Links for Keyword: Alzheimers

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1170

Jon Hamilton Harsh life experiences appear to leave African-Americans vulnerable to Alzheimer's and other forms of dementia, researchers reported Sunday at the Alzheimer's Association International Conference in London. Several teams presented evidence that poverty, disadvantage and stressful life events are strongly associated with cognitive problems in middle age and dementia later in life among African-Americans. The findings could help explain why African-Americans are twice as likely as white Americans to develop dementia. And the research suggests genetic factors are not a major contributor. "The increased risk seems to be a matter of experience rather than ancestry," says Megan Zuelsdorff, a postdoctoral fellow in the Health Disparities Research Scholars Program at the University of Wisconsin-Madison. Scientists have struggled to understand why African-Americans are so likely to develop dementia. They are more likely to have conditions like high blood pressure and diabetes, which can affect the brain. And previous research has found some evidence that African-Americans are more likely to carry genes that raise the risk. But more recent studies suggest those explanations are incomplete, says Rachel Whitmer, an epidemiologist with Kaiser Permanente's Division of Research in Northern California. Whitmer has been involved in several studies that accounted for genetic and disease risks when comparing dementia in white and black Americans. "And we still saw these [racial] differences," she says. "So there is still something there that we are trying to get at." © 2017 npr

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 23841 - Posted: 07.17.2017

Pagan Kennedy In 2011, Ben Trumble emerged from the Bolivian jungle with a backpack containing hundreds of vials of saliva. He had spent six weeks following indigenous men as they tramped through the wilderness, shooting arrows at wild pigs. The men belonged to the Tsimane people, who live as our ancestors did thousands of years ago — hunting, foraging and farming small plots of land. Dr. Trumble had asked the men to spit into vials a few times a day so that he could map their testosterone levels. In return, he carried their kills and helped them field-dress their meat — a sort of roadie to the hunters. Dr. Trumble wanted to find out whether the hunters who successfully shot an animal would be rewarded with a spike in testosterone. (They were.) As a researcher with the Tsimane Health and Life History Project, he had joined a long-running investigation into human well-being and aging in the absence of industrialization. That day when he left the jungle, he stumbled across a new and more urgent question about human health. He dropped his backpack, called his mom and heard some terrible news: His 64-year-old uncle had learned he had dementia, probably Alzheimer’s. In just a few short years, his uncle, a vibrant former lawyer, would stop speaking, stop eating and die. “I couldn’t help my uncle,” Dr. Trumble said, but he was driven to understand the disease that killed him. He wondered: Do the Tsimane suffer from Alzheimer’s disease like we do? And if not, what can we learn from them about treating or preventing dementia? “There is really no cure yet for Alzheimer’s,” Dr. Trumble told me. “We have nothing that can undo the damage already done.” Why, he wondered, had billions of dollars and decades of research yielded so little? Perhaps major clues were being missed. Dr. Trumble was trained as an anthropologist, and his field — evolutionary medicine — taught him to see our surroundings as a blip in the timeline of human history. He thinks it’s a problem that medical research focuses almost exclusively on “people who live in cities like New York or L.A.” Scientists often refer to these places as “Weird” — Western, educated, industrialized, rich and democratic — and point out that our bodies are still designed for the not-Weird environment in which our species evolved. Yet we know almost nothing about how dementia affected humans during the 50,000 years before developments like antibiotics and mechanized farming. Studying the Tsimane, Dr. Trumble believes, could shed light on this modern plague. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23839 - Posted: 07.14.2017

