Links for Keyword: Consciousness

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 224

By Olivia Goldhill Free will, from a neuroscience perspective, can look like quite quaint. In a study published this week in the journal Scientific Reports, researchers in Australia were able to predict basic choices participants made 11 seconds before they consciously declared their decisions. In the study, 14 participants—each placed in an fMRI machine—were shown two patterns, one of red horizontal stripes and one of green vertical stripes. They were given a maximum of 20 seconds to choose between them. Once they’d made a decision, they pressed a button and had 10 seconds to visualize the pattern as hard as they could. Finally, they were asked “what did you imagine?” and “how vivid was it?” They answered these questions by pressing buttons. Using the fMRI to monitor brain activity and machine learning to analyze the neuroimages, the researchers were able to predict which pattern participants would choose up to 11 seconds before they consciously made the decision. And they were able to predict how vividly the participants would be able to envisage it. Lead author Joel Pearson, cognitive neuroscience professor at the University of South Wales in Australia, said that the study suggests traces of thoughts exist unconsciously before they become conscious. “We believe that when we are faced with the choice between two or more options of what to think about, non-conscious traces of the thoughts are there already, a bit like unconscious hallucinations,” he said in a statement. “As the decision of what to think about is made, executive areas of the brain choose the thought-trace which is stronger. In, other words, if any pre-existing brain activity matches one of your choices, then your brain will be more likely to pick that option as it gets boosted by the pre-existing brain activity.”

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26167 - Posted: 04.23.2019

By Gina Kolata In a study that raises profound questions about the line between life and death, researchers have restored some cellular activity to brains removed from slaughtered pigs. The brains did not regain anything resembling consciousness: There were no signs indicating coordinated electrical signaling, necessary for higher functions like awareness and intelligence. But in an experimental treatment, blood vessels in the pigs’ brains began functioning, flowing with a blood substitute, and certain brain cells regained metabolic activity, even responding to drugs. When the researchers tested slices of treated brain tissue, they discovered electrical activity in some neurons. The work is very preliminary and has no immediate implications for treatment of brain injuries in humans. But the idea that parts of the brain may be recoverable after death, as conventionally defined, contradicts everything medical science believes about the organ and poses metaphysical riddles. “We had clear lines between ‘this is alive’ and ‘this is dead,’” said Nita A. Farahany, a bioethicist and law professor at Duke University. “How do we now think about this middle category of ‘partly alive’? We didn’t think it could exist.” For decades, doctors and grieving family members have wondered if it might ever be possible to restore function to a person who suffered extensive brain injury because of a severe stroke or heart attack. Were these brains really beyond salvage? The new research confirms how little we know about the injured brain and so-called brain death. Bioethicists like Dr. Farahany were stunned and intrigued by the findings, published on Wednesday in the journal Nature. “This is wild,” said Jonathan Moreno, a bioethicist at the University of Pennsylvania. “If ever there was an issue that merited big public deliberation on the ethics of science and medicine, this is one.” © 2019 The New York Times Company

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26153 - Posted: 04.18.2019

Laura Sanders Scientists have restored cellular activity to pig brains hours after the animals’ death — an unprecedented feat. This revival, achieved with a sophisticated system of artificial fluid, took place four hours after the pigs’ demise at a slaughterhouse. “This is a huge breakthrough,” says ethicist and legal scholar Nita Farahany of Duke University, who wasn’t involved in the research. “It fundamentally challenges existing beliefs in neuroscience. The idea of the irreversibility of loss of brain function clearly isn’t true.” The results, reported April 17 in Nature, may lead to better treatments for brain damage caused by stroke or other injuries that starve brain tissue of oxygen. The achievement also raises significant ethical puzzles about research on brains that are not alive, but not completely dead either. In the study, the brains showed no signs of the widespread neural activity thought to be required for consciousness. But individual nerve cells were still firing. “There’s this gray zone between dead animals and living animals,” says Farahany, who coauthored a perspective piece in Nature. The experiments were conducted on pigs that had been killed in a food processing plant. These animals were destined to become pork. “No animals died for this study,” the authors of the new work write in their paper. |© Society for Science & the Public 2000 - 2019

