Links for Keyword: Animal Communication

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 215

By Joshua Sokol A beast calls in the distance. Hearing a low rumble, you might imagine the source will be an unholy cross between a wild boar and a chain saw. The message is unmistakable: I’m here, I’m huge and you can either come mate with me or stay out of my way. Surprise! It’s just a cuddly little koala. Like online dating, the soundscape of the animal world is rife with exaggerations about size, which animals use to scare off rivals and attract mates. Gazelles, howler monkeys, bats and many more creatures have evolved to create calls with deep sonic frequencies that sound as if they come from a much larger animal. Now scientists have proposed this same underlying pressure to exaggerate size might be linked to an even deeper mystery. It could have spurred mammals toward developing the ability to make a wider array of possible calls, to mimic sounds after hearing them and maybe even speech, what scientists call vocal learning. “We are offering one possible way for vocal learning to have evolved,” says Maxime Garcia, a biologist at the University of Zurich in Switzerland who suggested the relationship with his colleague, Andrea Ravignani, in the journal Biology Letters this month. Their idea builds off previous studies on vocal learning in humans. Beyond just opera singers, beatboxers and Michael Winslow from the “Police Academy” movies, we all have some level of control over the frequencies of our voices. “I can tell you to lower your pitch or try to sound big, and you can soound like thissss,” said Katarzyna Pisanski at the University of Lyon in France, affecting a deep voice. © 2020 The New York Times Company

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 8: Hormones and Sex
Link ID: 27393 - Posted: 07.31.2020

Masakazu (Mark) Konishi, the Bing Professor of Behavioral Biology, Emeritus, passed away on July 23. He was 87 years old. Renowned for his work on the neuroscience underlying the behavior of owls and songbirds, Konishi joined the Caltech faculty as a professor of biology in 1975, becoming the Bing Professor of Behavioral Biology in 1980. Since the early 1960s, Konishi was a leader in the field of avian neuroethology—the neurobiological study of natural behavior, such as prey capture by owls and singing in songbirds. In his laboratory at Caltech, Konishi advised dozens of graduate students and postdoctoral scholars. His team worked extensively on the auditory systems of barn owls, which use their acute hearing to home in on prey on the ground, even in total darkness. Konishi was the first to theorize that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. Konishi was born in Kyoto, Japan, on February 17, 1933. He attended Hokkaido University in Sapporo, Japan, for his bachelor and master of science degrees, after which he attended the UC Berkeley for his PhD. Under Berkeley professor Peter Marler, Konishi focused his doctoral research on the idea of central coordination. Konishi began a full professorship at Caltech in 1975. He was the Bing Professor of Behavioral Biology until his retirement in 2013. From 1977 to 1980, Konishi served as the division's executive officer for biology.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 27383 - Posted: 07.27.2020

By Cara Giaimo Even if you’re not a bird person, you probably know the jaunty song of the white-throated sparrow. It plays on loop in North America’s boreal forests, a classic as familiar as the chickadee’s trill and the mourning dove’s dirge. It even has its own mnemonic, “Old Sam Peabody-Peabody-Peabody.” But over the past half-century, the song’s hook — its triplet ending — has changed, replaced by a new, doublet-ended variant, according to a paper published Thursday in Current Biology. It seems the sparrows want to sing something new. The study, which took 20 years, is “the first to track the cultural evolution of birdsong at the continental scale,” said Mason Youngblood, a doctoral candidate in animal behavior at the CUNY Graduate Center who was not involved in the research. It describes a much broader and more rapid shift in birdsong than was previously thought to occur. Scott Ramsay, a behavioral ecologist at Wilfrid Laurier University in Ontario, was the first to notice that the forest sounded a little off during a visit to western Canada with Ken Otter, a professor at the University of Northern British Columbia. “He said, ‘Your birds are singing something weird,’” Dr. Otter recalled. Dr. Otter recorded some white-throated sparrow songs and turned them into spectrograms — visualizations that lay birdsongs out, so they can be more easily compared. The classic “Old Sam Peabody-Peabody-Peabody” songs ended in a triplet pattern: repeated sets of three notes. The new songs ended in doublets, like the record got stuck: “Old Sam Peabuh-Peabuh-Peabuh-Peabuh.” It was “a different kind of syncopation pattern,” Dr. Otter said. “They were kind of stuttering it.” Like many birds, male white-throated sparrows use songs to signal where their territory is, and to attract mates. Each individual sparrow has his own way of starting the song, but they all converge on a shared ending. © 2020 The New York Times Company