By Giorgia Guglielmi Semen has something in common with the brains of Alzheimer’s sufferers: Both contain bundles of protein filaments called amyloid fibrils. But although amyloid accumulation appears to damage brain cells, these fibrils may be critical for reproduction. A new study suggests that semen fibrils immobilize subpar sperm, ensuring that only the fittest ones make it to the egg. “I’m sure that from the very first time scientists described semen fibrils, they must have been speculating what their natural function was,” says Daniel Otzen, an expert in protein aggregates at Aarhus University in Denmark, who did not participate in the research. “This seems to be the smoking gun.” Researchers discovered semen fibrils in 2007. At first, they seemed like mostly bad news. Scientists showed that the fibrils, found in the seminal fluid together with sperm cells and other components, can bind to HIV, helping it get inside cells. But the fibrils are found in most primates, notes Nadia Roan, a mucosal biologist at the University of California, San Francisco. “If fibrils didn’t serve some beneficial purpose, they would have been eliminated over evolutionary time.” Because the way HIV fuses to cells is reminiscent of the way a sperm fuses to the egg, she wondered whether the fibrils facilitated fertilization. © 2017 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 23828 - Posted: 07.12.2017

By James Gallagher Abnormal deposits that build up in the brain during Alzheimer's have been pictured in unprecedented detail by UK scientists. The team at the MRC Laboratory of Molecular Biology says its findings "open up a whole new era" in neurodegenerative disease. Their work should make it easier to design drugs to stop brain cells dying. The researchers used brain tissue from a 74-year-old woman who died after having Alzheimer's disease. The form of dementia leads to tangles of a protein called tau spreading throughout the brain. The more tau tangles there are, the worse the symptoms tend to be. Doctors have known this has happened for decades but what has been missing is a detailed understanding of what the tangles look like. The team took advantage of the "resolution revolution" in microscopy to take thousands of highly detailed images of the tau inside the woman's brain tissues. And using computer software, they figured out the tangles look like this: Image copyright LMB It is pretty meaningless to an untrained eye, but to scientists this could be one of the most important recent discoveries in tackling dementia. Attempts to develop a drug to slow the pace of dementia have been met by repeated failure. But it is hard to come up with a drug when you do not know the precise chemical structure of what you are targeting. Dr Sjors Scheres, one of the researchers, told the BBC News website: "It's like shooting in the dark - you can still hit something but you are much more likely to hit if you know what the structure is. "We are excited - it opens up a whole new era in this field, it really does." © 2017 BBC.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23807 - Posted: 07.06.2017

By NICHOLAS BAKALAR Poor sleep may be an indication of increased risk for Alzheimer’s disease, a new study of older people suggests. Researchers studied 101 cognitively normal people, average age 63, who completed well-validated sleep questionnaires. They analyzed their spinal fluid for the presence of indicators of the plaques and tangles that are characteristic of Alzheimer’s. The study is in Neurology. After controlling for age, a family history of Alzheimer’s, the ApoE gene that increases Alzheimer’s risk and other factors, they found that poor sleep quality, sleep problems and daytime sleepiness were associated with increased spinal fluid indicators of Alzheimer’s disease. The reason for the association is unclear, but at least one animal study found that during sleep the brain’s capacity to clear toxins like beta amyloid, the toxic protein that forms plaques in the brains of those with Alzheimer’s, improves. It may be that poor sleep interferes with this process in people, too. “Not everyone with sleep problems is destined to develop Alzheimer’s disease,” said the senior author, Barbara B. Bendlin, an associate professor of medicine at the University of Wisconsin School of Medicine and Public Health. “We’re looking at groups of people, and over the whole group we find the association of poor sleep with the markers of Alzheimer’s. But when you look at individuals, not everyone shows that pattern.” © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 10: Biological Rhythms and Sleep
Link ID: 23806 - Posted: 07.06.2017