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26152 - Posted: 04.18.2019

Nita A. Farahany, Henry T. Greely and Charles M. Giattino. Scientists have restored and preserved some cellular activities and structures in the brains of pigs that had been decapitated for food production four hours before. The researchers saw circulation in major arteries and small blood vessels, metabolism and responsiveness to drugs at the cellular level and even spontaneous synaptic activity in neurons, among other things. The team formulated a unique solution and circulated it through the isolated brains using a network of pumps and filters called BrainEx. The solution was cell-free, did not coagulate and contained a haemoglobin-based oxygen carrier and a wide range of pharmacological agents. The remarkable study, published in this week’s Nature1, offers the promise of an animal or even human whole-brain model in which many cellular functions are intact. At present, cells from animal and human brains can be sustained in culture for weeks, but only so much can be gleaned from isolated cells. Tissue slices can provide snapshots of local structural organization, yet they are woefully inadequate for questions about function and global connectivity, because much of the 3D structure is lost during tissue preparation2. The work also raises a host of ethical issues. There was no evidence of any global electrical activity — the kind of higher-order brain functioning associated with consciousness. Nor was there any sign of the capacity to perceive the environment and experience sensations. Even so, because of the possibilities it opens up, the BrainEx study highlights potential limitations in the current regulations for animals used in research. Most fundamentally, in our view, it throws into question long-standing assumptions about what makes an animal — or a human — alive. © 2019 Springer Nature Publishing AG

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26151 - Posted: 04.18.2019

By Gretchen Vogel A research group’s claimed ability to communicate with completely paralyzed people has come under fire, prompting research misconduct investigations at a German university and at Germany’s main research agency, the German Research Foundation (DFG). Two years ago, researchers in Germany and Switzerland claimed that by analyzing blood flow in different parts of the brain with an electronic skullcap, they could elucidate answers to yes or no questions from completely paralyzed people. The find, published in PLOS Biology in 2017, raised hopes for patients with degenerative diseases like amyotrophic lateral sclerosis that ultimately leave them without any voluntary muscle control—not even the ability to blink or move their eyes—a condition called a “completely locked-in state.” Now, a simmering controversy about the paper has erupted into public view. As first reported by the German newspaper Süddeutsche Zeitung, PLOS Biology yesterday published a critique of the paper that claims the authors’ statistical analysis is incorrect. Martin Spüler, an informatics specialist at the Eberhard Karls University of Tübingen in Germany, says his analysis of the data shows no support for the authors’ claim that their system could allow patients to answer questions correctly 70% of the time. His critique, first raised in late 2017, has prompted investigations of possible scientific misconduct at both DFG and the University of Tübingen, where the group studying locked-in patients is also based. © 2019 American Association for the Advancement of Science.

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 26127 - Posted: 04.11.2019

By Bernardo Kastrup In his 2014 book, Our Mathematical Universe, physicist Max Tegmark boldly claims that “protons, atoms, molecules, cells and stars” are all redundant “baggage.” Only the mathematical apparatus used to describe the behavior of matter is supposedly real, not matter itself. For Tegmark, the universe is a “set of abstract entities with relations between them,” which “can be described in a baggage-independent way”—i.e., without matter. He attributes existence solely to descriptions, while incongruously denying the very thing that is described in the first place. Matter is done away with and only information itself is taken to be ultimately real. This abstract notion, called information realism is philosophical in character, but it has been associated with physics from its very inception. Most famously, information realism is a popular philosophical underpinning for digital physics. The motivation for this association is not hard to fathom. Indeed, according to the Greek atomists, if we kept on dividing things into ever-smaller bits, at the end there would remain solid, indivisible particles called atoms, imagined to be so concrete as to have even particular shapes. Yet, as our understanding of physics progressed, we’ve realized that atoms themselves can be further divided into smaller bits, and those into yet smaller ones, and so on, until what is left lacks shape and solidity altogether. At the bottom of the chain of physical reduction there are only elusive, phantasmal entities we label as “energy” and “fields”—abstract conceptual tools for describing nature, which themselves seem to lack any real, concrete essence. © 2019 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26080 - Posted: 03.26.2019

By Bahar Gholipour Philosophers have spent millennia debating whether we have free will, without reaching a conclusive answer. Neuroscientists optimistically entered the field in the 1980s, armed with tools they were confident could reveal the origin of actions in the brain. Three decades later, they have reached the same conclusion as the philosophers: Free will is complicated. Now, a new research program spanning 17 universities and backed by more than $7 million from two private foundations hopes to break out the impasse by bringing neuroscientists and philosophers together. The collaboration, the researchers say, can help them tackle two important questions: What does it take to have free will? And whatever that is, do we have it? Neuroscience’s first and most famous encounter with free will occurred in 1983, when physiologist Benjamin Libet made a peculiar discovery. A brain signal called the readiness potential was known to precede self-initiated actions, such as raising a hand or spontaneously tapping a finger. Libet found the readiness potential starts to rise before people report they are aware of their decision to move. Many took that as a challenge to the existence of free will. But subsequent studies argued that was a flawed interpretation, and that the results said little about free will. © 2019 American Association for the Advancement of Science