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 27346 - Posted: 07.06.2020

By Katherine Kornei Imagine a frog call, but with a metallic twang—and the intensity of a chainsaw. That’s the “boing” of a minke whale. And it’s a form of animal communication in danger of being drowned out by ocean noise, new research shows. By analyzing more than 42,000 minke whale boings, scientists have found that, as background noise intensifies, the whales are losing their ability to communicate over long distances. This could limit their ability to find mates and engage in important social contact with other whales. Tyler Helble, a marine acoustician at the Naval Information Warfare Center Pacific, and colleagues recorded minke whale boings over a 1200-square-kilometer swathe of the U.S. Navy’s Pacific Missile Range Facility near the Hawaiian island of Kauai from 2012 to 2017. By measuring when a single boing arrived at various underwater microphones, the team pinpointed whale locations to within 10 to 20 meters. The researchers then used these positions, along with models of how sound propagates underwater, to calculate the intensity of each boing when it was emitted. The team compared these measurements with natural ambient noise, including waves, wind, and undersea earthquakes (no military exercises were conducted nearby during the study period). They found that minke whale boings grew louder in louder conditions. That’s not surprising—creatures across the animal kingdom up their volume when there’s background noise. (This phenomenon, dubbed the Lombard effect, holds true for humans, too—think of holding a conversation at a loud concert.) © 2019 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 27051 - Posted: 02.19.2020

Nicola Davis Squirrels eavesdrop on the chatter of songbirds to work out whether the appearance of a predator is cause for alarm, researchers have found. Animals including squirrels have previously been found to tune in to cries of alarm from other creatures, while some take note of “all-clear” signals from another species with which they co-exist to assess danger. But the latest study suggests animals may also keep an ear out for everyday chitchat among other species as a way to gauge whether there is trouble afoot. “This study suggests that eavesdropping on public information about safety is more widespread and broader than we originally thought,” said Prof Keith Tarvin, co-author of the study from Oberlin College, Ohio. “It may not require tight ecological relationships that allow individuals to carefully learn the cues provided by other species,” he added, noting that the grey squirrels and songbirds in the study moved from place to place without regard for the other. Writing in the journal Plos One, Tarvin and colleagues reported on how they made their discovery by observing 67 grey squirrels as they pottered about different areas in the parks and residential regions of Oberlin. After 30 seconds of observing a squirrel, researchers played it a recording of the call of a red-tailed hawk, which lasted a couple of seconds – and their behaviour in the next 30 seconds was monitored. © 2019 Guardian News & Media Limited

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 26573 - Posted: 09.05.2019

Cristina Robinson, Kate Snyder, Nicole Creanza Bonjour! Ni hao! Merhaba! If you move to a new country as an adult, you have to work much harder to get past that initial “hello” in the local language than if you’d moved as a child. Why does it take so much effort to learn a new language later in life? Our human ability to learn language slows down as we get older, but scientists are not sure how or why this happens. An unexpected way to understand this learning process might come from listening to birds sing. After all, songbirds have a lot to learn. They don’t hatch knowing what songs to sing, or how to sing them. Instead, they must learn their species’ song. Young birds listen to adult birds and then practice copying the adult’s song syllables until they sound right. If they fail to learn an appropriate song, male birds will have difficulty attracting mates or defending their territories. How do birds learn to sing? This process of vocal learning is remarkably similar to how humans learn language: Babies listen to their parents speaking and then practice making the same sounds by babbling. Because these processes are so similar, birds have long been used to study vocal learning. However, while these learning processes are similar, the functions of speech and song are quite different. Human speech is complex and made up of many sounds that we use to convey an infinite number of ideas to each other. Birds only need to announce their presence to mates and rivals, yet their song can also be made of a repertoire of hundreds or thousands of unique syllables. What benefit could these more elaborate songs offer males? © 2010–2019, The Conversation US, Inc.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 26570 - Posted: 09.04.2019

