Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 543

by Dr. Francis Collins Though our thoughts can wander one moment and race rapidly forward the next, the brain itself is often considered to be motionless inside the skull. But that’s actually not correct. When the heart beats, the pumping force reverberates throughout the body and gently pulsates the brain. What’s been tricky is capturing these pulsations with existing brain imaging technologies. Recently, NIH-funded researchers developed a video-based approach to magnetic resonance imaging (MRI) that can record these subtle movements [1]. Their method, called phase-based amplified MRI (aMRI), magnifies those tiny movements, making them more visible and quantifiable. The latest aMRI method, developed by a team including Itamar Terem at Stanford University, Palo Alto, CA, and Mehmet Kurt at Stevens Institute of Technology, Hoboken, NJ. It builds upon an earlier method developed by Samantha Holdsworth at New Zealand’s University of Auckland and Stanford’s Mahdi Salmani Rahimi [2]. In the video, a traditional series of brain scans captured using standard MRI (left) make the brain appear mostly motionless. But a second series of scans captured using the new technique (right) shows the brain pulsating with each and every heartbeat. As described in the journal Magnetic Resonance in Medicine, the team started by measuring the pulse of a healthy person. They synchronized the pulse with MRI images of the person’s brain, stitching the scans together to create a sequential video. Their new MRI approach then relies on a special algorithm developed by another group to magnify the subtle changes.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25311 - Posted: 08.10.2018

A handful of Alzheimer's patients signed up for a bold experiment: they let scientists beam sound waves into the brain to temporarily jiggle an opening in its protective shield. The so-called blood-brain barrier prevents germs and other damaging substances from leaching in through the bloodstream — but it can block drugs for Alzheimer's, brain tumours and other neurological diseases. Canadian researchers on Wednesday reported early hints that technology called focused ultrasound can safely poke holes in that barrier — holes that quickly sealed back up. It's a step toward one day using the non-invasive device to push brain treatments through. "It's been a major goal of neuroscience for decades, this idea of a safe and reversible and precise way of breaching the blood-brain barrier," said Dr. Nir Lipsman, a neurosurgeon at Toronto's Sunnybrook Health Sciences Centre who led the study. "It's exciting." The findings were presented at the Alzheimer's Association international conference in Chicago and published Wednesday in Nature Communications. This first-step research, conducted in just six people with mild to moderate Alzheimer's, didn't test potential therapies; its aim was to check whether patients' fragile blood vessels could withstand the breach without bleeding or other side-effects. ©2018 CBC/Radio-Canada

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 25249 - Posted: 07.26.2018

Laurel Hamers BRAINBOW Scientists have imaged the fruit fly brain in new detail. Colors highlight the paths of nerve cells that have been mapped so far. Cells with bodies close together share the same color, but not necessarily the same function. If the secret to getting the perfect photo is taking a lot of shots, then one lucky fruit fly is the subject of a masterpiece. Using high-speed electron microscopy, scientists took 21 million nanoscale-resolution images of the brain of Drosophila melanogaster to capture every one of the 100,000 nerve cells that it contains. It’s the first time the entire fruit fly brain has been imaged in this much detail, researchers report online July 19 in Cell. Experimental neurobiologists can now use the rich dataset as a roadmap to figure out which neurons talk to each other in the fly’s brain, says study coauthor Davi Bock, a neurobiologist at Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn, Va. The rainbow image shown here captures the progress on that mapping so far. Despite the complex tangle of neural connections pictured, the mapping is far from complete, Bock says. Neurons with cell bodies close to each other are colored the same hue, to demonstrate how neurons born in the same place in the poppy seed–sized brain tend to send their spidery tendrils out in the same direction, too. |© Society for Science & the Public 2000 - 2018. All rights reserved.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25231 - Posted: 07.20.2018