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26063 - Posted: 03.22.2019

Jayshree Pandya Even though neuroscience has made amazing advances, the origin of consciousness in humans -- and its nature and processes -- still remain largely unknown; the underlying physiological mechanisms of generating conscious beings are still not clearly understood. However, with the advances in brain mapping and neuroscience, we are perhaps much closer to finally understanding the fundamentals of consciousness in humans than ever before. It is said that what we cannot create we do not understand. While the very nature of human consciousness is difficult to understand, there is an intense effort going on to build a conscious computer mind out of computer chips (now neuromorphic chips). Understandably, there are growing concerns and questions about building a conscious mind using neuromorphic chips when there is so little clarity about the human mind and the very nature of human consciousness. Now, we can perhaps understand the human brain as a functional computer and compare it with functional computer systems/machines. Now, over the years, we have wondered: to what degree are machines aware of their internal and external surroundings? Are computer systems/machines truly aware? Are self-aware machines already here? The answer to these questions perhaps raises only more questions, as comparing consciousness in functional machines to consciousness in functional humans is more difficult than expected. ©2019 Forbes Media LLC.

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26032 - Posted: 03.14.2019

Philip Ball Some problems in science are so hard, we don’t really know what meaningful questions to ask about them — or whether they are even truly solvable by science. Consciousness is one of those: Some researchers think it is an illusion; others say it pervades everything. Some hope to see it reduced to the underlying biology of neurons firing; others say that it is an irreducibly holistic phenomenon. The question of what kinds of physical systems are conscious “is one of the deepest, most fascinating problems in all of science,” wrote the computer scientist Scott Aaronson of the University of Texas at Austin. “I don’t know of any philosophical reason why [it] should be inherently unsolvable” — but “humans seem nowhere close to solving it.” Now a new project currently under review hopes to close in on some answers. It proposes to draw up a suite of experiments that will expose theories of consciousness to a merciless spotlight, in the hope of ruling out at least some of them. If all is approved and goes according to plan, the experiments could start this autumn. The initial aim is for the advocates of two leading theories to agree on a protocol that would put predictions of their ideas to the test. Similar scrutiny of other theories will then follow. Whether or not this project, funded by the Templeton World Charity Foundation, narrows the options for how consciousness arises, it hopes to establish a new way to do science for difficult, contentious problems. Instead of each camp championing its own view and demolishing others, researchers will collaborate and agree to publish in advance how discriminating experiments might be conducted — and then respect the outcomes. © 2019 Quanta Magazine

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 26017 - Posted: 03.07.2019

Laura Sanders A conscious brain hums with elaborate, interwoven signals, a study finds. Scientists uncovered that new signature of consciousness by analyzing brain activity of healthy people and of people who were not aware of their surroundings. The result, published online February 6 in Science Advances, makes headway on a tough problem: how to accurately measure awareness in patients who can’t communicate. Other methods for measuring consciousness have been proposed, but because of its size and design, the new study was able to find a particularly strong signal. Conducted by an international team of researchers spanning four countries, the effort “produced clear, reliable results that are directly relevant to the clinical neuroscience of consciousness,” says cognitive neuroscientist Michael Pitts of Reed College in Portland, Ore. Consciousness — and how the brain creates it — is a squishy concept. It slips away when we sleep, and can be distorted by drugs or lost in accidents. Though scientists have proposed many biological explanations for how our brains create consciousness, a full definition still eludes scientists. By finding a clear brain signature of awareness, the new work “bring us closer to understanding what consciousness is,” says study coauthor Jacobo Sitt of INSERM in Paris. © Society for Science & the Public 2000 - 2019.