By Knvul Sheikh On Sálvora Island, off the coast of Spain, thousands of yellow-legged gulls dot the grassy cliffs from April to late July. It is a riot of white wings and plaintive calls. Occasionally, the chorus changes as the seabirds engage in courtship and chick-feeding. And when the adults notice a predator, such as a dusky-coated mink, the chorus shifts again, to a characteristic alarm call — ha-ha-ha. These acoustic cues reach not just young and adult gulls but unhatched embryos, too. In 2018, researchers found that when gull eggs hatch, the ones that were exposed to alarm calls were able to crouch and hide from predators a couple of seconds faster than others. A few other bird species, including quails, fairywrens and zebra finches, are known to relay similar cues about the environment to their unhatched young, to prepare hatchlings to fend for themselves. But embryos aren’t receiving wisdom only from their parents. A new study, published Monday in the journal Nature Ecology & Evolution, suggests that they’re also receiving cues from nearby unhatched siblings. “Paying attention to cues from the outside is important for survival,” said Jose C. Noguera, an evolutionary ecologist at the University of Vigo in Spain, who led the study. Embryos that do so develop traits that provide an advantage in avoiding predators, identifying other species of birds or building their own nests in warmer temperatures later in life, he said. © 2019 The New York Times Company

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 26442 - Posted: 07.23.2019

Laura Sanders When animals are together, their brain activity aligns. These simpatico signals, described in bats and mice, bring scientists closer to understanding brains as they normally exist — enmeshed in complex social situations. Researchers know that neural synchrony emerges in people who are talking, taking a class together and even watching the same movie. But scientists tend to study human brains in highly constrained scenarios, in part because it’s technologically difficult to capture brain activity as people experience rich social interactions (SN: 5/11/19, p. 4). Now two studies published June 20 in Cell offer more details about how synced brains might influence social behavior. In one study, researchers monitored a pair of Egyptian fruit bats in a dark chamber for more than an hour. Neural implants recorded brain activity as the bats groomed themselves, fought, rested and performed other behaviors. The brain activity of the two bats was highly coordinated. When one bat’s neural activity oscillated in a fast rhythm, for example, the other bat’s brain was likely to do the same thing. This coordination continued even when the bats weren’t directly interacting with each other, the team found. But when the bats were separated into two chambers in the same room, this correlated activity fell away, suggesting that the bats had to be sharing the same social context for their brains to link up. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 26345 - Posted: 06.22.2019

Helen Thompson Whether practical, dramatical or pragmatical, domestic cats appear to recognize the familiar sound of their own names and can distinguish them from other words, researchers report April 4 in Scientific Reports. While dog responses to human behavior and speech have received much attention (SN: 10/1/16, p. 11), researchers are just scratching the surface of human-cat interactions. Research has shown that domestic cats (Felis catus) appear to respond to human facial expressions, and can distinguish between different human voices. But can cats recognize their own names? “I think many cat owners feel that cats know their names, or the word ‘food,’” but until now, there was no scientific evidence to back that up, says Atsuko Saito, a psychologist at Sophia University in Tokyo and a cat owner. So Saito and her colleagues pounced on that research question. They asked cat owners to say four nouns of similar length followed by the cat’s name. Cats gradually lost interest with each noun, but then reacted strongly to their names — moving their ears, head or tail, shifting their hind paw position or, of course, meowing. The results held up with cats living alone, with other cats and at a cat café, where customers can hang out with cats. And when someone other than the owner said the name, the cats still responded to their names more than to other nouns. One finding did give the team pause. Cat café cats almost always reacted to their names and those of other cats living there. Housecats did so much less frequently. Lots of humans visit cat cafés, and cats’ names are frequently called together, so it may be harder for cats to associate their own names with positive reinforcement in these environments, the researchers write. As for whether or not a cat understands what a name is, well, only the cat knows that. |© Society for Science & the Public 2000 - 2019