Rebecca Hersher The first problem with the airplane bathroom was its location. It was March. Greg O'Brien and his wife, Mary Catherine, were flying back to Boston from Los Angeles, sitting in economy seats in the middle of the plane. "We're halfway, probably over Chicago," Greg remembers, "and Mary Catherine said, 'Go to the bathroom.' " "It just sounded like my mother," Greg says. So I said 'no.' " Mary Catherine persisted, urging her husband of 40 years to use the restroom. People started looking at them. "It was kind of funny," says Greg. Mary Catherine was more alarmed than amused. Greg has early-onset Alzheimer's, which makes it increasingly hard for him to keep track of thoughts and feelings over the course of minutes or even seconds. It's easy to get into a situation where you feel like you need to use the bathroom, but then forget. And they had already been on the plane for hours. Finally, Greg started toward the restroom at the back of the plane, only to find the aisle was blocked by an attendant serving drinks. Mary Catherine gestured to him. "Use the one in first class!" At that point, on top of the mild anxiety most people feel when they slip into first class to use the restroom, Greg was feeling overwhelmed by the geography of the plane. He pulled back the curtain dividing the seating sections. "This flight attendant looks at me like she has no use for me. I just said 'Look, I really have to go the bathroom,' and she says 'OK, just go.' " © 2017 npr

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 23772 - Posted: 06.26.2017

By Sharon Begley, STAT To anyone who’s aware that efforts to develop Alzheimer’s drug treatments have met failure after failure, and to have therefore decided that prevention is the only hope, a U.S. panel of experts issued a sobering message on Thursday: Don’t count on it. From physical activity to avoiding high blood pressure to brain training, a 17-member committee assembled by the National Academies of Sciences concluded, no interventions are “supported by high-strength evidence.” Instead, some high-quality studies found that one or another intervention worked, but other equally rigorous studies found they didn’t. 1. Cognitive training The evidence for programs aimed at boosting reasoning, problem-solving, memory, and speed of processing does include randomized trials that reported benefits from brain training, but the report calls that evidence “low to moderate strength.” One problem: There seemed to be benefits for two years, but not after five or 10. Results in other randomized studies were even more equivocal. There are also data from studies that are less rigorous, leading the committee to conclude that brain training (computer-based or not) can delay or slow age-related cognitive decline—but not Alzheimer’s. 2. Controlling blood pressure Evidence that this helps is weaker still. © 2017 Scientific American

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23763 - Posted: 06.23.2017

By David Noonan Sight and hearing get all the glory, but the often overlooked and underappreciated sense of smell—or problems with it—is a subject of rapidly growing interest among scientists and clinicians who battle Alzheimer’s and Parkinson’s diseases. Impaired smell is one of the earliest and most common symptoms of both, and researchers hope a better understanding will improve diagnosis and help unlock some of the secrets of these incurable conditions. The latest offering from the burgeoning field is a paper published this month in Lancet Neurology. It proposes neurotransmitter dysfunction as a possible cause of smell loss in a number of neurodegenerative diseases, including Alzheimer’s and Parkinson’s. More than 90 percent of Parkinson’s patients report some level of olfactory dysfunction. And because problems with smell progress in Alzheimer’s, nearly all of those diagnosed with moderate to severe forms of the illness have odor identification issues. “It’s important, not just because it’s novel and interesting and simple but because the evidence is strong,” says Davangere Devanand, a professor of psychiatry and neurology at Columbia University. His most recent paper on the subject, a review, was published in The American Journal of Geriatric Psychiatry in December. Studies have shown impaired smell to be even stronger than memory problems as a predictor of cognitive decline in currently healthy adults. It is especially useful for forecasting the progression from mild cognitive impairment (MCI) to full-blown Alzheimer’s. According to the Alzheimer’s Association, approximately 15 to 20 percent of people over 65 have MCI. About half of them go on to develop Alzheimer’s, Devanand says—and the sooner they are identified, the earlier doctors can begin interventions, including treatment with the few existing Alzheimer’s drugs. © 2017 Scientific American