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25943 - Posted: 02.09.2019

By Kate Johnson The doctor ordered a “push” on my sedative, and I succumbed to the sweet blackness. But then something went wrong, and I was awake too soon, flailing and crying, the medical team scrambling to maneuver the tube that had been placed down my throat in what should have been a straightforward gastroscopy. I put up a violent struggle on the table: gagging and choking, trying to scream, fighting to pull the medical device out of my esophagus. “Hold her arms!” I heard someone yell. I felt hot tears, and pure terror … and then more blackness. This was the third time I had woken up under the twilight anesthesia known as “conscious sedation.” “You’ll be awake, but you won’t remember” is something thousands of patients are told every day, because the sedatives that doctors use to prepare us for these kinds of procedures come with a convenient side effect: amnesia. I had been given midazolam, a benzodiazepine known for its superior amnestic effects. I should have forgotten. But I didn’t. Instead, the fight-or-flight panic that had ensued was seared into my memory. A terrifying sense of doom enveloped me in the following days, as I kept reliving a routine medical test that my brain had registered, not unreasonably, as a physical assault. What went wrong? My previous two awakenings under conscious sedation had not filled me with the same terror as this one. They had not even struck me as unusual, since I’d been told I would not be entirely asleep. © 2019 The New York Times Company

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 10: Biological Rhythms and Sleep
Link ID: 25942 - Posted: 02.08.2019

Ruth Williams The brains of people in vegetative, partially conscious, or fully conscious states have differing profiles of activity as revealed by functional magnetic resonance imaging (fMRI), according to a report today (February 6) in Science Advances. The results of the study indicate that, compared with patients lacking consciousness, the brains of healthy individuals exhibit highly dynamic and complex connectivity. “This new study provides a substantial advance in characterizing the ‘fingerprints’ of consciousness in the brain” Anil Seth, a neuroscientist at the University of Sussex, UK, who was not involved in the project, writes in an email to The Scientist. “It opens new doors to determining conscious states—or their absence—in a range of different conditions.” A person can lose consciousness temporarily, such as during sleep or anesthesia, or more permanently as is the case with certain brain injuries. But while unconsciousness manifests behaviorally as a failure to respond to stimuli, such behavior is not necessarily the result of unconsciousness. Some seemingly unresponsive patients, for example, can display brain activities similar to those of fully conscious individuals when asked to imagine performing a physical task such as playing tennis. Such a mental response in the absence of physical feedback is a condition known as cognitive-motor dissociation. Researchers are therefore attempting to build a better picture of what is happening in the human brain during consciousness and unconsciousness. In some studies, electroencephalography (EEG) recordings of the brain’s electrical activities during sleep, under anesthesia, or after brain injury have revealed patterns of brain waves associated with consciousness. But, says Jacobo Sitt of the Institute of Brain and Spinal Cord in Paris, such measurements do not provide good spatial information about brain activity. With fMRI, on the other hand, “we know where the activity is coming from.” © 1986 - 2019 The Scientist.

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25941 - Posted: 02.08.2019

By John Horgan I’m still brooding over the pros and cons of facing truth, or reality. My last post notes that in some situations--when we’re languishing in a nursing home, say, or agonizing over climate change--reality might be distressing, hence the temptation to avoid it. In this post, I’d like to dig deeper into the link between knowledge and mood. When we see reality, assuming that’s possible, how should we feel? And when I say reality I mean Reality, the way things really are. The Truth. Below I’ll consider three possibilities. Buddha and other sages have assured us that Reality should make us happy, no matter what the circumstances of our lives at any particular moment. And not just happy but serene, blissful, immune to the pains that afflict ordinary folk. This is the state known as enlightenment, nirvana, awakening. You plunge into the timeless cosmic consciousness underlying the flux of ordinary mortal existence, and you feel fantastic. (The catch is that, according to Buddha, when you are in this state you realize that “you” don't really exist.) Plato agreed that Truth is sublime, and perceiving it should make you feel good (and be good, but let’s leave that aside). You escape the cave of delusion, step into the incandescent realm of eternal forms and are overcome with rapture. Things might get tricky when you go back inside the cave and tell your benighted buddies what you’ve seen. They might think you're nuts and kill you, but you’ll die happy, as Plato’s mentor Socrates supposedly did. © 2019 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 11: Emotions, Aggression, and Stress
Link ID: 25908 - Posted: 01.28.2019

