Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 2141 - 2160 of 29390

By Ben Guarino and Frances Stead Sellers In the coronavirus pandemic’s early weeks, in neuropathology departments around the world, scientists wrestled with a question: Should they cut open the skulls of patients who died of covid-19 and extract their brains? Autopsy staff at Columbia University in New York were hesitant. Sawing into bone creates dust, and the Centers for Disease Control and Prevention had issued a warning about the bodies of covid patients — airborne debris from autopsies could be an infectious hazard. But as more patients were admitted and more began to die, researchers decided to “make all the efforts we could to start collecting the brain tissue,” Columbia neuropathologist Peter D. Canoll said. In March 2020, in an insolation room, the Columbia team extracted a brain from a patient who had died of severe covid-19, the illness caused by the coronavirus. During the next months, they would examine dozens more. Saw met skull elsewhere, too. In Germany, scientists autopsied brains — even though medical authorities recommended against doing that. Researchers were searching the brain for damage — and for the virus itself. At the pandemic’s start, understanding how the virus affected the nervous system was largely a mystery. S. Andrew Josephson, chair of neurology at the University of California at San Francisco and editor in chief of the academic journal JAMA Neurology, said, “We had hundreds of submissions of ‘I saw one case of X.’” It was difficult to understand whether single cases has any relationship to covid at all. Patients reported visual and auditory disturbances, vertigo and tingling sensations, among other perplexing symptoms. Some lost their sense of smell, or their vision became distorted. Weeks or months after the initial onset of symptoms, some remain convinced after even a mild bout of the coronavirus of persistent “brain fog.”

Keyword: Learning & Memory; Attention
Link ID: 27845 - Posted: 06.08.2021

By Jason S. Tsukahara, Alexander P. Burgoyne, Randall W. Engle It has been said that “the eyes are the window to the soul,” but new research suggests that they may be a window to the brain as well. Our pupils respond to more than just the light. They indicate arousal, interest or mental exhaustion. Pupil dilation is even used by the FBI to detect deception. Now work conducted in our laboratory at the Georgia Institute of Technology suggests that baseline pupil size is closely related to individual differences in intelligence. The larger the pupils, the higher the intelligence, as measured by tests of reasoning, attention and memory. In fact, across three studies, we found that the difference in baseline pupil size between people who scored the highest on the cognitive tests and those who scored the lowest was large enough to be detected by the unaided eye. We first uncovered this surprising relationship while studying differences in the amount of mental effort people used to complete memory tasks. We used pupil dilations as an indicator of effort, a technique psychologist Daniel Kahneman popularized in the 1960s and 1970s. When we discovered a relationship between baseline pupil size and intelligence, we weren’t sure if it was real or what it meant. Advertisement Intrigued, we conducted several large-scale studies in which we recruited more than 500 people aged 18 to 35 from the Atlanta community. We measured participants’ pupil size using an eye tracker, a device that captures the reflection of light off the pupil and cornea using a high-powered camera and computer. We measured participants’ pupils at rest while they stared at a blank computer screen for up to four minutes. All the while, the eye tracker was recording. Using the tracker, we then calculated each participant’s average pupil size. © 2021 Scientific American

Keyword: Learning & Memory; Vision
Link ID: 27844 - Posted: 06.08.2021

By Veronique Greenwood The coin is in the illusionist’s left hand, now it’s in the right — or is it? Sleight of hand tricks are old standbys for magicians, street performers and people who’ve had a little too much to drink at parties. Sign up for Science Times: Get stories that capture the wonders of nature, the cosmos and the human body. On humans, the deceptions work pretty well. But it turns out that birds don’t always fall for the same illusions. Researchers in a small study published on Monday in the Proceedings of the National Academy of Sciences reported on Eurasian jays, birds whose intelligence has long been studied by comparative psychologists. The jays were not fooled, at least by tricks that rely on the viewer having certain expectations about how human hands work. However, they were fooled by another kind of trick, perhaps because of how their visual system is built. Magic tricks often play on viewers’ expectations, said Elias Garcia-Pelegrin, a graduate student at the University of Cambridge who is an author of the study. That magic can reveal the viewers’ assumptions suggests that tricks can be a way into understanding how other creatures see the world, he and his colleagues reasoned. Eurasian jays are not newcomers to subterfuge: To thwart thieves while they’re storing food, jays will perform something very like sleight of hand — sleight of beak, if you will — if another jay is watching. They’ll pretend to drop the food in a number of places, so its real location is concealed. © 2021 The New York Times Company

