Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 2621 - 2640 of 29522

By Lisa Grossman Clues from a chemical — Science News, October 3, 1970 An experimental drug’s effects on the sexual behavior of certain animals is arousing interest among investigators.… The drug, para-chlorophenylalanine … reduces the level of a naturally occurring neurochemical, serotonin, in the brain of rats, mice and dogs.… Little is known about how serotonin acts in the brain, and investigators quickly recognized that PCPA could be used to study this brain chemical. Update PCPA helped e­stablish serotonin’s role in regulating sexual desire, as well as sleep, appetite and mood. The chemical messenger has become key to one common class of antidepressant drugs called selective serotonin r­euptake inhibitors. Identified in 1974, SSRIs work by increasing the brain’s serotonin levels. But such drugs can hinder sexual desire. One SSRI that failed to relieve depression in humans found a second life as a treatment for sexual dysfunction. Approved by the U.S. Food and Drug Administration in 2015, this “little pink pill,” sold as Addyi, may boost sex drive in women by lowering serotonin in the brain’s reward centers. H.A. Croft. Understanding the role of serotonin in female hypoactive sexual desire disorder and treatment options. Journal of Sexual Medicine. Vol. 14, December 2017, p. 1575. Doi: 10.1016/j.jsxm.2017.10.068. © Society for Science & the Public 2000–2020.

Keyword: Depression; Sexual Behavior
Link ID: 27497 - Posted: 09.30.2020

Ian Sample Science editor Doctors believe they are closer to a treatment for multiple sclerosis after discovering a drug that repairs the coatings around nerves that are damaged by the disease. A clinical trial of the cancer drug bexarotene showed that it repaired the protective myelin sheaths that MS destroys. The loss of myelin causes a range of neurological problems including balance, vision and muscle disorders, and ultimately, disability. While bexarotene cannot be used as a treatment, because the side-effects are too serious, doctors behind the trial said the results showed “remyelination” was possible in humans, suggesting other drugs or drug combinations will halt MS. Advertisement “It’s disappointing that this is not the drug we’ll use, but it’s exciting that repair is achievable and it gives us great hope for another trial we hope to start this year,” said Prof Alasdair Coles, who led the research at the University of Cambridge. MS arises when the immune system mistakenly attacks the fatty myelin coating that wraps around nerves in the brain and spinal cord. Without the lipid-rich substance, signals travel more slowly along nerves, are disrupted, or fail to get through at all. About 100,000 people in the UK live with the condition. Funded by the MS Society, bexarotene was assessed in a phase 2a trial that used brain scans to monitor changes to damaged neurons in patients with relapsing MS. This is an early stage of the condition that precedes secondary progressive disease, where neurons die off and cause permanent disability. © 2020 Guardian News & Media Limited

Keyword: Multiple Sclerosis; Neuroimmunology
Link ID: 27496 - Posted: 09.28.2020

By Jane E. Brody Growing rates of obesity among Americans are clear evidence that even the best intentions and strongest motivations are often not enough to help seriously overweight people lose a significant amount of weight and, more important, keep it off. But for those who can overcome fears of surgery and perhaps do battle with recalcitrant insurers, there remains another very successful option that experts say is currently vastly underused. That option is bariatric surgery, an approach that is now simpler, safer and more effective than in its early days in the 1990s. “Only one-half of 1 percent of people eligible for bariatric surgery currently undergo it,” Dr. Anne P. Ehlers, a bariatric surgeon at the University of Michigan, told me. Bariatric surgery is generally considered a treatment option for people with a body mass index (B.M.I.) of 40 or more who failed to lose weight with diet and exercise alone. It is also recommended for those with lesser degrees of obesity — a B.M.I. of 30 to 35 — who have obesity-related medical conditions. The underuse of weight-loss surgery has been largely attributed to “the reluctance of the medical community and patients to accept surgery as a safe, effective and durable treatment of obesity,” other experts at the University of Michigan wrote in JAMA in 2018. They added that patients “may be reluctant to pursue surgical treatment because they may be judged by others for taking the easy way out and not having the willpower to diet and exercise.” © 2020 The New York Times Company