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 23729 - Posted: 06.12.2017

By PHILIP S. GUTIS My husband, Tim, and a duo of Jack Russell terriers arrived in my life 13 years ago. They were a package deal that included Osceola Jack, a champion Frisbee player who once was the Mighty Dog actor in the famous commercials, and his pup, the equally mighty Samantha. Later our family grew with Beatrice, a sweet cattle dog mix from Florida who belonged to Tim’s brother but needed a new home. As an introvert, I have not always had the best people skills, but my ability to connect with animals has never flagged. Many of my best memories involve animals. But now things are changing. Last summer, at age 54, I learned I had early onset Alzheimer’s. Amid the many worries that accompany this diagnosis, I am afraid that I will lose my cherished ability to bond with — or even remember — my animal companions much longer. Since my 20s and 30s, I’ve had some weird memory gaps. I once forgot that a childhood best friend worked for me at the school newspaper at Penn State. I wrote off these memory holes to a busy life and career. I worked long days, spent hours on airplanes and trains, managed dozens of people and grappled with complicated issues. I told myself that all of that work, stress and the sheer volume of information that I was expected to retain had to take a toll on my ability to remember everything. But a few years ago, I started to notice that I just wasn’t performing as well as I used to. Keeping track of big projects became increasingly difficult. Skills that were sometimes challenging (simple math, remembering names, understanding maps and directions) became all but impossible. Some days my memory was so bad that I wanted to wear a shirt that said, “Sorry, I just cannot remember your name.” My sister found an online advertisement for people concerned about memory loss. I called the phone number and scheduled an in-person screening. Bring someone familiar with you, the woman on the phone said. I brought Tim, who stayed close as a neurologist poked and prodded me, and vials and vials of blood were drawn. And then came the memory tests. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23724 - Posted: 06.09.2017

By NICHOLAS BAKALAR Chronic pain may be linked to an increasing risk for dementia. Researchers interviewed 10,065 people over 62 in 1998 and 2000, asking whether they suffered “persistent pain,” defined as being often troubled with moderate or severe pain. Then they tracked their health through 2012. After adjusting for many variables, they found that compared with those who reported no pain problems, people who reported persistent pain in both 1998 and 2000 had a 9 percent more rapid decline in memory performance. Moreover, the probability of dementia increased 7.7 percent faster in those with persistent pain compared with those without. The study, in JAMA Internal Medicine, does not prove cause and effect. But chronic pain may divert attention from other mental activity, leading to poor memory, and some studies have found that allaying pain with opioids can lead to cognitive improvements. Still, the lead author, Dr. Elizabeth L. Whitlock, an anesthesiologist at the University of California at San Francisco, acknowledged that treatment with opioids is problematic, and that safely controlling chronic pain is a problem that so far has no satisfactory solution. “I’d encourage clinicians to be aware of the cognitive implications of a simple report of pain,” she said. “It’s a simple question to ask, and the answer can be used to identify a population at high risk of functional and cognitive problems.” © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 23719 - Posted: 06.08.2017

By Sally Adee Older people who received transfusions of young blood plasma have shown improvements in biomarkers related to cancer, Alzheimer’s disease and heart disease, New Scientist has learned. “I don’t want to say the word panacea, but here’s something about teenagers,” Jesse Karmazin, founder of startup Ambrosia, told New Scientist. “Whatever is in young blood is causing changes that appear to make the ageing process reverse.” Since August 2016, Karmazin’s company has been transfusing people aged 35 and older with plasma – the liquid component of blood – taken from people aged between 16 and 25. So far, 70 people have been treated, all of whom paid Ambrosia to be included in the study. Karmazin spoke to New Scientist ahead of presenting some of the results from the study at the Recode conference in Los Angeles today. These results come from blood tests conducted before and a month after plasma treatment, and imply young blood transfusions may reduce the risk of several major diseases associated with ageing. Blood biomarkers None of the people in the study had cancer at the time of treatment, however Karmazin’s team looked at the levels of certain proteins called carcinoembryonic antigens. These chemicals are found in the blood of healthy people at low concentrations, but in larger amounts these antigens can be a sign of having cancer. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23690 - Posted: 06.01.2017

