otherwise indigestible plant fiber into substances our bodies can use. As Parkinson’s advances in the brain, researchers have reported that the species of bacteria present in the gut also shift dramatically, hinting at a possible cause for the disease. A 2022 paper published in the journal Nature Communications recorded those differences in detail. After sequencing the mixed-together genomes of fecal bacteria from 724 people — a group with Parkinson’s and another without — the authors saw a number of distinct changes in the guts of people who suffered from the disease. The Parkinson’s group had dramatically lower amounts of certain species of Prevotella, a type of bacterium that helps the body break down plant-based fiber (changes like this in gut flora could explain why people with Parkinson’s disease often experience constipation). At the same time, the study found, two harmful species of Enterobacteriaceae, a family of microbes that includes Salmonella, E. coli and other bugs, proliferated. Those bacteria may be involved in a chain of biochemical events that eventually kill brain cells in Parkinson’s patients, says Tim Sampson, a biologist at Emory University School of Medicine and coauthor of the study.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 29098 - Posted: 01.13.2024

By Mark MacNamara The notion of boxing as the “sweet science” is often thought to have been coined in 1956 by the great New Yorker writer A.J. Liebling. He used the term as the title of his definitive book on the sport, but he took it—with much appreciation—from a British sportswriter, Pierce Egan. In 1813, Egan wrote about the “sweet science of bruising” in his master work, Boxiana. The book is a collection of magazine pieces set in a bloody, bare-knuckled world opposite Jane Austen’s. As for the “sweet science,” no one ever really defines it. A carefully thrown knockout punch to a sweet spot on the chin is one possible derivation. There’s also the play on a science with so little apparent sweetness. But that’s not it. The sweet science Liebling and Egan describe had more to do with British principles of “stoic virtues,” “generosity,” and “true courage”—altogether, life in a contradictory place. It’s a square ring, after all, where sometimes hope transcends the specter of an awful inevitability. Or so I’ve come to think, on a journey I’ve begun in the past year, exploring how the sweet science can be used as a treatment for Parkinson’s disease—that increasingly common degenerative disorder of the nervous system, tied to a loss of the brain chemical dopamine, which is involved in movement, memory, motivation, and cognition. Someone told her she moved like a wavy wind sock outside a used car lot. “Exactly how I feel,” she said. In October 2022, a longtime tennis partner noticed something “strange” in my stride, along with a noisy shuffle. “Fatigue,” I replied with pique. The truth is I’m 75 and had known something might not be right for years, particularly the ominous hand tremors, as well as the night-of-the-living-dead gait and a facial expression to match. Add severe anxiety in public places and bizarre nightmares, some quite disturbing. © 2023 NautilusNext Inc.,

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 29055 - Posted: 12.19.2023

Emily Waltz A highly experimental implant that delivers electrical stimulation to the spinal cord has substantially improved mobility for one man with advanced Parkinson’s disease, according to a report published today in Nature Medicine1. Stimulating spinal cord helps paralysed people to walk again The technology, developed by researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL), enables the man to walk fluidly and to navigate terrain without falling — something he couldn’t do before the treatment. Parkinson’s causes uncontrollable movements and difficulty with coordination that worsens over time. The effects of the treatment have lasted for two years. “There are no therapies to address the severe gait problems that occur at a later stage of Parkinson’s, so it’s impressive to see him walking,” says Jocelyne Bloch, a neurosurgeon at the EPFL and a lead author of the paper. But with only one individual tested, it remains unclear whether the approach will work for other people with the disease. The next step “would be to do a randomized, controlled trial”, says Susan Harkema, a neuroscientist at the University of Louisville in Kentucky who works on stimulation therapy in people with spinal cord injuries. Spinal cord stimulation involves surgically implanting a neuroprosthetic device that delivers pulses of electricity to specific regions of the spinal cord in an effort to activate dysfunctional neural circuits. The technique has been used experimentally to enable people paralysed by spinal cord injury to stand on their own, and even to walk short distances. © 2023 Springer Nature Limited