Catherine Offord Researchers at Caltech have designed a noninvasive method to control specific neural circuits in the mouse brain. The technique, published earlier this week (July 9) in Nature Biomedical Engineering, combines ultrasound waves with genetic engineering and the administration of designer compounds to selectively activate or inhibit neurons. Although currently only tested in mice, the approach could offer a novel way to administer therapy to regions of the human brain that are difficult to access using surgery. “By using sound waves and known genetic techniques, we can, for the first time, noninvasively control specific brain regions and cell types as well as the timing of when neurons are switched on or off,” study coauthor Mikhail Shapiro says in a statement. While several emerging methods in neuroscience allow researchers to manipulate brain circuits, most “require invasive techniques such as stereotaxic surgery, which can damage tissue and initiate a long-lasting immune response,” note neuroscientists Caroline Menard and Scott Russo of Quebec City’s Université Laval and the Icahn School of Medicine at Mount Sinai, respectively, in an accompanying News and Views article. “Also, conventional pharmacological approaches lack the spatial, temporal and cell-type specificity required to treat the brain, and can lead to deleterious side effects.” © 1986 - 2018 The Scientist.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 25218 - Posted: 07.17.2018

Paul Biegler explains. Mind-reading machines are now real, prising open yet another Pandora’s box for ethicists. As usual, there are promises of benefit and warnings of grave peril. The bright side was front and centre at the Society for Neuroscience annual meeting in Washington DC in November 2017. It was part of a research presentation led by Omid Sani from the University of Southern California. Sani and his colleagues studied six people with epilepsy who had electrodes inserted into their brains to measure detailed electrical patterns. It is a common technique to help neurosurgeons find where seizures start. The study asked patients, who can be alert during the procedure, to report their mood during scanning. That allowed the researchers to link the patients’ moods with their brainwave readings. Using sophisticated algorithms, the team claimed to predict patients’ feelings from their brainwaves alone. That could drive a big shift in the treatment of mental illness, say researchers. Deep brain stimulation (DBS), where electrodes implanted in the brain give circuits a regular zap, has been successful in Parkinson’s disease. It is also being trialled in depression; but the results, according to a 2017 report in Lancet Psychiatry, are patchy. Sani and colleagues suggest their discovery could bump up that success rate. A portable brain decoder may be available within a generation.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 25136 - Posted: 06.25.2018

Maria Temming Getting robots to do what we want would be a lot easier if they could read our minds. That sci-fi dream might not be so far off. With a new robot control system, a human can stop a bot from making a mistake and get the machine back on track using brain waves and simple hand gestures. People who oversee robots in factories, homes or hospitals could use this setup, to be presented at the Robotics: Science and Systems conference on June 28, to ensure bots operate safely and efficiently. Electrodes worn on the head and forearm allow a person to control the robot. The head-worn electrodes detect electrical signals called error-related potentials — which people’s brains unconsciously generate when they see someone goof up — and send an alert to the robot. When the robot receives an error signal, it stops what it is doing. The person can then make hand gestures — detected by arm-worn electrodes that monitor electrical muscle signals — to show the bot what it should do instead. MIT roboticist Daniela Rus and colleagues tested the system with seven volunteers. Each user supervised a robot that moved a drill toward one of three possible targets, each marked by an LED bulb, on a mock airplane fuselage. Whenever the robot zeroed in on the wrong target, the user’s mental error-alert halted the bot. And when the user flicked his or her wrist left or right to redirect the robot, the machine moved toward the proper target. In more than 1,000 trials, the robot initially aimed for the correct target about 70 percent of the time, and with human intervention chose the right target more than 97 percent of the time. The team plans to build a system version that recognizes a wider variety of user movements. That way, “you can gesture how the robot should move, and your motion can be more fluidly interpreted,” says study coauthor Joseph DelPreto, also a roboticist at MIT. |© Society for Science & the Public 2000 - 2018