Related chapters from BN8e: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 26115 - Posted: 04.06.2019

By Malia Wollan “If you’re talking to a puppy, increase the pitch of your voice and slow the tempo,” says Mario Gallego-Abenza, a cognitive biologist and an author of a recent study analyzing canine response to human speech. People tend to use that high-register, baby-talk tone with all dogs, but it’s really only puppies under a year old that seem to like it. “With older dogs, just use your normal voice,” he says. Dogs can learn words. One well-studied border collie named Rico knew 200 objects by name and, like a toddler, could infer the names of novel objects by excluding things with labels he already knew. Use facial expressions, gestures and possibly food treats while you talk. “Maintain eye contact,” Gallego-Abenza says. Research shows that even wolves are attuned to the attention of human faces and that dogs are particularly receptive to your gaze and pointing gestures. Scientists disagree about whether dogs are capable of full-blown empathy, but studies suggest canines feel at least a form of primitive empathy known as “emotional contagion.” In one study, dogs that heard recordings of infants crying experienced the same spike in cortisol levels and alertness as their human counterparts. You might find yourself wondering: Is this dog even listening to me? Does it care? Look for the sorts of social cues you would seek in an attentive human listener. “Is the dog looking at you?” Gallego-Abenza says. “Is it getting closer?” You are a social animal; connection with other social animals can make you feel better about the world. Gallego-Abenza, no longer studying dogs, is now working on a doctorate at the University of Vienna focused on vocalizations between ravens. Last year, a couple contacted him, sure that they were able to converse with the birds in their garden. “Humans have this rich language, and we really want to communicate,” he says. “We think that every other animal is the same, but they’re not.” Go ahead and talk to dogs, but consider letting wild creatures alone to their own intraspecies squeaks, howls and whispers. © 2019 The New York Times Company

Related chapters from BN8e: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 26077 - Posted: 03.26.2019

Jef Akst A robot interacting with young honey bees in Graz, Austria, exchanged information with a robot swimming with zebrafish in Lausanne, Switzerland, and the robots’ communication influenced the behavior of each animal group, according to a study published in Science Robotics today (March 20). “It’s the first time that people are using this kind of technology to have two different species communicate with each other,” says Simon Garnier, a complex systems biologist at New Jersey Institute of Technology who did not participate in the study. “It’s a proof of concept that you can have robots mediate interactions between distant groups.” He adds, however, that the specific applications of such a setup remains to be seen. As robotics technology has advanced, biologists have sought to harness it, building robots that look and behave like animals. This has allowed researchers to control one side of social interactions in studies of animal behavior. Robots that successfully integrate into animal populations also provide scientists with a means to influence the groups’ behavior. “The next step, we were thinking . . . [is] adding features to the group that the animals cannot do because they don’t have the capabilities to do so,” José Halloy, a physicist at Paris Diderot University who has been working on developing robots to interact intelligently with animals for more than a decade, writes in an email. “The simple and striking thing is that robots can use telecommunication or the Internet and animals cannot do that.” © 1986 - 2019 The Scientist.