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28994 - Posted: 11.08.2023

By Matt Richtel An Oxford University researcher and her team showed that digital wearable devices can track the progression of Parkinson’s disease in an individual more effectively than human clinical observation can, according to a newly published paper. By tracking more than 100 metrics picked up by the devices, researchers were able to discern subtle changes in the movements of subjects with Parkinson’s, a neurodegenerative disease that afflicts 10 million people worldwide. The lead researcher emphasized that the latest findings were not a treatment for Parkinson’s. Rather, they are a means of helping scientists gauge whether novel drugs and other therapies for Parkinson’s are slowing the progression of the disease. Quotable Quotes The sensors — six per subject, worn on the chest, at the base of the spine and one on each wrist and foot — tracked 122 physiological metrics. Several dozen metrics stood out as closely indicating the disease’s progression, including the direction a toe moved during a step and the length and regularity of strides. “We have the biomarker,” said Chrystalina Antoniades, a neuroscientist at the University of Oxford and the lead researcher on the paper, which was published earlier this month in the journal npj Parkinson’s Disease. “It’s super exciting. Now we hope to be able to tell you: Is a drug working?” Until now, Dr. Antoniades said, drug trials for Parkinson’s had relied on clinical assessment of whether a treatment was slowing the progression of the disease. But clinical observation can miss changes that happen day to day or that might not show up clearly in periodic visits to a doctor, she added. In the paper, the study’s authors concluded that the sensors proved more effective at tracking the disease progression “than the conventionally used clinical rating scales.” © 2023 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28965 - Posted: 10.17.2023

By Jocelyn Kaiser Parkinson’s disease, a brain disorder that gradually leads to difficulty moving, tremors, and usually dementia by the end, is often difficult to diagnose early in its yearslong progression. That makes testing experimental treatments challenging and slows people from getting existing drugs, which can’t stop the ongoing death of brain cells but temporarily improve many of the resulting symptoms. Now, a study using rodents and tissue from diagnosed Parkinson’s patients suggests DNA damage spotted in blood samples offers a simple way to diagnose the disease early. Although the potential test needs to be validated in clinical studies, the detected DNA damage joins a “flurry” of other biomarkers recently identified for Parkinson’s and “adds to our ability to state confidently that an individual has Parkinson’s disease or not,” says neurodegeneration researcher Mark Cookson of the National Institute on Aging, whose grantmaking arm helped fund the new work, published today in Science Translational Medicine. A blood test based on the findings could also help patients go on existing treatments earlier and boost clinical trials evaluating new therapies, the study’s authors say. “It’s really exciting because it’s something [physicians] could use to detect [Parkinson’s] before the clinical symptoms emerge,” says neuroscientist Malú Tansey of the University of Florida, who also was not involved with the research. Parkinson’s occurs when the death of certain neurons in the brain causes levels of the neurotransmitter dopamine to drop, leading to muscle stiffness, balance problems, speech and cognitive problems, and other symptoms over time. The disorder, tied to both environmental and genetic factors, afflicts up to 1 million people in the United States.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28897 - Posted: 09.07.2023

By Linda Searing Getting regular exercise may reduce a woman’s chances of developing Parkinson’s disease by as much as 25 percent, according to research published in the journal Neurology. It involved 95,354 women, who were an average of age 49 and did not have Parkinson’s when the study began. The researchers compared the women’s physical exercise levels over nearly three decades, including such activities as walking, cycling, gardening, stair climbing, house cleaning and sports participation. In that time, 1,074 women developed Parkinson’s. The study found that as a woman’s exercise level increased, her risk for Parkinson’s decreased. Those who got the most exercise — based on timing and intensity — developed the disease at a 25 percent lower rate than those who exercised the least. The researchers wrote that the study’s findings “suggest that physical activity may help prevent or delay [Parkinson’s disease] onset.” Parkinson’s disease is a neurodegenerative disorder, meaning it is a progressive disease that affects the nervous system and parts of the body controlled by nerves. It is sometimes referred to as a movement disorder because of the uncontrollable tremors, muscle stiffness, and gait and balance problems it can cause, but people with Parkinson’s also may experience sleep problems, depression, memory issues, fatigue and more. The symptoms generally stem from the brain’s lack of production of dopamine, a chemical that helps control muscle movement. No cure exists for Parkinson’s, but treatments to relieve symptoms include medication, lifestyle adjustments and surgical procedures, such as deep brain stimulation.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28804 - Posted: 05.31.2023

By Meredith Wadman A groundbreaking epidemiological study has produced the most compelling evidence yet that exposure to the chemical solvent trichloroethylene (TCE)—common in soil and groundwater—increases the risk of developing Parkinson’s disease. The movement disorder afflicts about 1 million Americans, and is likely the fastest growing neurodegenerative disease in the world; its global prevalence has doubled in the past 25 years. The report, published today in JAMA Neurology, involved examining the medical records of tens of thousands of Marine Corps and Navy veterans who trained at Marine Corps Base Camp Lejeune in North Carolina from 1975 to 1985. Those exposed there to water heavily contaminated with TCE had a 70% higher risk of developing Parkinson’s disease decades later compared with similar veterans who trained elsewhere. The Camp Lejeune contingent also had higher rates of symptoms such as erectile dysfunction and loss of smell that are early harbingers of Parkinson’s, which causes tremors; problems with moving, speaking, and balance; and in many cases dementia. Swallowing difficulties often lead to death from pneumonia. About 90% of Parkinson’s cases can’t be explained by genetics, but there have been hints that exposure to TCE may trigger it. The new study, led by researchers at the University of California, San Francisco (UCSF), represents by far the strongest environmental link between TCE and the disease. Until now, the entire epidemiological literature included fewer than 20 people who developed Parkinson’s after TCE exposure. The Camp Lejeune analysis “is exceptionally important,” says Briana De Miranda, a neurotoxicologist at the University of Alabama at Birmingham who studies TCE’s pathological impacts in the brains of rats. “It gives us an extremely large population to assess a risk factor in a very carefully designed epidemiological study.”