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 25111 - Posted: 06.20.2018

By Matt Warren Scientists regularly comb through 3D data, from medical images to maps of the moon, yet they are often stuck using flat computer screens that can’t fully represent 3D data sets. Now, researchers have developed a method of 3D printing that lets scientists produce stunning, high-definition 3D copies of their data. Conventional 3D-printing converts data into a computer model made up of tiny, connected triangles. But this process can create awkward images: The fine lines of the brain’s white matter, for example, show up as bulky tubes. Conventional printing also has problems creating objects where solid parts (or data points) are separated by empty space. The new process is far more direct. Instead of transforming into a computer model, the data set is sliced up into thousands of horizontal images, each consisting of hundreds of thousands of voxels, or 3D pixels. Each voxel is printed with droplets of colored resin hardened by ultraviolet light. Different colors can be combined to create new ones, and transparent resin is used to represent empty space. Each layer is printed, one on top of another, to gradually build up a 3D structure. So far, the researchers have used the voxel printing process to produce high-definition models of brain scans, topographical maps, and laser-scanned statues. And although it may take some time to get there, the team sees a day when anyone will be able to print off a copy of their data at the press of a button, from archaeologists reproducing important artifacts for conservation to doctors creating models of body parts to plan surgical procedures. Posted in: © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25050 - Posted: 06.02.2018

By Dennis Normile SHANGHAI, CHINA—The nascent China Brain Project took another step toward reality last week with the launch of the Shanghai Research Center for Brain Science and Brain-Inspired Intelligence. The new center and its Beijing counterpart, launched 2 months ago, are expected to become part of an ambitious national effort to bring China to the forefront of neuroscience. But details of that 15-year project—expected to rival similar U.S. and EU efforts in scale and ambition—are still being worked out, 2 years after the government made it a priority. Preparation for the national effort “was taking quite a long time,” says Zhang Xu, a neuroscientist and executive director of the new center here. So Beijing and Shanghai got started on their own plans, he says. China’s growing research prowess and an increasing societal interest in neuroscience—triggered in part by an aging population—as well as commercial opportunities and government support are all coming together to make this “a good time for China’s brain science efforts,” Zhang says. Government planners called for brain research to be a key science and technology project in the nation’s 13th Five-Year Plan, adopted in spring 2016. The effort would have three main pillars, according to a November 2016 Neuron paper from a group that included Poo Mu-ming, director of Shanghai’s Institute of Neuroscience (ION), part of the Chinese Academy of Sciences (CAS). It would focus on basic research on neural mechanisms underlying cognition, translational studies of neurological diseases with an emphasis on early diagnosis and intervention, and brain simulations to advance artificial intelligence and robotics. Support under the 5-year plan was just the start of a 15-year program, the group wrote. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25013 - Posted: 05.23.2018

In 2007, I spent the summer before my junior year of college removing little bits of brain from rats, growing them in tiny plastic dishes, and poring over the neurons in each one. For three months, I spent three or four hours a day, five or six days a week, in a small room, peering through a microscope and snapping photos of the brain cells. The room was pitch black, save for the green glow emitted by the neurons. I was looking to see whether a certain growth factor could protect the neurons from degenerating the way they do in patients with Parkinson's disease. This kind of work, which is common in neuroscience research, requires time and a borderline pathological attention to detail. Which is precisely why my PI trained me, a lowly undergrad, to do it—just as, decades earlier, someone had trained him. Now, researchers think they can train machines to do that grunt work. In a study described in the latest issue of the journal Cell, scientists led by Gladstone Institutes and UC San Francisco neuroscientist Steven Finkbeiner collaborated with researchers at Google to train a machine learning algorithm to analyze neuronal cells in culture. The researchers used a method called deep learning, the machine learning technique driving advancements not just at Google, but Amazon, Facebook, Microsoft. You know, the usual suspects. It relies on pattern recognition: Feed the system enough training data—whether it's pictures of animals, moves from expert players of the board game Go, or photographs of cultured brain cells—and it can learn to identify cats, trounce the world's best board-game players, or suss out the morphological features of neurons.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 24862 - Posted: 04.13.2018