Related chapters from BN8e: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 26060 - Posted: 03.22.2019

Laura Sanders In the understory of Central American cloud forests, musical mice trill songs to one another. Now a study of the charismatic creatures reveals how their brains orchestrate these rapid-fire duets. The results, published in the March 1 Science, show that the brains of singing mice split up the musical work. One brain system directs the patterns of notes that make up songs, while another coordinates duets with another mouse, which are carried out with split-second precision. The study suggests that “a quirky animal from the cloud forest of Costa Rica could give us a brand new insight,” into the rapid give-and-take in people’s conversations, says study coauthor Michael Long, a neuroscientist at New York University’s School of Medicine. Quirks abound in these mice, known as Alston’s singing mice (Scotinomys teguina). Like famous singers with extreme green room demands, these mice are “kind of divas,” Long says, requiring larger terrariums, exercise equipment and a very special diet. In the lab, standard mouse chow doesn’t cut it; instead, singing mice feast on fresh meal worm, dry cat food and fresh fruits and berries, says Bret Pasch. The biologist at Northern Arizona University in Flagstaff has studied these singing mice for years but wasn’t involved in this study. The mice are also, of course, loud. “They’re very vocal,” particularly in the confines of a lab, Pasch says. “Once an animal calls, it’s like a symphony that goes off,” with repeating calls. In the wild, these duets are thought to attract mates and stake out territory. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25998 - Posted: 03.01.2019

By Virginia Morell It’s hard to imagine a teen asking their mother for approval on anything. But a new study shows that male zebra finches—colorful songbirds with complex songs—learn their father’s tune better when mom “fluffs up” to signal her approval. This is the first time the songbirds, thought to be mere memorization machines, have been shown to use social cues for learning—putting them in an elite club that includes cowbirds, marmosets, and humans. The finding suggests other songbirds might also learn their tunes this way, and that zebra finches are better models for studying language development than thought. “Female zebra finches play an important role in male learning, in some ways even rivaling that of the male tutors,” says Karl Berg, an avian ecologist at the University of Texas in Brownsville, who was not involved in the new study. Previously, scientists knew only that the nonsinging females played some role in song acquisition, because males raised with deaf females develop incorrect songs. Researchers have long known that female brown-headed cowbirds make quick, lateral wing strokes to approve the songs of juvenile males (as in finches, only male cowbirds learn to sing). Most scientists discounted the cowbirds’ social cues as an isolated oddity, because the birds are brood parasites. But cowbirds’ similarities to zebra finches—both are highly social and use their songs to attract mates rather than claim territories—led Cornell University developmental psychobiologists Samantha Carouso-Peck and Michael Goldstein to wonder whether female finches also use social cues to help young males learn the best, mate-attracting songs. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 8: Hormones and Sex
Link ID: 25922 - Posted: 02.01.2019

Susan Milius After some 20 years of theorizing, a scientist is publicly renouncing the “beautiful hypothesis” that male birds’ sexy songs could indicate the quality of their brains. Behavioral ecologist Steve Nowicki of Duke University called birdsong “unreliable” as a clue for choosy females seeking a smart mate, in a paper published in the March 2018 Animal Behaviour. He will also soon publish another critique based on male songbirds that failed to score consistently on learning tests. And in what he calls a “public service announcement,” Nowicki summarized the negative results of those tests on January 4 at the annual meeting of the Society for Integrative and Comparative Biology in Tampa, Fla. “This was a beautiful hypothesis that got beaten up by data,” he says. Knowing that something about male singing matters to a female songbird, Nowicki and other researchers once proposed that the quality of singing might indicate a bird’s brainpower. The idea was that, because songbirds need to learn their songs, females could select males with the best brain development by selecting those singing the most precisely copied songs. A brainier male might be better at hunting baby food or spotting predators, thus helping more chicks to survive. Or braininess might signal an indirect benefit, such as contributing good genes to chicks. The first evidence for the notion that birdsong indicates bird smarts came from Neeltje Boogert at the University of Exeter in England, whose research suggested female zebra finches preferred smarter males with more complex songs. But subsequent studies have found evidence both supporting and contradicting the theory. To try to settle the matter, Nowicki and collaborators hand-raised 19 male song sparrows in the lab, controlling which songs the little birds heard as examples to copy so that it was clear how well each youngster learned each song. |© Society for Science & the Public 2000 - 2019