Keyword: Attention; Learning & Memory
Link ID: 27843 - Posted: 06.02.2021

Vincent Acovino A young, red-handed tamarin monkey. Some of these monkeys are changing their vocal call to better communicate with another species of tamarin. Schellhorn/ullstein bild/Getty Images In the Brazilian Amazon, a species of monkey called the pied tamarin is fighting for survival, threatened by habitat loss and urban development. But the critically endangered primate faces another foe: the red-handed tamarin, a more resilient monkey that lives in the same region. They compete for the same resources, and the red-handed tamarin's habitat range is expanding into that of the pied tamarins'. Their clashes sometimes end in violent altercations. But in a recent study, scientists have discovered that the red-handed tamarin is altering its vocal calls to better communicate with the pied tamarin. Tainara Sobroza, an ecology Ph.D. student who worked on the study, says these "territorial calls" are used to warn other species that they are encroaching on their territory, or coming too close to a crucial survival resource. "When this happens, [the two species] usually engage in vocal battles," she says, which sometimes prevent the violent physical battles between the two species. Researchers likened the change in calls to speaking with an accent. "They might need to say 'tomahto' instead of 'tomayto' — that's the kind of nuance in the accent, so that they can really understand each other," Jacob Dunn, a professor of evolutionary biology who worked on the study, told The Guardian. Article continues after sponsor message When analyzing the vocal call of both species, the scientists discovered that the red-handed tamarins new call has a narrower bandwidth and an increased amplitude, making the sound clearer and the duration of the call longer. The result is a call that travels better through the dense forest. © 2021 npr

Keyword: Animal Communication; Language
Link ID: 27842 - Posted: 06.02.2021

By Nayef Al-Rodhan o In Chile, the National Commission for Scientific and Technological Research has begun to debate a “neurorights” bill to be written into the country’s constitution. The world, and most importantly the OECD, UNESCO and the United Nations, should be watching closely. The Chilean bill sets out to protect the right to personal identity, free will, mental privacy, equitable access to technologies that augment human capacities, and the right to protection against bias and discrimination. The landmark bill would be the first of its kind to pioneer a regulatory framework which protects human rights from the manipulation of brain activity. The relatively nascent concept of neurorights follows a number of recent medical innovations, most notably brain-computer interface technology (BCI), which has the potential to revolutionize the field of neuroscience. BCI-based therapy may be useful for poststroke motor rehabilitation and may be a potential method for the accurate detection and treatment of neurological diseases such as Alzheimer’s. Advocates claim there is therefore a moral imperative to use the technology, given the benefits it could bring; others worry about its ethical, moral and societal consequences. Many (mistakenly) see this process as being potentially undermined by premature governance restrictions, or accuse any mention of brake mechanisms as an exaggerated reaction to an unlikely science-fiction scenario. © 2021 Scientific American

Keyword: Robotics; Consciousness
Link ID: 27841 - Posted: 06.02.2021

By Richard Sima An elephant’s trunk is a marvel of biology. Devoid of any joints or bone, the trunk is an appendage made of pure muscle that is capable of both uprooting trees and gingerly plucking individual leaves and also boasts a sense of smell more powerful than a bomb-sniffing dog’s. Elephants use their trunks in a variety of ways. They use it to drink, store and spray water, and they also blow air through it to communicate — their 110-decibel bellows can be heard for miles. “It’s like a muscular multitool,” said Andrew Schulz, a mechanical engineering doctoral student at the Georgia Institute of Technology. In a study published Wednesday in The Journal of the Royal Society Interface, Mr. Schulz and his colleagues reported on how elephants can use their trunks for yet another function: applying suction to grab food, a behavior previously thought to be exclusive to fishes. Despite the ubiquity of elephants in children’s books and nature documentaries, there are numerous gaps in scientific knowledge about the biomechanics of their trunks that the new study helps fill. For example, the most recent detailed account of elephant trunk anatomy is a hand-drawn monograph that was published in 1908, Mr. Schulz said. Contrary to popular belief, the trunk does not act like a straw. “What they do is actually drink water into their trunk and they store it,” Mr. Schulz said. “So the elephant trunk is actually like a trunk.” Mr. Schulz completed his research in the lab of David Hu, which studies how animals move and function with an eye toward applying the discoveries toward human engineering problems. He said one reason elephants’ anatomy is poorly understood is because they are difficult to work with. © 2021 The New York Times Company