In a small room tucked away at the University of Toronto, Professor Dan Nemrodov is pulling thoughts right out of people's brains. He straps a hat with electrodes on someone's head and then shows them pictures of faces. By reading brain activity with an electroencephalography (EEG) machine, he's then able to reconstruct faces with almost perfect accuracy. Student participants wearing the cap look at a collection of faces for two hours. At the same time, the EEG software recognizes patterns relating to certain facial features found in the photos. Machine-learning algorithms are then used to recreate the images based on the EEG data, in some cases within 98-per-cent accuracy. Nemrodov and his colleague, Professor Adrian Nestor say this is a big thing. "Ultimately we are involved in a form of mind reading," he says. The technology has huge ramifications for medicine, law, government and business. But the ethical questions are just as huge. Here are some key questions: What can be the benefits of this research? If developed, it can help patients with serious neurological damage. People who are incapacitated to the point that they cannot express themselves or ask a question. According to clinical ethicist Prof. Kerry Bowman and his students at the University of Toronto, this technology can get inside someone's mind and provide a link of communication. It may give that person a chance to exercise their autonomy, especially in regard to informed consent to either continue treatment or stop. ©2018 CBC/Radio-Canada.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24810 - Posted: 04.02.2018

By Liz Tormes When I first started working as a photo researcher for Scientific American MIND in 2013, a large part of my day was spent looking at brains. Lots of them. They appeared on my computer screen in various forms—from black-and-white CT scans featured in dense journals to sad-looking, grey brains sitting on the bottom of glass laboratory jars. At times they were boring, and often they could be downright disturbing. But every now and then I would come across a beautiful 3D image of strange, rainbow-colored pathways in various formations that looked like nothing I had ever seen before. I was sure it had been miscategorized somehow—no way was I looking at a brain! Through my work I have encountered countless images of multi-colored Brainbows, prismatic Diffusion Tensor Imaging (DTI), and even tiny and intricate neon mini-brains grown from actual stem cells in labs. Increasingly I have found myself dazzled, not just by the pictures themselves, but by the scientific and technological advances that have made this type of imaging possible in only the past few years. It was through my photo research that I happened upon the Netherlands Institute for Neuroscience’s (NIN) annual Art of Neuroscience contest. This exciting opportunity for neurologists, fine artists, videographers and illustrators, whose work is inspired by human and animal brains, was something I wanted to share with our readers. © 2018 Scientific American

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24803 - Posted: 03.31.2018

By Simon Makin Neuroscientists today know a lot about how individual neurons operate but remarkably little about how large numbers of them work together to produce thoughts, feelings and behavior. What is needed is a wiring diagram for the brain—known as a connectome—to identify the circuits that underlie brain functions. The challenge is dizzying: There are around 100 billion neurons in the human brain, which can each make thousands of connections, or synapses, making potentially hundreds of trillions of connections. So far, researchers have typically used microscopes to visualize neural connections, but this is laborious and expensive work. Now in a paper published March 28 in Nature, an innovative brain-mapping technique developed at Cold Spring Harbor Laboratory (CSHL) has been used to trace the connections emanating from hundreds of neurons in the main visual area of the mouse cortex, the brain’s outer layer. The technique, which exploits the advancing speed and plummeting cost of genetic sequencing, is more efficient than current methods, allowing the team to produce a more detailed picture than previously possible at unprecedented speed. Once the technology matures it could be used to provide clues to the nature of neuro-developmental disorders such as autism that are thought to involve differences in brain wiring. The team, led by Anthony Zador at CSHL and neuroscientist Thomas Mrsic-Flogel of the University of Basel in Switzerland, verified their method by comparing it with a previous gold-standard means of identifying connections among nerve cells—a technique called fluorescent single neuron tracing. This involves introducing into cells genes that produce proteins that fluoresce with a greenish glow, so they and their axons (neurons’ output wires) can be visualized with light microscopy. © 2018 Scientific American