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: Development of the Brain
Link ID: 28785 - Posted: 05.18.2023

By Diana Kwon Alan Alda was running for his life. The actor, best known for his role on the television series M*A*S*H, wasn’t on a set. This threat was real—or at least it felt that way. So when he saw a bag of potatoes in front of him, he grabbed it and threw it at his attacker. Suddenly, the scene shifted. He was in his bedroom, having lurched out of sleep, and the sack of potatoes was a pillow he’d just chucked at his wife. Acting out dreams marks a disorder that occurs during the rapid eye movement (REM) phase of sleep. Called RBD, for REM sleep behavior disorder, it affects an estimated 0.5 to 1.25 percent of the general population and is more commonly reported in older adults, particularly men. Apart from being hazardous to dreamers and their partners, RBD may foreshadow neurodegenerative disease, primarily synucleinopathies—conditions in which the protein α-synuclein (or alpha-synuclein) forms toxic clumps in the brain. Not all nocturnal behaviors are RBD. Sleepwalking and sleep talking, which occur more often during childhood and adolescence, take place during non-REM sleep. This difference is clearly distinguishable in a sleep laboratory, where clinicians can monitor stages of sleep to see when a person moves. Nor is RBD always associated with a synucleinopathy: it can also be triggered by certain drugs such as antidepressants or caused by other underlying conditions such as narcolepsy or a brain stem tumor. When RBD occurs in the absence of these alternative explanations, the chance of future disease is high. Some epidemiological studies suggest that enacted dreaming predicts a more than 80 percent chance of developing a neurodegenerative disease within the patient’s lifetime. It may also be the first sign of neurodegenerative disease, which on average shows up within 10 to 15 years after onset of the dream disorder. One of the most common RBD-linked ailments is Parkinson’s disease, characterized mainly by progressive loss of motor control. Another is Lewy body dementia, in which small clusters of α-synuclein called Lewy bodies build up in the brain, disrupting movement and cognition. A third type of synucleinopathy, multiple system atrophy, interferes with both movement and involuntary functions such as digestion. RBD is one of the strongest harbingers of future synucleinopathy, more predictive than other early markers such as chronic constipation and a diminished sense of smell.

Related chapters from BN: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 5: The Sensorimotor System
Link ID: 28642 - Posted: 01.25.2023

by Carey Gillam and Aliya Uteuova For decades, Swiss chemical giant Syngenta has manufactured and marketed a widely used weed-killing chemical called paraquat, and for much of that time the company has been dealing with external concerns that long-term exposure to the chemical may be a cause of the incurable brain ailment known as Parkinson’s disease. Syngenta has repeatedly told customers and regulators that scientific research does not prove a connection between its weedkiller and the disease, insisting that the chemical does not readily cross the blood-brain barrier, and does not affect brain cells in ways that cause Parkinson’s. But a cache of internal corporate documents dating back to the 1950s reviewed by the Guardian suggests that the public narrative put forward by Syngenta and the corporate entities that preceded it has at times contradicted the company’s own research and knowledge. And though the documents reviewed do not show that Syngenta’s scientists and executives accepted and believed that paraquat can cause Parkinson’s, they do show a corporate focus on strategies to protect product sales, refute external scientific research and influence regulators. In one defensive tactic, the documents indicate that the company worked behind the scenes to try to keep a highly regarded scientist from sitting on an advisory panel for the US Environmental Protection Agency (EPA). The agency is the chief US regulator for paraquat and other pesticides. Company officials wanted to make sure the efforts could not be traced back to Syngenta, the documents show. And the documents show that insiders feared they could face legal liability for long-term, chronic effects of paraquat as long ago as 1975. One company scientist called the situation “a quite terrible problem” for which “some plan could be made … ”

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: Development of the Brain
Link ID: 28522 - Posted: 10.22.2022