Keyword: Evolution; Learning & Memory
Link ID: 27840 - Posted: 06.02.2021

Laurie McGinley When Phil Gutis was diagnosed with early-stage Alzheimer’s disease at 54, he immediately enrolled in a clinical trial for an experimental drug but had little hope of being helped. Over time, though, he started feeling better, his brain less cloudy. “There was just a fogginess I remember having a couple of years ago that I don’t really feel I have now,” said Gutis, who has received monthly infusions of a medication called aducanumab for five years, except for a short interruption. Now, he is hoping others with the disease will have a chance to try the drug. But he is worried that the Food and Drug Administration, which is weighing whether to approve the drug, will reject it, derailing the medication and jeopardizing his ability to get the treatment. “Would my world become fuzzy again?” said Gutis, who lives in New Hope, Pa., with his husband and is a former reporter. “I don’t want to go backward.” By June 7, the FDA is expected to make one of its most important decisions in years: whether to approve the drug for mild cognitive impairment or early-stage dementia caused by Alzheimer’s. It would be the first treatment ever sold to slow the deterioration in brain function caused by the disease, not just to ease symptoms. And it would be the first new Alzheimer’s treatment since 2003. The medication is a monoclonal antibody, a protein made in the laboratory that can bind to substances — in this case, clumps of amyloid beta, a sticky plaque compound that many scientists believe damages communication between brain cells and eventually kills them. The treatment is designed to trigger an immune response that removes the plaques.

Keyword: Alzheimers
Link ID: 27839 - Posted: 06.02.2021

Nicholas Bakalar Many people wear a CPAP machine at night to treat the interrupted breathing of obstructive sleep apnea, a condition that affects an estimated 22 million Americans. But CPAP machines can be noisy, cumbersome and uncomfortable, and many people stop using the devices altogether, which can have dire long-term consequences. Mouth guards may be a more comfortable and easy-to-use alternative for many people with obstructive sleep apnea, according to a new report. The study, published in Laryngoscope, looked at 347 people with sleep apnea who were fitted with a mouth guard by an otolaryngologist. Two-thirds of patients reported they were comfortable wearing the devices, and the devices appeared to be effective in helping to relieve the disordered breathing of obstructive sleep apnea. The lead author of the study, Dr. Guillaume Buiret, head of otolaryngology at Valence Hospital in Valence, France, said that if he had sleep apnea, he would choose an oral appliance first. “It’s easy to tolerate, effective and it costs a lot less than CPAP,” he said. “Thirty to 40 percent of our patients can’t use CPAP, and these patients almost always find the dental appliance helpful. I would recommend it as a first-line treatment” Loud snoring may be the most obvious consequence of sleep apnea, but the condition, if left untreated, can lead to a broad range of complications, including high blood pressure, heart disease, liver dysfunction and Type 2 diabetes. © 2021 The New York Times Company