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 24802 - Posted: 03.30.2018

Juliette Jowit The world’s first brain scanner that can be worn as people move around has been invented, by a team who hope the contraption can help children with neurological and mental disorders and reveal how the brain handles social situations. The new scalp caps – made on 3D printers – fit closely to the head, so can record the electromagnetic field produced by electrical currents between brain cells in much finer detail than previously. This design means the scanner can work in ways never possible before: subjects can move about, for example, and even play games with the equipment on, while medics can use it on groups such as babies, children and those with illnesses which cause them to move involuntarily. “This has the potential to revolutionise the brain imaging field, and transform the scientific and clinical questions that can be addressed with human brain imaging,” said Prof Gareth Barnes at University College London, one of three partners in the project. The other two are the University of Nottingham and the Wellcome Trust. The brain imaging technique known as magnetoencephalography, or MEG, has been helping scientists for decades, but in many cases has involved using huge contraptions that look like vintage hair salon driers. The scanners operated further from the head than the new devices, reducing the detail they recorded, and users had to remain incredibly still. © 2018 Guardian News and Media Limited

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24780 - Posted: 03.22.2018

By Ruth Williams When optogenetics burst onto the scene a little over a decade ago, it added a powerful tool to neuroscientists’ arsenal. Instead of merely correlating recorded brain activity with behaviors, researchers could control the cell types of their choosing to produce specific outcomes. Light-sensitive ion channels (opsins) inserted into the cells allow neuronal activity to be controlled by the flick of a switch. Nevertheless, MIT’s Edward Boyden says more precision is needed. Previous approaches achieved temporal resolution in the tens of milliseconds, making them a somewhat blunt instrument for controlling neurons’ millisecond-fast firings. In addition, most optogenetics experiments have involved “activation or silencing of a whole set of neurons,” he says. “But the problem is the brain doesn’t work that way.” When a cell is performing a given function—initiating a muscle movement, recalling a memory—“neighboring neurons can be doing completely different things,” Boyden explains. “So there is a quest now to do single-cell optogenetics.” Illumination techniques such as two-photon excitation with computer-generated holography (a way to precisely sculpt light in 3D) allow light to be focused tightly enough to hit one cell. But even so, Boyden says, if the targeted cell body lies close to the axons or dendrites of neighboring opsin-expressing cells, those will be activated too. © 1986-2018 The Scientist

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 24732 - Posted: 03.08.2018

By Diana Kwon When optogenetics debuted over a decade ago, it quickly became the method of choice for many neuroscientists. By using light to selectively control ion channels on neurons in living animal brains, researchers could see how manipulating specific neural circuits altered behavior in real time. Since then, scientists have used the technique to study brain circuity and function across a variety of species, from fruit flies to monkeys—the method is even being tested in a clinical trial to restore vision in patients with a rare genetic disorder. Today (February 8) in Science, researchers report successfully conducting optogenetics experiments using injected nanoparticles in mice, inching the field closer to a noninvasive method of stimulating the brain with light that could one day have therapeutic uses. “Optogenetics revolutionized how we all do experimental neuroscience in terms of exploring circuits,” says Thomas McHugh, a neuroscientist at the RIKEN Brain Science Institute in Japan. However, this technique currently requires a permanently implanted fiber—so over the last few years, researchers have started to develop ways to stimulate the brain in less invasive ways. A number of groups devised such techniques using magnetic fields, electric currents, and sound. McHugh and his colleagues decided to try another approach: They chose near-infrared light, which can more easily penetrate tissue than the blue-green light typically used for optogenetics. “What we saw as an advantage was a kind of chemistry-based approach in which we can harness the power of near-infrared light to penetrate tissue, but still use this existing toolbox that's been developed over the last decade of optogenetic channels that respond to visible light,” McHugh says. © 1986-2018 The Scientist