By GRETCHEN REYNOLDS Exercise may bolster the brain function and thinking skills of people with dementia, according to a new report. The study’s findings suggest that walking a few times per week might alter the trajectory of the disease and improve the physical well-being of people who develop a common form of age-related memory loss that otherwise has few treatments. The study looked at vascular cognitive impairment, the second most frequent form of dementia worldwide, after the better-known Alzheimer’s disease. The condition arises when someone’s blood vessels become damaged and blood no longer flows well to the brain. It is often associated with high blood pressure and heart disease. One of the particular hallmarks of vascular dementia in its early stages, researchers have found, is that it tends to make the brain function less efficiently. In past brain-scan studies, people with a diagnosis of vascular cognitive impairment generally showed more neural activity in parts of their brains that are involved with memory, decision-making and attention than did people without the disease, indicating that their brains had to work harder during normal thinking than healthier brains did. But while a great deal of research attention has been devoted to Alzheimer’s disease, less has been known about the progression of and potential curbs on vascular dementia. Some research has indicated that reducing blood pressure lessens the symptoms of the disease. Exercise can likewise improve blood pressure and cardiovascular health. And some research suggests that frequent, brisk walks may improve memory and physical abilities in those in the early stages of Alzheimer’s disease. But, rather surprisingly, few past studies had examined whether exercise might also improve brain function in people with vascular dementia. So for the new study, which was published in April in The British Journal of Sports Medicine, researchers at the University of British Columbia in Canada and other institutions decided to look into the effects of walking on this type of dementia. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23682 - Posted: 05.31.2017

A daily 30-minute regimen designed to help elderly surgery patients stay oriented can cut the rate of postoperative delirium in half and help them return home sooner, according to a test among 377 volunteers in Taipei. After they were moved out of an intensive care unit, 15.1 percent given conventional treatment experienced delirium. But when hospital workers got patients moving faster, helped them brush their teeth, gave them facial exercises and talked to them in ways to help them understand what was happening, the delirium rate was just 6.6 percent. And while the patients who didn’t get the intervention typically stayed in the hospital for 14 days, those who did were discharged an average two days sooner. The study “draws needed attention to delirium,” which can cause problems when confused patients, for example, try to extricate themselves from the tubes and equipment needed to recover, said Lillian Kao, acute care surgery chief for McGovern Medical School at the University of Texas Health Science Center in Houston, who wasn’t involved with the study. Estimates of delirium’s prevalence vary widely, ranging from 13 percent to 50 percent among people who have non-heart surgery, according to an editorial accompanying the study, which appears in JAMA Surgery. © 1996-2017 The Washington Post

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 23674 - Posted: 05.29.2017

By Julie Steenhuysen, U.S. deaths from Alzheimer's disease rose by more than 50 percent from 1999 to 2014, and rates are expected to continue to rise, reflecting the nation's aging population and increasing life expectancy, American researchers said on Thursday. In addition, a larger proportion of people with Alzheimer's are dying at home rather than a medical facility, according to the report released by the U.S. Centers for Disease Control and Prevention (CDC). Alzheimer’s is the sixth-leading cause of death in the United States, accounting for 3.6 percent of all deaths in 2014, the report said. Researchers have long predicted increased cases of Alzheimer's as more of the nation's baby boom generation passes the age of 65, putting them at higher risk for the age-related disease. The number of U.S. residents aged 65 and older living with Alzheimer's is expected to nearly triple to 13.8 million by 2050. There is no cure for Alzheimer's, a fatal brain disease that slowly robs its victims of the ability to think and care for themselves. According to the report by researchers at the CDC and Georgia State University, 93,541 people died from Alzheimer’s in the United States in 2014, a 54.5 percent increase compared with 1999. © 2017 Scientific American