Keyword: Sleep
Link ID: 27838 - Posted: 06.02.2021

Abby Olena Leptin is a hormone released by fat cells in adult organisms, and researchers have largely focused on how it controls appetite. In a study published May 18 in Science Signaling, the authors show that leptin promotes synapse formation, or synaptogenesis, in developing rodent neurons in culture. “This paper does a really wonderful job [breaking] down the mechanisms” of leptin signaling, and the authors look at changes in synaptic function, not just at the protein level, but also on a physiological level, says Laura Cocas, a neuroscientist at Santa Clara University who was not involved in the study. “Because all of the work on the paper is done in vitro, they can do very careful analysis . . . to break down each step in the signaling pathway.” When Washington State University neuroscientist Gary Wayman and his group started working on leptin about 10 years ago, most of the research had examined the hormone’s function in regulating satiety. But “we and others knew that leptin surged during a critical period of neuronal—and in particular synaptic—development in the brain,” he says. In people, this surge happens during the third trimester of fetal development and, in rodents, over the first few weeks of life. “This surge in leptin is independent of the amount of adipose tissue that’s present. And it does not control feeding during this period because feeding circuits have not developed, so we really wanted to understand what the developmental role was.” Wayman and colleagues focused on the hippocampus because, despite being one of the best-characterized regions in the brain, there wasn’t a lot of information out there about what the leptin receptors present were doing—particularly during development. Multiple groups had also shown that leptin injected in this brain region can improve cognition and act as an antidepressant. © 1986–2021 The Scientist.

Keyword: Obesity; Learning & Memory
Link ID: 27837 - Posted: 05.29.2021

By Thomas Ling Neuroscientists are poised to gain new insights into how our minds work, thanks to a breakthrough in non-invasive 3D brain scanning. Testing the new technique – which is called diffuse optical localisation imaging (DOLI) – researchers from the University of Zurich injected a live mouse with special fluorescent microdroplets that became distributed throughout the bloodstream. Highly efficient short-wave cameras (which take advantage of a near-infrared spectral window) tracked the fluorescent to draw a map of the deep cerebral network within the mouse’s brain. Previous microscopy techniques generated unclear images due to intense light scattering. However, the DOLI technique can create a clear picture of the brain at the capillary level by using a fluorescent filled with tiny lead-sulfide-based particles called quantum dots. Additionally, unlike past procedures, DOLI does not need to break the animal’s skull and scalp to work. It is hoped the new non-invasive technique will lead to a better understanding of how brains work, including how neurological diseases first form. “Enabling high-resolution optical observations in deep living tissues represents a long-standing goal in the biomedical imaging field,” said research team leader Prof Daniel Razansky, who published the group’s findings in Optica, The Optical Society’s journal. (C) BBC

Keyword: Brain imaging
Link ID: 27836 - Posted: 05.29.2021

Amanda Heidt A damaged drainage system in the brain might be behind the spotty performance of some Alzheimer’s therapies, according to a study published April 28 in Nature. Mice modeling the neurodegenerative disorder that received plaque-busting antibodies along with a treatment to stimulate the growth of lymphatic vessels in the brain saw many of their symptoms reversed. Mice with damaged lymphatics, on the other hand, didn’t respond as well to the antibodies. This suggests that dysfunctional lymphatics might hinder the performance of antibody-based immunotherapy, an approach that has had mixed results in clinical trials among Alzheimer’s patients. “Whenever a paper provides us with a novel way to look at Alzheimer’s, such as this one does . . . it opens up a world of possibilities,” says Gabrielle Britton, a neuroscientist at the Instituto de Investigaciones Científicas y Servicios de Alta Tecnología in Panama who was not involved in the research. “The methods are sound, and [the fact] that they use several different approaches that converge on the same findings suggests a very strong paper.” The buildup of amyloid-β plaques in the brain is a hallmark of the disease, and one of the most promising immunotherapies has been a monoclonal antibody called aducanumab that breaks them up. But two clinical trials were discontinued after they yielded contradictory results, and scientists have been working ever since to figure out why as the companies continue to move forward with new trials of the therapy. The working hypothesis, Britton tells The Scientist, is that the discrepancy stems from some unexplained variation among participants. © 1986–2021 The Scientist.