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25900 - Posted: 01.26.2019

By Karen Weintraub Sometimes a whale just wants to change its tune. That’s one of the things researchers have learned recently by eavesdropping on whales in several parts of the world and listening for changes in their pattern and pitch. Together, the new studies suggest that whales are not just whistling in the water, but constantly evolving a form of communication that we are only beginning to understand. Most whales and dolphins vocalize, but dolphins and toothed whales mostly make clicking and whistling sounds. Humpbacks, and possibly bowheads, sing complex songs with repeated patterns, said Michael Noad, an associate professor in the Cetacean Ecology and Acoustics Laboratory at the University of Queensland in Australia. Birds may broadcast their social hierarchy among song-sharing populations by allowing the dominant bird to pick the playlist and patterns. But how and why whales pass song fragments across hundreds of miles, and to thousands of animals, is far more mysterious. The biggest question is why whales sing at all. “The thing that always gets me out of bed in the morning is the function of the song,” Dr. Noad said. “I find humpback song fascinating from the point of view of how it’s evolved.” The leading hypothesis is that male humpbacks — only the males sing — are trying to attract females. But they may also switch tunes when another male is nearby, apparently to assess a rival’s size and fitness, said Dr. Noad, who was the senior author of one of four new papers on whale songs. © 2019 The New York Times Company

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25850 - Posted: 01.09.2019

Katie Brown When polite people talk, they take turns speaking and adjust the timing of their responses on the fly. So do wild macaques, a team of Japanese ethologists reports. Analysis of 20-minute vocal exchanges involving 15 adult female Japanese macaques (Macaca fuscata) revealed that the monkeys altered their conversational pauses depending on how quickly others answered, the researchers report in a study in an upcoming issue of Current Zoology. It’s unclear whether the monkeys were actually talking in any way analogous to how humans converse. While macaques have the vocal equipment to form humanlike words, their brains are unable to transform that vocal potential into human talk (SN Online: 12/19/16). The primates instead communicate in grunts, coos and other similar sounds. But the length of pauses between those grunts and coos closely match the length of pauses in human chats, says coauthor Noriko Katsu of the University of Tokyo. The researchers analyzed 64 vocal exchanges, called bouts, between at least two monkeys that were recorded between April and October 2012 at the Iwatayama Monkey Park in Kyoto, Japan. The team found that the median length of time between the end of one monkey’s calls and the beginning of another’s was 250 milliseconds — similar to the average 200 milliseconds in conversational pause time between humans. That makes the macaques’ gaps between turns in chattering one of the shortest call-and-response pauses yet measured in nonhuman primates. |© Society for Science & the Public 2000 - 2018.

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25829 - Posted: 01.01.2019

By Elizabeth Pennisi Anyone who has tried to whisper sweet nothings into their lover’s ear while standing on a noisy street corner can understand the plight of the túngara frog. A tiny amphibian about the size of a U.S. quarter, the male Physalaemus pustulosus has had to make its call more complex to woo mates when they move from the forest to the city. Now, researchers have found that female túngara frogs from both the country and the city prefer these mouthy city slickers. Biologists have long studied túngara frog courtship, demonstrating that visual signals and calls by themselves are unattractive to females but together are a winning combination, and that a female’s decision to mate depends on the context. Now, researchers have recorded the calls of male frogs living in cities, small towns, and forests across Panama. As they played the calls back, they counted the females, frog-eating bats, and frog-biting insects lured in by each call. Then they transplanted forest-dwelling frogs to the city and city dwellers to the forest to see how females there reacted to their calls. Finally, in the lab, they tested female preference for each call. Males living in cities and towns called more frequently and had more complex calls—with louder “chucks” interspersed in the whine—than forest frogs, the team reports today in Nature Ecology & Evolution. When they were moved into the country, they simplified their calls; but when their country cousins were brought to the big city, they couldn’t make the switch, and kept singing simply. When the researchers played back the calls to females, the females preferred more complex calls, even if the female herself was from the country, they reported. © 2018 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25769 - Posted: 12.11.2018