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23667 - Posted: 05.27.2017

By James Hendrix Having witnessed the success of combination therapy in HIV, cancer and heart disease, the time has come for Alzheimer’s disease. At meetings convened by the Alzheimer’s Association and others, a consensus is emerging that the most effective Alzheimer’s treatments may be those that attack the disease on multiple fronts. Looking back for a moment… In the 1980s, the world faced a new, unknown virus. HIV/AIDS was spreading virtually unchecked, devastating millions of lives and spurring lively scientific debate. Today, an HIV diagnosis is no longer a death sentence. AIDS-related deaths have fallen by 45 percent since their peak in 2005 according to UNAIDS, a United Nations program for global action against the spread of the virus. As researchers learned more about HIV, they developed new classes of antiviral medications—each attacking the virus in a unique way. Physicians eventually began prescribing two or more of these drugs together and emerging scientific evidence started revealing the most effective combinations. Today, a powerful three-drug antiviral “cocktail” is allowing people with HIV to live long lives. Advances in understanding the progression of Alzheimer’s point to a number of underlying biological processes involved in the development of the disease. By leveraging this knowledge, we now have a singular opportunity to pioneer new approaches against Alzheimer’s, including combination therapies. © 2017 Scientific American,

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23655 - Posted: 05.24.2017

By Esther Landhuis On the heels of one failed drug trial after another, a recent study suggests people with early Alzheimer’s disease could reap modest benefits from a device that uses magnetic fields to produce small electric currents in the brain. Alzheimer’s is a degenerative brain disorder that afflicts more than 46 million people worldwide. At present there are no treatments that stop or slow its progression, although several approved drugs offer temporary relief from memory loss and other cognitive symptoms by preventing the breakdown of chemical messengers among nerve cells. The new study tested a regimen that combines computerized cognitive training with a procedure known as repetitive transcranial magnetic stimulation (rTMS). The U.S. Food and Drug Administration has cleared rTMS devices for some migraine sufferers as well as for people with depression who have not responded to antidepressant medications. Last month at the 13th International Conference on Alzheimer’s and Parkinson’s Diseases in Vienna, Israel-based Neuronix reported results of a phase III clinical trial of its therapy system, known as neuroAD, in Alzheimer’s patients. More than 99 percent of Alzheimer’s drug trials have failed. The last time a phase III trial for a wholly new treatment succeeded (not just a combination of two already approved drugs) was about 15 years ago. The recent study did not test a drug but rather a device, which usually has an easier time gaining FDA clearance. NeuroAD has been approved for use in Europe and the U.K., where six weeks of therapy costs about $6,700. The system is not commercially available in the U.S., but based on the latest results the company submitted an application for FDA clearance last fall. © 2017 Scientific American

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23635 - Posted: 05.19.2017

By Andy Coghlan Combining multiple tests could help doctors distinguish between two leading causes of cognitive decline at an earlier stage. Being able to separate the earliest signs of Alzheimer’s from another degenerative brain condition called dementia with Lewy bodies (DLB) could be crucial to finding treatments for both kinds of dementia. When someone starts to exhibit mild cognitive impairments, it is often difficult to tell whether these might be the earliest signs of Alzheimer’s or DLB, or just normal age-related declines in cognition. Yet this distinction is vital: so far, despite billions of dollars spent on research, progress towards drugs that stabilise or cure dementia has stalled. Many blame the failure on treating people too late and argue that the same drugs might work better if given a decade or two before symptoms fully develop. Now, Dilman Sadiq at University College London and her colleagues have attempted to rectify this problem by analysing clinical histories, the results of cognitive tests and psychiatric interviews with 429 people originally diagnosed with mild cognitive impairment, who were monitored for up to 14 years. Each person was diagnosed at one UK hospital between 1994 and 2015. Of this group, 107 progressed to Alzheimer’s, 21 to DLB and 164 remained stable with mild cognitive impairment. The rest developed a mixture of other conditions. Sadiq’s team used their findings to identify a variety of tests and symptom profiles that appear to predict which condition a person might get at the earliest stage of the disease. © Copyright New Scientist Ltd.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23607 - Posted: 05.13.2017