Related chapters from BN8e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24637 - Posted: 02.09.2018

By Giorgia Guglielmi ENIGMA, the world’s largest brain mapping project, was “born out of frustration,” says neuroscientist Paul Thompson of the University of Southern California in Los Angeles. In 2009, he and geneticist Nicholas Martin of the Queensland Institute of Medical Research in Brisbane, Australia, were chafing at the limits of brain imaging studies. The cost of MRI scans limited most efforts to a few dozen subjects—too few to draw robust connections about how brain structure is linked to genetic variations and disease. The answer, they realized over a meal at a Los Angeles shopping mall, was to pool images and genetic data from multiple studies across the world. After a slow start, the consortium has brought together nearly 900 researchers across 39 countries to analyze brain scans and genetic data on more than 30,000 people. In an accelerating series of publications, ENIGMA’s crowdsourcing approach is opening windows on how genes and structure relate in the normal brain—and in disease. This week, for example, an ENIGMA study published in the journal Brain compared scans from nearly 4000 people across Europe, the Americas, Asia, and Australia to pinpoint unexpected brain abnormalities associated with common epilepsies. ENIGMA is “an outstanding effort. We should all be doing more of this,” says Mohammed Milad, a neuroscientist at the University of Illinois in Chicago who is not a member of the consortium. ENIGMA’s founders crafted the consortium’s name—Enhancing NeuroImaging Genetics through Meta-Analysis—so that its acronym would honor U.K. mathematician Alan Turing’s code-breaking effort targeting Germany’s Enigma cipher machines during World War II. Like Turing’s project, ENIGMA aims to crack a mystery. Small brain-scanning studies of twins or close relatives done in the 2000s showed that differences in some cognitive and structural brain measures have a genetic basis. © 2018 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 24560 - Posted: 01.24.2018

Harriet Dempsey-Jones Nobody really believes that the shape of our heads are a window into our personalities anymore. This idea, known as “phrenonolgy”, was developed by the German physician Franz Joseph Gall in 1796 and was hugely popular in the 19th century. Today it is often remembered for its dark history – being misused in its later days to back racist and sexist stereoptypes, and its links with Nazi “eugenics”. But despite the fact that it has fallen into disrepute, phrenology as a science has never really been subjected to rigorous, neuroscientific testing. That is, until now. Researchers at the University of Oxford have hacked their own brain scanning software to explore – for the first time – whether there truly is any correspondence between the bumps and contours of your head and aspects of your personality. The results have recently been published in an open science archive, but have also been submitted to the journal Cortex. But why did phrenologists think that bumps on your head might be so informative? Their enigmatic claims were based around a few general principles. Phrenologists believed the brain was comprised of separate “organs” responsible for different aspects of the mind, such as for self-esteem, cautiousness and benevolence. They also thought of the brain like a muscle – the more you used a particular organ the more it would grow in size (hypertrophy), and less used faculties would shrink. The skull would then mould to accommodate these peaks and troughs in the brain’s surface – providing an indirect reflection of the brain, and thus, the dominant features of an person’s character. © 2010–2018, The Conversation US, Inc.

Related chapters from BN8e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24554 - Posted: 01.23.2018