By Virginia Morell Like any fad, the songs of humpback whales don’t stick around for long. Every few years, males swap their chorus of squeaks and groans for a brand new one. Now, scientists have figured out how these “cultural revolutions” take place. All male humpbacks in a population sing the same song, and they appear to learn new ones somewhat like people do. Males in the eastern Australian population of humpbacks, for example, pick up a new song every few years from the western Australian population at shared feeding grounds or while migrating. Over the next few years, the songs spread to all South Pacific populations. To understand how the whales learn the novel ballads, scientists analyzed eastern Australian whale songs over 13 consecutive years. Using spectrograms of 412 song cycles from 95 singers, the scientists scored each tune’s complexity for the number of sounds and themes, and studied the subtle variations individual males can add to stand out. Complexity increased as the songs evolved (as heard in the video below), the team reports today in the Proceedings of the Royal Society B. But after a song revolution, the ballads became shorter with fewer sounds and themes. The revolutionary songs may be less complex than the old ones because the whales can only learn a certain amount of new material at a time, the scientists conclude. That could mean that although humpback whales are still the crooners of the sea, their learning skills are a bit limited. © 2018 American Association for the Advancement of Scienc

Related chapters from BN8e: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25705 - Posted: 11.21.2018

By Elizabeth Pennisi The melodious call of many birds comes from a mysterious organ buried deep within their chests: a one-of-a-kind voice box called a syrinx. Now, scientists have concluded that this voice box evolved only once, and that it represents a rare example of a true evolutionary novelty. “It’s something that comes out of nothing,” says Denis Dubuole, a geneticist at the University of Geneva in Switzerland who was not involved with the work. “There is nothing that looks like a syrinx in any related animal groups in vertebrates. This is very bizarre.” Reptiles, amphibians, and mammals all have a larynx, a voice box at the top of the throat that protects the airways. Folds of tissue there—the vocal cords—can also vibrate to enable humans to talk, pigs to grunt, and lions to roar. Birds have larynxes, too. But the organ they use to sing their tunes is lower down—where the windpipe splits to go into the two lungs. The syrinx, named in 1872 after a Greek nymph who was transformed into panpipes, has a similar structure: Both are tubes supported by cartilage with folds of tissue. The oldest known syrinx belongs to a bird fossil some 67 million years old; that’s about the same time all modern bird groups became established. To figure out where the bizarre organ came from, Julia Clarke, a paleontologist at the University of Texas in Austin, who made the syrinx discovery in 2013, assembled a team of developmental biologists, evolutionary biologists, and other researchers. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 6: Evolution of the Brain and Behavior; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 25535 - Posted: 10.06.2018

Shawna Williams Deciphering the communications of electric fish in their native streams is not for the faint of heart. “Once in a while, there is a thunderstorm ten kilometers away, then at some point the water level of those streams rises by one meter in one hour or so,” says Jan Benda, a computational neuroscientist at the University of Tübingen in Germany. “Then we are in big trouble with our equipment.” Even in the absence of extreme weather, given the normal heat and humidity levels at his team’s research sites in Panama and Columbia, “things break and then you sit there in the field and try to solder a wire back to something late at night,” he says, laughing. “You’re dreaming about your nice lab where everything is so easy.” To reach the study site with their equipment, researchers traveled by boat, and then on foot. Benda was driven from his comfortable lab a few years ago by a gaping hole in the body of scientific knowledge: weakly electric fish, which use electricity to communicate but not to stun prey, are popular subjects for neuroscientists who want to know how vertebrate brains process sensory information, but few if any researchers had ever eavesdropped on the animals zap-chatting in nature. Gaining this type of insight into the behavior of a species studied for decades in the lab is “a massively important undertaking,” says Malcolm MacIver, a neuroscientist and engineer researching animal behavior at Northwestern University in Illinois. © 1986 - 2018 The Scientist

Related chapters from BN8e: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 5: The Sensorimotor System
Link ID: 25401 - Posted: 08.31.2018