Keyword: Obesity
Link ID: 27495 - Posted: 09.28.2020

In an article published in Nature Genetics, researchers confirm that about 14% of all cases of cerebral palsy, a disabling brain disorder for which there are no cures, may be linked to a patient’s genes and suggest that many of those genes control how brain circuits become wired during early development. This conclusion is based on the largest genetic study of cerebral palsy ever conducted. The results led to recommended changes in the treatment of at least three patients, highlighting the importance of understanding the role genes play in the disorder. The work was largely funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. “Our results provide the strongest evidence to date that a significant portion of cerebral palsy cases can be linked to rare genetic mutations, and in doing so identified several key genetic pathways involved,” said Michael Kruer, M.D., a neurogeneticist at Phoenix Children’s Hospital and the University of Arizona College of Medicine - Phoenix and a senior author of the article. “We hope this will give patients living with cerebral palsy and their loved ones a better understanding of the disorder and doctors a clearer roadmap for diagnosing and treating them.” Cerebral palsy affects approximately one in 323 children(link is external) in the United States. Signs of the disorder appear early in childhood resulting in a wide range of permanently disabling problems with movement and posture, including spasticity, muscle weakness, and abnormal gait. Nearly 40% of patients need some assistance with walking. In addition, many patients may also suffer epileptic seizures, blindness, hearing and speech problems, scoliosis, and intellectual disabilities.

Keyword: Development of the Brain; Genes & Behavior
Link ID: 27494 - Posted: 09.28.2020

by Peter Hess / Some preterm babies who are later diagnosed with autism show increasing developmental delays during infancy, according to a new study1. This distinct pattern could help doctors identify autism in preterm babies and start them on therapies in infancy, says Li-Wen Chen, pediatric neurologist at National Cheng Kung University College of Medicine in Taiwan, who designed and conducted the study. About 7 percent of children born preterm are autistic, compared with 1 to 2 percent of children in the general population. Researchers cannot accurately predict which preterm babies are most likely to be later diagnosed with the condition, however. The new study tracked ‘very preterm’ babies — meaning those born more than 8 weeks prematurely and weighing 3.3 pounds or less — from birth to 5 years old. It shows that preterm autistic babies’ development deviates significantly from that of their non-autistic peers starting at 6 months of age. This split could flag preterm babies in need of behavioral interventions well before the typical age of an autism diagnosis, which is about 4 years in the United States. “This early trajectory work is really very valuable, because it means you shouldn’t be making predictions based on single observations,” says Neil Marlow, professor of neonatal medicine at University College London in the United Kingdom, who was not involved in the work. Autistic children who are born preterm score lower on measures of nonverbal behaviors important for social interactions than do autistic children who are born full-term, according to previous work by Chen’s team2. Those results also showed that autism traits are more similar among preterm children than among full-term children. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27493 - Posted: 09.28.2020

The benefits of companionship for humans are well known, and they're not just confined to our mental health. Humans with strong social bonds with others live longer, healthier lives. Now a study looking at wild baboons in Africa has shown this is true for them as well. In particular, male baboons with non-sexual friendships with females live far longer than animals who lack these social bonds. Researchers have known for years that companionship is beneficial for the health and longevity of female baboons. But because of their social structure, male baboons are much harder to study over a long term than females. Female baboons stay with their birth troop for their entire lives, and so are easy to track and observe. Males, on the other hand, switch troops after they mature, and sometimes in adulthood as well, and so tracking them for their lifetime — which averages something like a decade and a half — can be a challenge. But a team led by Susan Alberts, a professor of biology and chair of the evolutionary anthropology department at Duke University, was able to master this problem. Friends with benefits Platonic friendship among baboons of the opposite sex is, it turns out, common. According to Alberts, male baboons will frequently form non-sexual friendship bonds with females and will protect them and their offspring from aggression within the troop and from predators. The benefits of this for the females are clear. What was less clear was the benefits of this kind of companionship for the males. The new study from Alberts and her team drew on data collected over many years from over 500 baboons at Amboseli National Park in Kenya to answer that question.. ©2020 CBC/Radio-Canada.