Elizabeth Preston A little blue-and-black fish swims up to a mirror. It maneuvers its body vertically to reflect its belly, along with a brown mark that researchers have placed on its throat. The fish then pivots and dives to strike its throat against the sandy bottom of its tank with a glancing blow. Then it returns to the mirror. Depending on which scientists you ask, this moment represents either a revolution or a red herring. Alex Jordan, an evolutionary biologist at the Max Planck Institute for Ornithology in Germany, thinks this fish — a cleaner wrasse — has just passed a classic test of self-recognition. Scientists have long thought that being able to recognize oneself in a mirror reveals some sort of self-awareness, and perhaps an awareness of others’ perspectives, too. For almost 50 years, they have been using mirrors to test animals for that capacity. After letting an animal get familiar with a mirror, they put a mark someplace on the animal’s body that it can see only in its reflection. If the animal looks in the mirror and then touches or examines the mark on its body, it passes the test. Humans don’t usually reach this milestone until we’re toddlers. Very few other species ever pass the test; those that do are mostly or entirely big-brained mammals such as chimpanzees. And yet as reported in a study that appeared on bioRxiv.org earlier this year and that is due for imminent publication in PLOS Biology, Jordan and his co-authors observed this seemingly self-aware behavior in a tiny fish. Jordan’s findings have consequently inspired strong feelings in the field. “There are researchers who, it seems, do not want fish to be included in this secret club,” he said. “Because then that means that the [primates] are not so special anymore.” All Rights Reserved © 2019

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25851 - Posted: 01.09.2019

By Steve Ayan Peter Carruthers, Distinguished University Professor of Philosophy at the University of Maryland, College Park, is an expert on the philosophy of mind who draws heavily on empirical psychology and cognitive neuroscience. He outlined many of his ideas on conscious thinking in his 2015 book The Centered Mind: What the Science of Working Memory Shows Us about the Nature of Human Thought. More recently, in 2017, he published a paper with the astonishing title of “The Illusion of Conscious Thought.” In the following excerpted conversation, Carruthers explains to editor Steve Ayan the reasons for his provocative proposal. What makes you think conscious thought is an illusion? I believe that the whole idea of conscious thought is an error. I came to this conclusion by following out the implications of the two of the main theories of consciousness. The first is what is called the Global Workspace Theory, which is associated with neuroscientists Stanislas Dehaene and Bernard Baars. Their theory states that to be considered conscious a mental state must be among the contents of working memory (the “user interface” of our minds) and thereby be available to other mental functions, such as decision-making and verbalization. Accordingly, conscious states are those that are “globally broadcast,” so to speak. The alternative view, proposed by Michael Graziano, David Rosenthal and others, holds that conscious mental states are simply those that you know of, that you are directly aware of in a way that doesn’t require you to interpret yourself. You do not have to read you own mind to know of them. Now, whichever view you adopt, it turns out that thoughts such as decisions and judgments should not be considered to be conscious. They are not accessible in working memory, nor are we directly aware of them. We merely have what I call “the illusion of immediacy”—the false impression that we know our thoughts directly. © 2018 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25807 - Posted: 12.21.2018

By Steve Ayan Research on the unconscious mind has shown that the brain makes judgments and decisions quickly and automatically. It continuously makes predictions about future events. According to the theory of the “predictive mind,” consciousness arises only when the brain’s implicit expectations fail to materialize. Higher cognitive processing in the cerebral cortex can occur without consciousness. The regions of the brain responsible for the emotions and motives, not the cortex, direct our conscious attention. In 1909 five men converged on Clark University in Massachusetts to conquer the New World with an idea. At the head of this little troupe was psychoanalyst Sigmund Freud. Ten years earlier Freud had introduced a new treatment for what was called “hysteria” in his book The Interpretation of Dreams. This work also introduced a scandalous view of the human psyche: underneath the surface of consciousness roils a largely inaccessible cauldron of deeply rooted drives, especially of sexual energy (the libido). These drives, held in check by socially inculcated morality, vent themselves in slips of the tongue, dreams and neuroses. The slips in turn provide evidence of the unconscious mind. At the invitation of psychologist G. Stanley Hall, Freud delivered five lectures at Clark. In the audience was philosopher William James, who had traveled from Harvard University to meet Freud. It is said that, as James departed, he told Freud, “The future of psychology belongs to your work.” And he was right. © 2018 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25801 - Posted: 12.20.2018

By John Horgan In 1994 I sat in an auditorium in Tucson, Arizona, as a young man with long brown hair began talking about consciousness. I remember being dimly conscious at first, perhaps because I was hung over, but gradually the sounds he was making woke me up. “There is nothing that we know more intimately than conscious experience,” he said, “but there is nothing that is harder to explain.” Explaining what he meant by conscious experience, the long-haired man said: “When we see, for example, we experience visual sensations: the felt quality of redness, the experience of dark and light, the quality of depth in a visual field. Other experiences go along with perception in different modalities: the sound of a clarinet, the smell of mothballs. Then there are bodily sensations, from pains to orgasms; mental images that are conjured up internally; the felt quality of emotion, and the experience of a stream of conscious thought.”* Consciousness is harder than other problems posed by the mind, the long-haired man argued, such as vision and memory. We have inklings how the brain accomplishes these functions, and we can build machines that replicate them, but we have no idea how the brain generates subjective experiences, or how to give them to machines. That long-haired young man was David Chalmers, speaking at a scientific conference on consciousness that I was covering for Scientific American. In part because of that lecture, Chalmers went on to become a leading philosopher, and many scientists and philosophers now refer to consciousness as “the hard problem.” It has become a pop-culture meme.

