Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 521

By Neuroskeptic Sometimes, scientific misconduct is so blatant as to be comical. I recently came across an example of this on Twitter. The following is an image from a paper published in the Journal of Materials Chemistry C: As pointed out on PubPeer, this image – which is supposed to be an electron microscope image of some carbon dot (CD) nanoparticles – is an obvious fake. The “dots” are identical, and have clearly been cut-and-pasted. Where one copy has been placed over the top of another, the overlap is quite visible. It would be charitable to even call this ‘scientific’ fraud. The Journal of Materials Chemistry editors said on Twitter that they are “urgently” looking into this paper; I’ve no doubt it will be retracted soon, although the fact that it was published at all raises questions about the peer-review standards of this journal. To me as a neuroscientist, cases like this from chemistry get me worried. In a field like materials chemistry, or any field in which results take the form of images or photographs (such as Western blots), low-effort fraud is easy to spot because the manipulation of an image can, at least in unsubtle cases, be easily proven from the image itself. But what of fields like psychology or neuroscience where data don’t take the form of images? Perhaps low-effort frauds occur in these fields as well, but it is much more difficult to detect them when the results are statistical rather than pictorial in nature.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24383 - Posted: 12.01.2017

By Mary Beth Aberlin Like the entomologist in search of colorful butterflies, my attention has chased in the gardens of the grey matter cells with delicate and elegant shapes, the mysterious butterflies of the soul, whose beating of wings may one day reveal to us the secrets of the mind. —Santiago Ramón y Cajal, Recollections of My Life Based on this quote, I am pretty certain that Santiago Ramón y Cajal, a founding father of modern neuroscience, would approve of this month’s cover. The Spaniard had wanted to become an artist, but, goaded by his domineering father into the study of medicine, Ramón y Cajal concentrated on brain anatomy, using his artistic talent to render stunningly beautiful and detailed maps of neuron placement throughout the brain. Based on his meticulous anatomical studies of individual neurons, he proposed that nerve cells did not form a mesh—the going theory at the time—but were separated from each other by microscopic gaps now called synapses. Fast-forward from the early 20th century to the present day, when technical advances in imaging have revealed any number of the brain’s secrets. Ramón y Cajal would no doubt have marveled at the technicolor neuron maps revealed by the Brainbow labeling technique. (Compare Ramón y Cajal’s drawings of black-stained Purkinje neurons to a Brainbow micrograph of the type of neuron.) But the technical marvels have gotten even more revelatory. © 1986-2017 The Scientist

Related chapters from BN8e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24348 - Posted: 11.24.2017

By Bahar Gholipour, The same techniques that generate images of smoke, clouds and fantastic beasts in movies can render neurons and brain structures in fine-grained detail. Two projects presented yesterday at the 2017 Society for Neuroscience annual meeting in Washington, D.C., gave attendees a sampling of what these powerful technologies can do. “These are the same rendering techniques that are used to make graphics for ‘Harry Potter’ movies,” says Tyler Ard, a neuroscientist in Arthur Toga’s lab at the University of Southern California in Los Angeles. Ard presented the results of applying these techniques to magnetic resonance imaging (MRI) scans. The methods can turn massive amounts of data into images, making them ideally suited to generate brain scans. Ard and his colleagues develop code that enables them to easily enter data into the software. They plan to make the code freely available to other researchers. The team is also combining the visualization software with virtual reality to enable scientists to explore the brain in three dimensions, and even perform virtual dissections of the brain. In one demo, the user can pick at a colored, segmented brain that can be pulled apart like pieces of Lego. “This can be useful when learning neuroanatomy,” Ard says. “The way that I learned it, we had to look at slices, and that’s real hard. This is a way that allows you to understand 3-D structure better.” The team plans to release the program, called Neuro Imaging in Virtual Reality, online next year. © 2017 Scientific American