Keyword: Alzheimers
Link ID: 27835 - Posted: 05.29.2021

By Mitch Leslie For the past 3 years, about 6000 middle-aged and elderly Australians have pumped iron, loaded up on greens and whole grains, strived to quell stress, and challenged their wits with computer exercises, all in an effort to preserve their cognition. They’re part of a clinical trial called Maintain Your Brain, one of about 30 current or planned studies that eschew pharmaceutical interventions and test whether altering multiple aspects of participants’ lives improves brain health. Such multidomain studies may finally reveal whether modifying diet, exercise, and other factors can slow cognitive decline as people age—or even prevent dementia. “There’s a lot of hope for multidomain trials,” says psychologist Kaarin Anstey of the University of New South Wales, Sydney, one of the principal investigators of the Maintain Your Brain trial, which will finish by the end of this year. Although people can’t escape some mental decline as they get older, lifestyle exerts a powerful influence over the risk of developing dementia—the type of severe cognitive impairment seen in conditions such as Alzheimer’s disease. Last year, an international committee of scientists and psychiatrists known as the Lancet Commission on dementia prevention, intervention, and care estimated that so-called modifiable factors account for 40% of dementia risk. Their report highlighted a dozen factors, including many familiar villains—diabetes, high blood pressure, smoking, obesity, and lack of exercise. Researchers are still probing exactly how these risk factors steal people’s faculties, but they’ve identified some likely mechanisms. Lack of physical activity may impair cognition, for instance, because exercise stimulates formation of new neurons and soothes brain inflammation. © 2021 American Association for the Advancement of Science.

Keyword: Alzheimers; Obesity
Link ID: 27834 - Posted: 05.29.2021

By Bill Hathaway A massive genome-wide association study (GWAS) of genetic and health records of 1.2 million people from four separate data banks has identified 178 gene variants linked to major depression, a disorder that will affect one of every five people during their lifetimes. The results of the study, led by the U.S. Department of Veterans Affairs (V.A.) researchers at Yale University School of Medicine and University of California-San Diego (UCSD), may one day help identify people most at risk of depression and related psychiatric disorders and help doctors prescribe drugs best suited to treat the disorder. The study was published May 27 in the journal Nature Neuroscience. For the study, the research team analyzed medical records and genomes collected from more than 300,000 participants in the V.A.’s Million Veteran Program (MVP), one of the largest and most diverse databanks of genetic and medical information in the world. These new data were combined in a meta-analysis with genetic and health records from the UK Biobank, FinnGen (a Finland-based biobank), and results from the consumer genetics company 23andMe. This part of the study included 1.2 million participants. The researchers crosschecked their findings from that analysis with an entirely separate sample of 1.3 million volunteers from 23andMe customers. When the two sets of data from the different sources were compared, genetic variants linked to depression replicated with statistical significance for most of the markers tested. Copyright © 2021 Yale University

Keyword: Depression; Genes & Behavior
Link ID: 27833 - Posted: 05.29.2021

By Virginia Hughes Late one evening last March, just before the coronavirus pandemic shut down the country, Mingzheng Wu, a graduate student at Northwestern University, plopped two male mice into a cage and watched as they explored their modest new digs: sniffing, digging, fighting a little. Sign up for Science Times: Get stories that capture the wonders of nature, the cosmos and the human body. With a few clicks on a nearby computer, Mr. Wu then switched on a blue light implanted in the front of each animal’s brain. That light activated a tiny piece of cortex, spurring neurons there to fire. Mr. Wu zapped the two mice at the same time and at the same rapid frequency — putting that portion of their brains quite literally in sync. Within a minute or two, any animus between the two creatures seemed to disappear, and they clung to each other like long-lost friends. “After a few minutes, we saw that those animals actually stayed together, and one animal was grooming the other,” said Mr. Wu, who works in the neurobiology lab of Yevgenia Kozorovitskiy. Mr. Wu and his colleagues then repeated the experiment, but zapped each animal’s cortex at frequencies different from the other’s. This time, the mice displayed far less of an urge to bond. The experiment, published this month in Nature Neuroscience, was made possible thanks to an impressive new wireless technology that allows scientists to observe — and manipulate — the brains of multiple animals as they interact with one another. “The fact that you can implant these miniaturized bits of hardware and turn neurons on and off by light, it’s just mind-blowingly cool,” said Thalia Wheatley, a social neuroscientist at Dartmouth College who was not involved in the work. © 2021 The New York Times Company