Ian Sample Science editor It was while watching University Challenge that the doctor first suspected something wrong with Jeremy Paxman. Normally highly animated, the TV presenter was less effusive and exuberant than usual. He had acquired what specialists in the field call the “Parkinson’s mask”. Paxman was formally diagnosed with Parkinson’s disease in hospital after he collapsed while walking his dog and found himself in hospital. There, Paxman recalled in an ITV documentary, the doctor walked in and said: “I think you’ve got Parkinson’s”. For Paxman, at least, the news came out of the blue. Parkinson’s was first described in medical texts more than 200 years ago, yet there is still no cure. It’s a common condition, particularly in the over-50s. About 1 in 37 people in the UK will be diagnosed at some point in their life. Existing drugs aim to manage patients’ symptoms, rather than slow down or stop the condition’s progression. But scientists have made progress in understanding the neurodegenerative disorder. The hope now is that gamechanging therapies are finally on the horizon. Advertisement “Parkinson’s is a hugely complex condition and there’s probably no single cure,” says Katherine Fletcher, a research communications manager at Parkinson’s UK. “It’s the progressive loss of dopamine-producing cells in the brain. If you want to slow or stop the condition, you somehow need to protect those cells or maybe even regrow those cells in the brain. That is the ultimate goal.” Why brain cells die off in Parkinson’s is still unknown. The condition strikes a brain region called the substantia nigra, where neurons make a chemical called dopamine. The loss of these brain cells causes dopamine to plunge, and this drives most of the problems patient’s experience. It is not a fast decline: typically, patients only become aware of symptoms when about 80% of nerve cells in the substantia nigra have failed. © 2022 Guardian News & Media Limited or its affiliated companies.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28507 - Posted: 10.08.2022

ByRobert F. Service An experimental drug is raising new hopes for those with Parkinson’s disease. So far, the compound has only been tested in animals and in an initial safety assessment in humans. But results show it inhibits a cellular pathway that gives rise to the disease, which researchers have been working to target for nearly 20 years. Investigators are now launching expanded clinical trials. “This is a very, very important step forward,” says Patrick Lewis, a neuroscientist who studies the mechanisms of Parkinson’s at the University of London’s Royal Veterinary College. If further tests prove the compound is effective in humans, says Lewis, who was not involved with the new study, it would likely be given to patients as soon as they exhibit the first signs of developing the progressive disorder. “The hope is that [the new drug] would slow down the progression of disease.” Parkinson’s affects as many as 10 million people worldwide. It results when cells in the brain that produce the neurotransmitter dopamine stop working or die. Over time this causes a widespread decline in brain function, leading to shaking and loss of muscle control. Current drugs can help replace lost dopamine and reduce symptoms, but no therapies slow or halt disease progression itself. The new study focuses on a gene called leucine-rich repeat kinase 2 (LRRK2). People with mutations in this gene are at high risk for developing Parkinson’s. Among other roles, LRRK2 modifies a suite of proteins called Rab guanosine triphosphates, which act like air traffic controllers, orchestrating the flow of proteins in and out of cells. The mutations kick Rab into overdrive and reduce the efficiency of cellular structures called lysosomes, which chew up and recycle unwanted proteins. This creates a buildup of toxic byproducts that can kill neurons and lead to Parkinson’s, says Carole Ho, chief medical officer of Denali Therapeutics, a biotech startup in California. © 2022 American Association for the Advancement of Science.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28362 - Posted: 06.09.2022

By Laura Sanders Deep in the human brain, a very specific kind of cell dies during Parkinson’s disease. For the first time, researchers have sorted large numbers of human brain cells in the substantia nigra into 10 distinct types. Just one is especially vulnerable in Parkinson’s disease, the team reports May 5 in Nature Neuroscience. The result could lead to a clearer view of how Parkinson’s takes hold, and perhaps even ways to stop it. The new research “goes right to the core of the matter,” says neuroscientist Raj Awatramani of Northwestern University Feinberg School of Medicine in Chicago. Pinpointing the brain cells that seem to be especially susceptible to the devastating disease is “the strength of this paper,” says Awatramani, who was not involved in the study. Parkinson’s disease steals people’s ability to move smoothly, leaving balance problems, tremors and rigidity. In the United States, nearly 1 million people are estimated to have Parkinson’s. Scientists have known for decades that these symptoms come with the death of nerve cells in the substantia nigra. Neurons there churn out dopamine, a chemical signal involved in movement, among other jobs (SN: 9/7/17). But those dopamine-making neurons are not all equally vulnerable in Parkinson’s, it turns out. “This seemed like an opportunity to … really clarify which kinds of cells are actually dying in Parkinson’s disease,” says Evan Macosko, a psychiatrist and neuroscientist at Massachusetts General Hospital in Boston and the Broad Institute of MIT and Harvard. © Society for Science & the Public 2000–2022.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28320 - Posted: 05.07.2022