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24340 - Posted: 11.20.2017

Summary A vast effort by a team of Janelia Research Campus scientists is rapidly increasing the number of fully-traced neurons in the mouse brain. Researchers everywhere can now browse and download the 3-D data. Inside the mouse brain, individual neurons zigzag across hemispheres, embroider branching patterns, and, researchers have now shown, often spool out spindly fibers nearly half a meter long. Scientists can see and explore these wandering neural traces in 3-D, in the most extensive map of mouse brain wiring yet attempted. The map – the result of an ongoing effort by an eclectic team of researchers at the Janelia Research Campus – reconstructs the entire shape and position of more than 300 of the roughly 70 million neurons in the mouse brain. Previous efforts to trace the path of individual neurons had topped out in the dozens. “Three hundred neurons is just the start,” says neuroscientist Jayaram Chandrashekar, who leads the Janelia project team, called MouseLight for its work illuminating the circuitry of the mouse brain. He and colleagues expect to trace hundreds more neurons in the coming months – and they’re sharing all the data with the neuroscience community. The team released their current dataset and an analysis tool, called the MouseLight NeuronBrowser, on October 27, 2017, and will report the work in November at the annual Society for Neuroscience meeting in Washington, D.C. They hope that the findings will help scientists ask, and begin to answer, questions about how neurons are organized, and how information flows through the brain. ©2017 Howard Hughes Medical Institute

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 24319 - Posted: 11.11.2017

By: George Paxinos, Being an atlas maker, I have an image problem. I recently introduced myself to a lady at a Society for Neuroscience Meeting who had used the first edition of The Rat Brain in Stereotaxic Coordinates for her PhD thesis 35 years earlier. With surprise written on her face, she said, “George Paxinos, I thought you were dead.” On another occasion, I was giving a talk at Munich and one girl asked another, “Did you see Paxinos?” The other girl replied, “Yes, it is on my shelf.” The idea of constructing an atlas came to me while on a sabbatical at Cambridge. There, I used acetylcholinesterase (AChE) as a proxy (poor at that) for acetylcholine. Looking at the rat brain stained for AChE was like looking at a coloring book that was already colored. I was convinced immediately that I would be able to construct a better atlas of the rat brain than the then popular atlas of Konig and Klippel (1963). The Konig and Klippel atlas did not display the pons, medulla, cerebellum, olfactory bulbs, spinal cord, horizontal section or the point of bregma, the most frequently used reference point in stereotaxic surgery. Further it was based on 150g female rats, while most neuroscientists used 300g male rats. However, my greatest difficult with this atlas was that as an undergraduate in psychology at Berkeley, I was going to be instructed by my professor on stereotaxic surgery, but unfortunately the rat resisted going under the anesthetic. Trying to anesthetize the rat consumed the available time and my professor left, telling me to read the coordinates and implant the electrode in the hypothalamus. In my rush to implant the electrode without the rat getting out of the anesthetic, I failed to read the Introduction of the atlas, where it was stated clearly that the stereotaxic zero point of the atlas is not (repeat “not”) the stereotaxic zero point of the stereotaxic instrument, but 4.9mm above the true stereotaxic zero for convenience. So, in targeting the hypothalamus, I missed the brain by 4.9mm. I thought any psychologist would have been able to design a better atlas than that. The only problem I had in constructing the rat brain atlas was that I did not know anatomy. © 2017 Elsevier,

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24317 - Posted: 11.11.2017

Laura Sanders The human brain is teeming with diversity. By plucking out delicate, live tissue during neurosurgery and then studying the resident cells, researchers have revealed a partial cast of neural characters that give rise to our thoughts, dreams and memories. So far, researchers with the Allen Institute for Brain Science in Seattle have described the intricate shapes and electrical properties of about 100 nerve cells, or neurons, taken from the brains of 36 patients as they underwent surgery for conditions such as brain tumors or epilepsy. To reach the right spot, surgeons had to remove a small hunk of brain tissue, which is usually discarded as medical waste. In this case, the brain tissue was promptly packed up and sent — alive — to the researchers. Once there, the human tissue was kept on life support for several days as researchers analyzed the cells’ shape and function. Some neurons underwent detailed microscopy, which revealed intricate branching structures and a wide array of shapes. The cells also underwent tiny zaps of electricity, which allowed researchers to see how the neurons might have communicated with other nerve cells in the brain. The Allen Institute released the first publicly available database of these neurons on October 25. A neuron called a pyramidal cell, for instance, has a bushy branch of dendrites (orange in 3-D computer reconstruction, above) reaching up from its cell body (white circle). Those dendrites collect signals from other neural neighbors. Other dendrites (red) branch out below. The cell’s axon (blue) sends signals to other cells that spur them to action. |© Society for Science & the Public 2000 - 2017.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 24314 - Posted: 11.10.2017