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25794 - Posted: 12.17.2018

By Joshua Tan Recently, a blog by Tam Hunt was published at Scientific American which provocatively declared that “The Hippies Were Right: It’s All About Vibrations, Man.” Hunt’s claim is that consciousness emerges from resonant effects found in nature at a wide range of scales. This is reminiscent of arguments that have been made since the development of the science of thermodynamics more than two hundred years ago. In brief, very intriguing and surprising characteristics of complex systems have been discovered and rigorously defined with such tantalizing terms as “emergence,” “resonance” and “self-organization.” These kinds of features of the natural world are so amazing—even uncanny—that they have inspired wild speculation as to their possible implications. Are there deep connections between these phenomena and the more mysterious aspects of our existence such as life, consciousness, and intelligence? Might they even provide us with insight into possible answers to expansively fundamental questions like why there is something rather than nothing? Speculating on such mysteries is an understandable pastime. Diverse thinkers from physicists to philosophers, psychologists to theologians have written libraries worth of treatises attempting to shed light on the possible answers to these deep questions. Along the way, ideas inspired by scientific results have had varying degrees of success. Concepts such as animal magnetism, vitalism, synchronicity, and quantum mysticism all had their day in the Sun, only to end up debunked or dismissed by skeptics and scientists who either pointed out a lack of empirical data supporting the claims or showed that the ideas were incompatible with what we have discovered about the natural world. © 2018 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25779 - Posted: 12.12.2018

By Tam Hunt Why are some things conscious and others apparently not? Is a rat conscious? A bat? A cockroach? A bacterium? An electron? These questions are all aspects of the ancient “mind-body problem,” which has resisted a generally satisfying conclusion for thousands of years. The mind-body problem enjoyed a major rebranding over the last two decades and is generally known now as the “hard problem” of consciousness (usually capitalized nowadays), after the New York University philosopher David Chalmers coined this term in a now classic 1995 paper and his 1996 book The Conscious Mind: In Search of a Fundamental Theory. Fast forward to the present era and we can ask ourselves now: Did the hippies actually solve this problem? My colleague Jonathan Schooler (University of California, Santa Barbara) and I think they effectively did, with the radical intuition that it’s all about vibrations … man. Over the past decade, we have developed a “resonance theory of consciousness” that suggests that resonance—another word for synchronized vibrations—is at the heart of not only human consciousness but of physical reality more generally. So how were the hippies right? Well, we agree that vibrations, resonance, are the key mechanism behind human consciousness, as well as animal consciousness more generally. And, as I’ll discuss below, that they are the basic mechanism for all physical interactions to occur. © 2018 Scientific American

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 25751 - Posted: 12.06.2018

Abby Olena In 2005, a 23-year-old woman in the UK was involved in a traffic accident that left her with a severe brain injury. Five months after the event, she slept and woke and could open her eyes, but she didn’t always respond to smells or touch or track things visually. In other words, she fit the clinical criteria for being in a vegetative state. In a study published in Science in 2006, a team of researchers tested her ability to imagine herself playing tennis or walking through her house while they observed activity in her brain using functional magnetic resonance imaging (fMRI). Remarkably, her brain responded with activity in the same areas of the brains of healthy people when asked to do the same, indicating that she was capable of complex cognition, despite her apparent unresponsiveness at the bedside. The findings indicated that this patient and others like her may have hidden cognitive abilities that, if found, could potentially help them communicate or improve their prognosis. Since then, researchers and clinicians around the world have used task-based neuroimaging to determine that other patients who appear unresponsive or minimally conscious can do challenging cognitive tasks. The problem is that the tests to uncover hidden consciousness can be complex to analyze, expensive to perform, and hard for all patients to access. “You would like to know if people who look like they’re unconscious are actually following what’s going on and able to carry out cognitive work, and we don’t have an efficient way of sorting those patients,” says Nicholas Schiff, a neuroscientist at Weill Cornell Medical College in New York City. © 1986 - 2018 The Scientist

Related chapters from BN8e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 25725 - Posted: 11.27.2018