Jon Hamilton Paul knew his young grandson was in danger. "Out of the corner of my eye I could see this little figure moving," he says. The figure was heading for a steep flight of stairs. But what could he do? Paul was sitting down. And after more than a decade of living with Parkinson's disease, getting out of a chair had become a long and arduous process. But not on this day. "Paul jumped up from the chair and ran to my grandson," says his wife, Rose. (The couple asked to be identified by only their first names to protect their medical privacy.) "I mean, he just got up like there was nothing and ran to pick up Max." Amazing. But it's also the kind of story that's become familiar to Peter Strick, professor and chair of neurobiology at the University of Pittsburgh and scientific director of the University of Pittsburgh Brain Institute. "It was a great example of what people call paradoxical kinesia," Strick says. "It was a description of just what we are studying." Article continues after sponsor message Paradoxical kinesia refers to the sudden ability of a person with Parkinson's to move quickly and fluidly, the way they did before the disease eroded a brain area involved in movement. The phenomenon is a variation of the placebo effect. But instead of being induced by the belief that a sugar pill is really medicine, it tends to appear in situations that involve stress or a strong emotion. For Paul, "it was the fear of his grandson falling down the stairs," says Strick, who learned about the event in an email from Rose. A treatment that's "all in your head" © 2022 npr

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 28193 - Posted: 02.09.2022

By Linda Searing For people with early-stage Parkinson’s disease, four hours a week of moderate exercise may help slow the progression of the disease. Symptoms of Parkinson’s, which is a movement disorder, generally start gradually but worsen over time. FAQ: What to know about the omicron variant of the coronavirus But research published in the journal Neurology found that those who were regularly active for at least that amount of time — whether with traditional exercise or such physical activity as walking, gardening or dancing — had less decline in balance and walking ability, were better able to maintain daily activities and did better on cognitive tests five years later than those who exercised less. The researchers noted that the key to achieving these benefits was maintaining regular exercise over time, rather than how active people had been when their disease started. Parkinson’s, which is more common in men than women, usually begins about age 60 as nerve cells in the brain (neurons) become weak or damaged. Symptoms may include trembling or shaking (tremor), muscle stiffness (rigidity), slow movement (bradykinesia) and poor balance and coordination. As symptoms get worse, people may have trouble walking, talking or continuing to do routine daily activities. Although no cure exists for Parkinson’s, treatment — medication, surgery or electrical stimulation — can sometimes help ease some symptoms for a while. The researchers wrote, however, that “there is still no disease-modifying treatment to slow the disease’s progression.”

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28157 - Posted: 01.19.2022

Meredith Wadman Progress in treating Parkinson’s disease—a progressive neurological illness that causes tremors, muscle rigidity, and dementia—has been painfully slow, in large part because scientists still don’t fully understand the molecular events that kill select brain cells. What they do know is Parkinson’s leaves behind a telltale mark: clumps of the misfolded alpha synuclein (αS) protein in the brains and guts of patients at autopsy. In its normal form, the protein is widely thought to help brain cells communicate, but researchers have now uncovered another role—αS plays an essential part in immune and inflammatory responses in the gut. The new work is “extremely well done and very exciting,” says physician-scientist Michael Schlossmacher, who studies Parkinson’s disease at the Ottawa Hospital Research Institute but was not involved with the study. He adds that the protein’s “pivotal role” in immunity may help explain why chronic infection or inflammation can lead to a higher risk of Parkinson’s. Others in the field, however, question the work’s relevance to the brain disorder. The dominant view among researchers is that misfolded αS aggregates and takes on new toxic properties, and some say the natural role of the protein, although interesting, may be irrelevant to pursuing needed treatments. Parkinson’s disease, the second most common neurodegenerative ailment after Alzheimer’s, affects one in 331, or about 1 million, people in the United States and at least 7 million people globally. Many patients are diagnosed in their 60s, as brain cells that make the neurotransmitter dopamine die and lead to symptoms. But the disease can also strike the young—including those who produce too much αS, or fail to break it down—because of rare genetic mutations. Other risk factors include sex—prevalence is 40% to 50% higher in men than in women—and some chronic inflammatory diseases, such as inflammatory bowel disease and chronic hepatitis C. Oral dopamine can mitigate symptoms, but the 60-year-old treatment isn’t a cure and ultimately fails to prevent worsening symptoms and death. © 2022 American Association for the Advancement of Science.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 28155 - Posted: 01.15.2022