By Amanda B. Keener On a fall day in 2015 at Sunnybrook hospital in Toronto, a dozen people huddled in a small room peering at a computer screen. They were watching brain scans of a woman named Bonny Hall, who lay inside an MRI machine just a few feet away. Earlier that day, Hall, who had been battling a brain tumor for eight years, had received a dose of the chemotherapy drug doxorubicin. She was then fitted with an oversized, bowl-shape helmet housing more than 1,000 transducers that delivered ultrasound pulses focused on nine precise points inside her brain. Just before each pulse, her doctors injected microscopic air bubbles into a vein in her hand. Their hope was that the microbubbles would travel to the capillaries of the brain and, when struck by the sound waves, oscillate. This would cause the blood vessels near Hall’s tumor to expand and contract, creating gaps that would allow the chemotherapy drug to escape from the bloodstream and seep into the neural tissue. Finally, she received an injection of a contrast medium, a rare-earth metal called gadolinium that lights up on MRI scans. Now, doctors, technicians, and reporters crowded around to glimpse a series of bright spots where the gadolinium had leaked into the targeted areas, confirming the first noninvasive opening of a human’s blood-brain barrier (BBB). “It was very exciting,” says radiology researcher Nathan McDannold, who directs the Therapeutic Ultrasound Lab at Brigham and Women’s Hospital in Boston and helped develop the technique that uses microbubbles and ultrasound to gently disturb blood vessels. Doctors typically depend on the circulatory system to carry a drug from the gut or an injection site to diseased areas of the body, but when it comes to the brain and central nervous system (CNS), the vasculature switches from delivery route to security system. The blood vessels of the CNS are unlike those throughout the rest of the body. © 1986-2017 The Scientist

Related chapters from BN8e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24310 - Posted: 11.09.2017

Sara Reardon The 70 million neurons in the mouse brain look like a tangled mess, but researchers are beginning to unravel the individual threads that carry messages across the organ. A 3D brain map released on 27 October, called MouseLight, allows researchers to trace the paths of single neurons and could eventually reveal how the mind assembles information. The map contains 300 neurons and researchers plan to add another 700 in the next year. “A thousand is just beginning to scratch the surface,” says Nelson Spruston, a neuroscientist at the Howard Hughes Medical Institute (HHMI) Janelia Research Campus in Ashburn, Virginia. To create the maps, Spruston and HHMI neuroscientist Jayaram Chandrashekar injected mouse brains with viruses that infect only a few cells at a time, prompting them to produce fluorescent proteins1. The team made the organs transparent using a sugar-alcohol treatment to obtain an unobstructed view of the glowing neurons, and then scanned each brain with a high-resolution microscope. Computer programs created 3D models of the glowing neurons and their projections, called axons, which can be half a metre long and branch like a tree. MouseLight has already revealed new information, including the surprisingly extensive number of brain regions that a single axon can reach. For instance, four neurons associated with taste stretch into the region that controls movement and another area related to touch. Chandrashekar says the group is now working on identifying which genes each neuron expresses, which will help to pin down their function. © 2017 Macmillan Publishers Limited,