By NICHOLAS BAKALAR A new study links diet soft drinks to an increased risk for stroke and dementia. Researchers studied more than 4,000 people over 45 who had filled out food-frequency questionnaires and had periodic health examinations between 1991 and 2001. The scientists tracked their health over the next 10 years and found 97 cases of stroke and 81 cases of dementia. The study, in the journal Stroke, found that compared with those who did not drink diet soda, people who drank one to six artificially sweetened drinks a week had twice the risk of stroke. There were similar, although weaker, associations for dementia risk. The reasons for the link remain unknown. The study adjusted for age, sex, education, physical activity, diabetes, smoking and many other characteristics that might affect the risks. But the senior author, Dr. Sudha Seshadri, a professor of neurology at Boston University School of Medicine, said that there were additional variables the study could not address. For example, she said, people might have switched to diet soda because they already had cardiovascular problems. Still, she added, there are health benefits associated with some drinks, like tea or coffee, “but not with soda of any kind, either diet or not.” © 2017 The New York Times Company

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 23542 - Posted: 04.27.2017

Doing moderate exercise several times a week is the best way to keep the mind sharp if you're over 50, research suggests. Thinking and memory skills were most improved when people exercised the heart and muscles on a regular basis, a review of 39 studies found. This remained true in those who already showed signs of cognitive decline. Taking up exercise at any age was worthwhile for the mind and body, the Australian researchers said. Exercises such as T'ai Chi were recommended for people over the age of 50 who couldn't manage other more challenging forms of exercise, the study in the British Journal of Sports Medicine said. Physical activity has long been known to reduce the risk of a number of diseases, including type-2 diabetes and some cancers, and it is thought to play a role in warding off the brain's natural decline as we enter middle age. The theory is that through exercise the brain receives a greater supply of blood, oxygen and nutrients that boost its health as well as a growth hormone that helps the formation of new neurons and connections. In this analysis of previous studies, researchers from the University of Canberra looked at the effects of at least four weeks of structured physical exercise on the brain function of adults. In a variety of brain tests, they found evidence of aerobic exercise improving cognitive abilities, such as thinking, reading, learning and reasoning, while muscle training - for example, using weights - had a significant effect on memory and the brain's ability to plan and organise, the so-called executive functions. Joe Northey, study author and researcher from the Research Institute for Sport and Exercise at Canberra, said the findings were convincing enough to enable both types of exercise to be prescribed to improve brain health in the over-50s. © 2017 BBC.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23532 - Posted: 04.25.2017

By James Gallagher Health and science reporter, Scientists hope they have found a drug to stop all neurodegenerative brain diseases, including dementia. In 2013, a UK Medical Research Council team stopped brain cells dying in an animal for the first time, creating headline news around the world. But the compound used was unsuitable for people, as it caused organ damage. Now two drugs have been found that should have the same protective effect on the brain and are already safely used in people. "It's really exciting," said Prof Giovanna Mallucci, from the MRC Toxicology Unit in Leicester. She wants to start human clinical trials on dementia patients soon and expects to know whether the drugs work within two to three years. Why might they work? The novel approach is focused on the natural defence mechanisms built into brain cells. When a virus hijacks a brain cell it leads to a build-up of viral proteins. Cells respond by shutting down nearly all protein production in order to halt the virus's spread. Many neurodegenerative diseases involve the production of faulty proteins that activate the same defences, but with more severe consequences. The brain cells shut down production for so long that they eventually starve themselves to death. This process, repeated in neurons throughout the brain, can destroy movement, memory or even kill, depending on the disease. It is thought to take place in many forms of neurodegeneration, so safely disrupting it could treat a wide range of diseases. In the initial study, the researchers used a compound that prevented the defence mechanism kicking in. © 2017 BBC.

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23512 - Posted: 04.20.2017