Keyword: Aggression; Sexual Behavior
Link ID: 27832 - Posted: 05.27.2021

Linda Geddes Science correspondent A blind man has had his sight partly restored after a form of gene therapy that uses pulses of light to control the activity of nerve cells – the first successful demonstration of so-called optogenetic therapy in humans. The 58-year-old man, from Brittany in northern France, was said to be “very excited” after regaining the ability to recognise, count, locate and touch different objects with the treated eye while wearing a pair of light-stimulating goggles, having lost his sight after being diagnosed with retinitis pigmentosa almost 40 years ago. The breakthrough marks an important step towards the more widespread use of optogenetics as a clinical treatment. It involves modifying nerve cells (neurons) so that they fire electrical signals when they’re exposed to certain wavelengths of light, equipping neuroscientists with the power to precisely control neuronal signalling within the brain and elsewhere. Christopher Petkov, a professor of comparative neuropsychology at Newcastle University medical school, said: “This is a tremendous development to restore vision using an innovative approach. The goal now is to see how well this might work in other patients with retinitis pigmentosa.” This group of rare, genetic disorders, which involves the loss of light-sensitive cells in the retina, affects more than 2 million people worldwide, and can lead to complete blindness. © 2021 Guardian News & Media Limited

Keyword: Vision
Link ID: 27831 - Posted: 05.27.2021

By Jackie Rocheleau It’s an attractive idea: By playing online problem-solving, matching and other games for a few minutes a day, people can improve such mental abilities as reasoning, verbal skills and memory. But whether these games deliver on those promises is up for debate. “For every study that finds some evidence, there’s an equal number of papers that find no evidence,” says Bobby Stojanoski, a cognitive neuroscientist at Western University in Ontario (SN: 3/8/17; SN: 5/9/17). Now, in perhaps the biggest real-world test of these programs, Stojanoski and colleagues pitted more than 1,000 people who regularly use brain trainers against around 7,500 people who don’t do the mini brain workouts. There was little difference between how both groups performed on a series of tests of their thinking abilities, suggesting that brain training doesn’t live up to its name, the scientists report in the April Journal of Experimental Psychology: General. “They put brain training to the test,” says Elizabeth Stine-Morrow, a cognitive aging scientist at the University of Illinois at Urbana-Champaign. While the study doesn’t show why brain trainers aren’t seeing benefits, it does show there is no link “between the amount of time spent with the brain training programs and cognition,” Stine-Morrow says. “That was pretty cool.” © Society for Science & the Public 2000–2021

Keyword: Learning & Memory
Link ID: 27830 - Posted: 05.27.2021

By Sofia Moutinho Neotropical river otters spend most of their time alone, but that doesn’t stop them from being big chatterboxes. These animals—which live in Central and South America—make a variety of squeaks and growls to convey everything from surprise to playfulness, a new study has found. The discovery could help reveal how communication evolved in all otters—and perhaps help protect these endangered animals. “The study is an in-depth and insightful investigation into the vocal repertoire of this understudied otter species,” says Alexander Saliveros, a biologist and otter expert at the University of Exeter who was not part of the research. All otters make sounds like growls and squeaks to communicate. Some social species, such as the Amazon’s giant otter (Pteronura brasiliensis), use up to 22 different call types. Others, like the lonesome North American river otter (Lontra canadensis), only have four known calls. But the neotropical river otter (L. longicaudis) has largely remained a mystery. Solitary inhabitants of rivers and lakes, they come together only once a year to mate. That makes their communication especially hard to study, says Sabrina Bettoni, a bioacoustician at the University of Vienna. So Bettoni observed three pairs of playful neotropical river otters—orphans living in a shelter on the island of Santa Catarina, off the southern coast of Brazil. The animals were kept in female-male couples year-round at the Institute Ekko Brazil, a nonprofit focused on wildlife protection. Bettoni recorded every vocalization the animals made. Then, she and colleagues analyzed the sound waves to make sure they were distinct calls with unique properties. Bettoni also spent 3 months observing the animals to understand what calls they used in which situations. © 2021 American Association for the Advancement of Science.