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24258 - Posted: 10.28.2017

Megan Molteni For patients with epilepsy, or cancerous brain lesions, sometimes the only way to forward is down. Down past the scalp and into the skull, down through healthy grey matter to get at a tumor or the overactive network causing seizures. At the end of the surgery, all that extra white and grey matter gets tossed in the trash or an incinerator. Well, not all of it. At least, not in Seattle. For the last few years, doctors at a number of hospitals in the Emerald City have been saving those little bits and blobs of brain, sticking them on ice, and rushing them off in a white van across town to the Allen Institute for Brain Science. Scientists there have been keeping the tissue on life support long enough to tease out how individual neurons look, act, and communicate. And today they’re sharing the first peek at these cells in a freely available public database. It provides a more intimate, intricate look into the circuitry of the human brain than ever before. And it’s just the beginning of a much larger effort to build a complete catalog of human brain cells. This first release includes electrical readings from a few hundred living neurons—all recently removed from 36 neurosurgery patients in Seattle area hospitals. For 100 of those cells, Allen Institute researchers built 3-D models of their branching structures, which they can use to simulate patterns of pulses and zaps. Scientists can see where in the brain neurons start and stop, and how current flows and spreads a signal throughout a neuronal network—signals that might move a muscle, or make a memory.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 24245 - Posted: 10.26.2017

By Roni Dengler One man’s neuron is another man’s knowledge. That’s the stance of the Allen Institute for Brain Science, which this week released the first open-access database of live human brain cells. It contains data on the electrical properties of about 300 cortical neurons taken from 36 patients and 3D reconstructions of 100 of those cells, plus gene expression data from 16,000 neurons from three other patients. Working with Seattle, Washington–area neurosurgeons, the Allen Institute acquired healthy cells from the cortex—the outermost layer of the brain that coordinates perception, memory, thoughts, and consciousness—from patients undergoing surgery for epilepsy or brain tumors. Normally considered medical waste, these tissues can now provide scientists with a unique resource for understanding the human brain. That’s because most studies on single human brain cells use dead rather than living tissue, and many others rely on cells from common laboratory animals, especially mice. The new data should help researchers pin down what makes human brains unique from other species—and what makes for a healthy versus diseased brain. © 2017 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24237 - Posted: 10.25.2017

Jon Hamilton Brain imaging studies have a diversity problem. That's what researchers concluded after they re-analyzed data from a large study that used MRI to measure brain development in children from 3 to 18. Like most brain imaging studies of children, this one included a disproportionate number of kids who have highly educated parents with relatively high household incomes, the team reported Thursday in the journal Nature Communications. For example, parents of study participants were three times more likely than typical U.S. parents to hold an advanced degree. And participants' family incomes were much more likely to exceed $100,000 a year. So the researchers decided to see whether the results would be different if the sample represented the U.S. population, says Kaja LeWinn, an assistant professor at the University of California, San Francisco School of Medicine. "We were able to weight that data so it looked more like the U.S." in terms of race, income, education and other variables, she says. And when the researchers did that, the picture of "normal" brain development changed dramatically. For instance, when the sample reflected the U.S. population, children's brains reached several development milestones much earlier. © 2017 npr

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 24204 - Posted: 10.17.2017

By Emily Underwood If you’ve ever found yourself in an MRI machine, you know keeping still isn’t easy. For newborns, it’s nearly impossible. Now, a portable, ultrasonic brain probe about the size of a domino could do similar work, detecting seizures and other abnormal brain activity in real time, according to a new study. It could also monitor growing babies for brain damage that can lead to diseases like cerebral palsy. “This is a window of time we haven’t had access to, and techniques like this are really going to open that up,” says Moriah Thomason, a neuroscientist at Wayne State University in Detroit, Michigan, who wasn’t involved in the new study. Researchers have long been able to take still pictures of the newborn brain and study brain tissue after death. But brain function during the first few weeks of life, which is “utterly essential to future human health,” has always been something of a black box, Thomason says. Two techniques used in adults—functional magnetic resonance imaging (fMRI), which can measure blood flow; and electroencephalography (EEG), which measures electrical activity in the outer layers of the brain—have their drawbacks. FMRI doesn’t work well with squirmy tots, is expensive, and is too big to haul to a delicate baby’s bedside. EEG—which only requires attaching a few wires to someone’s head—can’t penetrate deeper brain structures or show where a seizure begins, critical information for doctors weighing treatment options, says Olivier Baud, a developmental neuroscientist at the Robert Debré University Hospital in Paris. © 2017 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 24183 - Posted: 10.12.2017