By DENISE GRADY One blue surgical drape at a time, the patient disappeared, until all that showed was a triangle of her shaved scalp. “Ten seconds of quiet in the room, please,” said Dr. David J. Langer, the chairman of neurosurgery at Lenox Hill Hospital in Manhattan, part of Northwell Health. Silence fell, until he said, “O.K., I’ll take the scissors.” His patient, Anita Roy, 66, had impaired blood flow to the left side of her brain, and Dr. Langer was about to perform bypass surgery on slender, delicate arteries to restore the circulation and prevent a stroke. The operating room was dark, and everyone was wearing 3-D glasses. Lenox Hill is the first hospital in the United States to buy a device known as a videomicroscope, which turns neurosurgery into an immersive and sometimes dizzying expedition into the human brain. Enlarged on a 55-inch monitor, the stubble on Ms. Roy’s shaved scalp spiked up like rebar. The scissors and scalpel seemed big as hockey sticks, and popped out of the screen so vividly that observers felt an urge to duck. “This is like landing on the moon,” said a neurosurgeon who was visiting to watch and learn. The equipment produces magnified, high-resolution, three-dimensional digital images of surgical sites, and lets everyone in the room see exactly what the surgeon is seeing. The videomicroscope has a unique ability to capture “the brilliance and the beauty of the neurosurgical anatomy,” Dr. Langer said. He and other surgeons who have tested it predict it will change the way many brain and spine operations are performed and taught. “The first time I used it, I told students that this gives them an understanding of why I went into neurosurgery in the first place,” Dr. Langer said. © 2018 The New York Times Company

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24504 - Posted: 01.09.2018

Tina Hesman Saey In movies, exploring the body up close often involves shrinking to microscopic sizes and taking harrowing rides through the blood. Thanks to a new virtual model, you can journey through a three-dimensional brain. No shrink ray required. The Society for Neuroscience and other organizations have long sponsored the website BrainFacts.org, which has basic information about how the human brain functions. Recently, the site launched an interactive 3-D brain. A translucent, light pink brain initially rotates in the middle of the screen. With a click of a mouse or a tap of a finger on a mobile device, you can highlight and isolate different parts of the organ. A brief text box then pops up to provide a structure’s name and details about the structure’s function. For instance, the globus pallidus — dual almond-shaped structures deep in the brain — puts a brake on muscle contractions to keep movements smooth. Some blurbs tell how a structure got its name or how researchers figured out what it does. Scientists, for example, have learned a lot about brain function by studying people who have localized brain damage. But the precuneus, a region in the cerebral cortex along the brain’s midline, isn’t usually damaged by strokes or head injuries, so scientists weren’t sure what the region did. Modern brain-imaging techniques that track blood flow and cell activity indicate the precuneus is involved in imagination, self-consciousness and reflecting on memories. |© Society for Science & the Public 2000 - 2018

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24502 - Posted: 01.09.2018

by Emilie Reas Functional MRI (fMRI) is one of the most celebrated tools in neuroscience. Because of their unique ability to peer directly into the living brain while an organism thinks, feels and behaves, fMRI studies are often devoted disproportionate media attention, replete with flashy headlines and often grandiose claims. However, the technique has come under a fair amount of criticism from researchers questioning the validity of the statistical methods used to analyze fMRI data, and hence the reliability of fMRI findings. Can we trust those flashy headlines claiming that “scientists have discovered the area of the brain,” or are the masses of fMRI studies plagued by statistical shortcomings? To explore why these studies can be vulnerable to experimental failure, in their new PLOS One study coauthors Henk Cremers, Tor Wager and Tal Yarkoni investigated common statistical issues encountered in typical fMRI studies, and proposed how to avert them moving forward. The reliability of any experiment depends on adequate power to detect real effects and reject spurious ones, which can be influenced by various factors including the sample size (or number of “subjects” in fMRI), how strong the real effect is (“effect size”), whether comparisons are within or between subjects, and the statistical threshold used. To characterize common statistical culprits of fMRI studies, Cremers and colleagues first simulated typical fMRI scenarios before validating these simulations on a real dataset. One scenario simulated weak but diffusely distributed brain activity, and the other scenario simulated strong but localized brain activity (Figure 1). The simulation revealed that effect sizes are generally inflated for weak diffuse, compared to strong localized, activations, especially when the sample size is small. In contrast, effect sizes can actually be underestimated for strong localized scenarios when the sample size is large. Thus, more isn’t always better when it comes to fMRI; the optimal sample size likely depends on the specific brain-behavior relationship under investigation.

Related chapters from BN8e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 24501 - Posted: 01.09.2018