Keyword: Animal Communication; Language
Link ID: 27829 - Posted: 05.27.2021

By Charles Q. Choi Precise control of the tongue is often vital in life, from the way frogs capture flies to human speech (SN: 1/31/17). But much remains unknown about how the brain controls the tongue, given how its quick motions are difficult to track. Now, experiments show that the brain circuits in mice that help the tongue lick water may be the same ones that help primates reach out to grasp objects, scientists report online May 19 in Nature. Using high-speed video, neuroscientist Tejapratap Bollu and colleagues recorded the sides and bottoms of mouse tongues as the rodents drank from a waterspout. With the help of artificial intelligence to develop 3-D simulations of the appendages, the researchers discovered that successful licks required previously unknown corrective movements, too fast to be seen in standard video. These adjustments came after the tongue missed unseen or distant droplets, or when the spout was unexpectedly retracted a millimeter or more. Inhibiting a brain region that controls the body’s voluntary motions impaired these corrections, suggesting this brain area was behind these movements. These newfound corrective motions are similar to ones that primates use when reaching out with their limbs for uncertain targets, the researchers say. Those primate adjustments are also controlled by similar brain circuits as those used by the mice. “This to me shows that mammalian brains use similar principles to control the tongue and the limb,” says Bollu, now at the Salk Institute for Biological Studies in La Jolla, Calif. “Everything we know about reaching in the primates can also be used to understand how the brain controls [tongue] movements.” © Society for Science & the Public 2000–2021.

Keyword: Movement Disorders
Link ID: 27828 - Posted: 05.27.2021

R. Douglas Fields The raging bull locked its legs mid-charge. Digging its hooves into the ground, the beast came to a halt just before it would have gored the man. Not a matador, the man in the bullring standing eye-to-eye with the panting toro was the Spanish neuroscientist José Manuel Rodriguez Delgado, in a death-defying public demonstration in 1963 of how violent behavior could be squelched by a radio-controlled brain implant. Delgado had pressed a switch on a hand-held radio transmitter to energize electrodes implanted in the bull’s brain. Remote-controlled brain implants, Delgado argued, could suppress deviant behavior to achieve a “psychocivilized society.” Unsurprisingly, the prospect of manipulating the human mind with brain implants and radio beams ignited public fears that curtailed this line of research for decades. But now there is a resurgence using even more advanced technology. Laser beams, ultrasound, electromagnetic pulses, mild alternating and direct current stimulation and other methods now allow access to, and manipulation of, electrical activity in the brain with far more sophistication than the needlelike electrodes Delgado stabbed into brains. Billionaires Elon Musk of Tesla and Mark Zuckerberg of Facebook are leading the charge, pouring millions of dollars into developing brain-computer interface (BCI) technology. Musk says he wants to provide a “superintelligence layer” in the human brain to help protect us from artificial intelligence, and Zuckerberg reportedly wants users to upload their thoughts and emotions over the internet without the bother of typing. But fact and fiction are easily blurred in these deliberations. How does this technology actually work, and what is it capable of? All Rights Reserved © 2021

Keyword: Robotics; Attention
Link ID: 27827 - Posted: 05.19.2021

By Laura Sanders The key ingredient in the illicit drug known as Ecstasy or Molly may offer profound relief from post-traumatic stress disorder. When paired with intense talk therapy, MDMA drastically eased symptoms in people who had struggled with severe PTSD for years, a new study reports. “This is a big deal,” says Steven Gold, a clinical psychologist in Fort Lauderdale and professor emeritus at Nova Southeastern University in Plantation, Fla. “All other things being equal, the use of psychedelic medication can significantly improve the outcome.” The results, published May 10 in Nature Medicine, are preliminary. But the findings offer hope to the millions of people worldwide who have PTSD, for whom new treatments are desperately needed. Antidepressants such as Zoloft and Paxil are often prescribed, but the drugs don’t work for an estimated 40 to 60 percent of people with PTSD. Ninety people participated in the new study, which took place at 15 clinical sites in the United States, Canada and Israel. All the participants received 15 therapy sessions with therapists trained to guide people as they experienced the drug. Half of the participants received MDMA in three eight-hour therapy sessions; the other half received placebos during three eight-hour therapy sessions. True to its nickname Ecstasy, MDMA evokes feelings of bliss and social connectedness. The participants took the drug (or the placebo) while wearing eye covers and listening to music, and occasionally talking with their therapist about their experience. © Society for Science & the Public 2000–2021.

Keyword: Stress; Drug Abuse
Link ID: 27826 - Posted: 05.19.2021