Ian Sample Science editor World-leading neuroscientists have launched an ambitious project to answer one of the greatest mysteries of all time: how the brain decides what to do. The international effort will draw on expertise from 21 labs in the US and Europe to uncover for the first time where, when, and how neurons in the brain take information from the outside world, make sense of it, and work out how to respond. If the researchers can unravel what happens in detail, it would mark a dramatic leap forward in scientists’ understanding of a process that lies at the heart of life, and which ultimately has implications for intelligence and free will. “Life is about making decisions,” said Alexandre Pouget, a neuroscientist involved in the project at the University of Geneva. “It’s one decision after another, on every time scale, from the most mundane thing to the most fundamental in your life. It is the essence of what the brain is about.” Backed with an initial £10m ($14m) from the US-based Simons Foundation and the Wellcome Trust, the endeavour will bring neuroscientists together into a virtual research group called the International Brain Laboratory (IBL). Half of the IBL researchers will perform experiments and the other half will focus on theoretical models of how the brain makes up its mind. The IBL was born largely out the realisation that many problems in modern neuroscience are too hard for a single lab to crack. But the founding scientists are also frustrated at how research is done today. While many neuroscientists work on the same problems, labs differ in the experiments and data analyses they run, often making it impossible to compare results across labs and build up a confident picture of what is really happening in the brain. © 2017 Guardian News and Media Limited

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24077 - Posted: 09.19.2017

Claudia Dreifus Dr. Gregory Berns, 53, a neuroscientist at Emory University in Atlanta, spends his days scanning the brains of dogs, trying to figure out what they’re thinking. The research is detailed in a new book, “What It’s Like to Be a Dog.” Among the findings: Your dog may really love you for you — not for your food. We spoke during his recent visit to New York City and later by telephone. The conversation below has been edited and condensed for space and clarity. How did your canine studies begin? It really started with the mission that killed bin Laden. There had been this dog, Cairo, who’d leapt out of the helicopter with the Navy SEALs. Watching the news coverage gave me an idea. Helicopters are incredibly noisy. Dogs have extremely sensitive hearing. I thought, “Gee, if the military can train dogs to get into noisy helicopters, it might be possible to get them into noisy M.R.I.s.” Why? To find out what dogs think and feel. A year earlier, my favorite dog, a pug named Newton, had died. I thought about him a lot. I wondered if he’d loved me, or if our relationship had been more about the food I’d provided. As a neuroscientist, I’d seen how M.R.I. studies helped us understand which parts of the human brain were involved in emotional processes. Perhaps M.R.I. testing could teach us similar things about dogs. I wondered if dogs had analogous functions in their brains to what we humans have. The big impediment doing this type of testing was to find some way to get dogs into an M.R.I. and get them to hold still for long enough to obtain useful images. © 2017 The New York Times Company

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 24047 - Posted: 09.08.2017

Lauren Silverman In health care, you could say radiologists have typically had a pretty sweet deal. They make, on average, around $400,000 a year — nearly double what a family doctor makes — and often have less grueling hours. But if you talk with radiologists in training at the University of California, San Francisco, it quickly becomes clear that the once-certain golden path is no longer so secure. "The biggest concern is that we could be replaced by machines," says Phelps Kelley, a fourth-year radiology fellow. He's sitting inside a dimly lit reading room, looking at digital images from the CT scan of a patient's chest, trying to figure out why he's short of breath. Because MRI and CT scans are now routine procedures and all the data can be stored digitally, the number of images radiologists have to assess has risen dramatically. These days, a radiologist at UCSF will go through anywhere from 20 to 100 scans a day, and each scan can have thousands of images to review. "Radiology has become commoditized over the years," Kelley says. "People don't want interaction with a radiologist, they just want a piece of paper that says what the CT shows." 'Computers are awfully good at seeing patterns' That basic analysis is something he predicts computers will be able to do. Dr. Bob Wachter, an internist at UCSF and author of The Digital Doctor, says radiology is particularly amenable to takeover by artificial intelligence like machine learning. "Radiology, at its core, is now a human being, based on learning and his or her own experience, looking at a collection of digital dots and a digital pattern and saying 'That pattern looks like cancer or looks like tuberculosis or looks like pneumonia,' " he says. "Computers are awfully good at seeing patterns." © 2017 npr

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24035 - Posted: 09.05.2017

Marsha Lederman Santiago Ramon y Cajal wanted to be an artist, but his father, a physician and anatomy teacher, wanted his son to follow in his medical footsteps. It's a familiar story of family dynamics, but what wound up happening in this case was revolutionary. Cajal, who was born in 1852 in northeastern Spain, did ultimately go into medicine, as his father wished. He became a pathologist, histologist and neuroscientist. But he also applied his artistic skills to his area of interest. His hand-drawn illustrations of the brain, based on what he saw through the microscope using stained brain tissue (thanks to a technique developed by his contemporary, the Italian histologist Camillo Golgi) were pioneering. Cajal, who won the Nobel Prize in 1906 (along with Golgi), is known as the father of modern neuroscience. More than a century after he made them, his drawings are still used to illustrate principles of neuroscience. "When I was a student … everybody would start their talk, 'as first shown by Cajal,'" says Brian MacVicar, co-director at Djavad Mowafaghian Centre for Brain Health and Canada Research Chair in Neuroscience at the University of British Columbia. When MacVicar learned that an exhibition of Cajal's drawings was being planned by neuroscience colleagues in Minnesota along with the Weisman Art Museum at the University of Minnesota, he was immediately on a mission: to bring the drawings to Vancouver. He finally extracted a yes from the show organizers, but not operating in the art world, MacVicar wasn't sure who might want to exhibit them in Vancouver. The answer turned out to be right in his backyard – or at least, a few blocks away on campus. Scott Watson, director/curator of the Morris and Helen Belkin Art Gallery at the University of British Columbia, had seen Cajal's work at the Istanbul Biennial in 2015 – and understood their appeal and value.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 24030 - Posted: 09.04.2017

By Aggie Mika A drawing based on one of Ramón y Cajal’s “selfies,” with his pyramidal neuron illustrations around him. According to Hunter, Ramón y Cajal obsessively took photos of himself throughout his life. DAWN HUNTER, WITH PERMISSIONIt was in the spring of 2015 when Dawn Hunter saw Santiago Ramón y Cajal’s century-old elaborate drawings of the nervous system in person for the first time, at the late scientist’s exhibit within the National Institutes of Health. She was instantly compelled to recreate his ornate illustrations herself. “I just immediately started drawing [them] because they were so beautiful,” says Hunter, a visual art and design professor at the University of South Carolina. “His drawings in person were even more amazing than I thought they were going to be.” Ramón y Cajal’s drawings first caught Hunter’s eye while doing research for a neuroanatomy textbook she was asked to illustrate in 2012. Ramón y Cajal, hailed by many as the father of modern neuroscience, depicted the inner workings of the brain through thousands of intricate illustrations before his death in 1934. He first posited that unique, inter-connected entities called neurons were the central nervous system’s fundamental unit of function. A recreation of Ramón y Cajal Cajal’s retina depiction. “His retina drawing is particularly interesting because he combines both of his main drawing techniques. . . . Part of the drawing is designed and drawn out preliminarily and part of it is drawn from observation,” says Hunter.DAWN HUNTER, WITH PERMISSIONWhile recreating his work, Hunter was able to shed unprecedented light on how he went about his craft. “Some neuroscientists erroneously think that he traced all of his drawings from a projection, which he did not,” she says. This involves expanding a magnified image of the specimen being viewed under the microscope onto the table using a drawing tube or camera lucida. While he did use this tool in certain instances, she says, he drew some of his drawings, like his famous pyramidal neurons, “through his observation with his eye,” a technique known as perceptual drawing. © 1986-2017 The Scientist

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 24024 - Posted: 09.02.2017

By Meredith Wadman Luca Rossi tried to hang himself in a bedroom in Perugia, Italy, in 2012. Suspended by his belt from a wardrobe, he had begun to choke when his fiancée unexpectedly walked in. He struggled to safety, defeated even in this intended last act. The 35-year-old physician had everything to live for: a medical career, plans for a family, and supportive parents. But Rossi* was addicted to crack cocaine. He had begun his habit not long after medical school, confidently assuming that he could control the drug. Now, it owned him. Once ebullient and passionate, he no longer smiled or cried. He knew he might be endangering his patients, but even that didn’t matter. He was indifferent to all except obtaining his next fix. “It pushes you to suicide because it fills you with your own emptiness,” he says. In the first months after his near suicide, Rossi didn’t drop his $3500-a-month habit. Early in 2013, he learned that his fiancée was pregnant. Frightened by impending fatherhood, he smoked even more. He didn’t—couldn’t—stop. Then, in April 2013, Rossi’s father, a chemist, happened upon a local newspaper article describing work just published in Nature. Neuroscientists led by Antonello Bonci and Billy Chen at the National Institute on Drug Abuse (NIDA) in Baltimore, Maryland, had studied rats trained to seek cocaine compulsively—animals so powerfully addicted that they tolerated repeated electric shocks to their feet to get their fixes. The rats had also been genetically engineered so that their neurons could be controlled with light. When the researchers stimulated the animals’ brains in an area that regulates impulse control, the rats essentially kicked their habit. “They would almost instantaneously stop searching for cocaine,” Bonci says. © 2017 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 24013 - Posted: 08.30.2017

By Jocelyn Kaiser The National Institutes of Health (NIH) in Bethesda, Maryland, has confirmed that the agency’s definition of clinical trials now includes imaging studies of normal brain function that do not test new treatments. The change will impose new requirements that many researchers say don’t make sense and could stifle cognitive neuroscience. Although NIH revised its definition of clinical trials in 2014, the agency is only now implementing it as part of a new clinical trials policy. Concerns arose this summer when an NIH official said the definition could apply to many basic behavioral research projects, including brain studies—for example, having healthy volunteers perform a computer task while wearing an electrode cap or lying in an MRI machine. Scientists say the new requirements—such as training and registration on clinicaltrials.gov—are unnecessary, will impose a huge paperwork burden, and will confuse patients seeking to enroll in trials. NIH told ScienceInsider in July that the agency was still deciding exactly which behavioral studies would be covered by the new definition. On 11 August, the agency released a set of case studies that has confirmed many researchers’ fears. Case No. 18 states that a study in which a healthy volunteer undergoes MRI brain imaging while performing a working memory test is now a clinical trial because the effect being evaluated—brain function—is a health-related outcome. © 2017 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 24003 - Posted: 08.26.2017

By Matthew Hutson Engineers have figured out how to make antennas for wireless communication 100 times smaller than their current size, an advance that could lead to tiny brain implants, micro–medical devices, or phones you can wear on your finger. The brain implants in particular are “like science fiction,” says study author Nian Sun, an electrical engineer and materials scientist at Northeastern University in Boston. But that hasn’t stopped him from trying to make them a reality. The new mini-antennas play off the difference between electromagnetic (EM) waves, such as light and radio waves, and acoustic waves, such as sound and inaudible vibrations. EM waves are fluctuations in an electromagnetic field, and they travel at light speed—an astounding 300,000,000 meters per second. Acoustic waves are the jiggling of matter, and they travel at the much slower speed of sound—in a solid, typically a few thousand meters per second. So, at any given frequency, an EM wave has a much longer wavelength than an acoustic wave. Antennas receive information by resonating with EM waves, which they convert into electrical voltage. For such resonance to occur, a traditional antenna's length must roughly match the wavelength of the EM wave it receives, meaning that the antenna must be relatively big. However, like a guitar string, an antenna can also resonate with acoustic waves. The new antennas take advantage of this fact. They will pick up EM waves of a given frequency if its size matches the wavelength of the much shorter acoustic waves of the same frequency. That means that that for any given signal frequency, the antennas can be much smaller. © 2017 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 23987 - Posted: 08.23.2017