Keyword: Stress; Sexual Behavior
Link ID: 27492 - Posted: 09.28.2020

Jon Hamilton Mental illness can run in families. And Dr. Kafui Dzirasa grew up in one of these families. His close relatives include people with schizophrenia, bipolar disorder and depression. As a medical student, he learned about the ones who'd been committed to psychiatric hospitals or who "went missing" and were discovered in alleyways. Dzirasa decided to dedicate his career to "figuring out how to make science relevant to ultimately help my own family." He became a psychiatrist and researcher at Duke University and began to study the links between genes and brain disorders. Then Dzirasa realized something: "I was studying genes that were specifically related to illness in folks of European ancestry." His family had migrated from West Africa, which meant anything he discovered might not apply to them. Dzirasa also realized that people with his ancestry were missing not only from genetics research but from the entire field of brain science. "It was a really crushing moment for me," he says. So when a group in Baltimore asked Dzirasa to help do something about the problem, he said yes. The group is the African Ancestry Neuroscience Research Initiative. It's a partnership between community leaders and the Lieber Institute for Brain Development, an independent, nonprofit research organization on the medical campus of Johns Hopkins University. © 2020 npr

Keyword: Attention
Link ID: 27491 - Posted: 09.28.2020

Jon Henley Europe correspondent Four Covid-19 sniffer dogs have begun work at Helsinki airport in a state-funded pilot scheme that Finnish researchers hope will provide a cheap, fast and effective alternative method of testing people for the virus. A dog is capable of detecting the presence of the coronavirus within 10 seconds and the entire process takes less than a minute to complete, according to Anna Hielm-Björkman of the University of Helsinki, who is overseeing the trial. “It’s very promising,” said Hielm-Björkman. “If it works, it could prove a good screening method in other places” such as hospitals, care homes and at sporting and cultural events. After collecting their luggage, arriving international passengers are asked to dab their skin with a wipe. In a separate booth, the beaker containing the wipe is then placed next to others containing different control scents – and the dog starts sniffing. If it indicates it has detected the virus – usually by yelping, pawing or lying down – the passenger is advised to take a free standard polymerase chain reaction (PCR) test, using a nasal swab, to verify the dog’s verdict. In the university’s preliminary tests, dogs – which have been successfully used to detect diseases such as cancer and diabetes – were able to identify the virus with nearly 100% accuracy, even days before before a patient developed symptoms. Scientists are not yet sure what exactly it is that the dogs sniff when they detect the virus. A French study published in June concluded that there was “very high evidence” that the sweat odour of Covid-positive people was different to that of those who did not have the virus, and that dogs could detect that difference. Dogs are also able to identify Covid-19 from a much smaller molecular sample than PCR tests, Helsinki airport said, needing only 10-100 molecules to detect the presence of the virus compared with the 18m needed by laboratory equipment. © 2020 Guardian News & Media Limited

Keyword: Chemical Senses (Smell & Taste)
Link ID: 27490 - Posted: 09.25.2020

By Pam Belluck Annrene Rowe was getting ready to celebrate her 10th wedding anniversary this summer when she noticed a bald spot on her scalp. In the following days, her thick shoulder-length hair started falling out in clumps, bunching up in the shower drain. “I was crying hysterically,” said Mrs. Rowe, 67, of Anna Maria, Fla. Mrs. Rowe, who was hospitalized for 12 days in April with symptoms of the coronavirus, soon found strikingly similar stories in online groups of Covid-19 survivors. Many said that several months after contracting the virus, they began shedding startling amounts of hair. Doctors say they too are seeing many more patients with hair loss, a phenomenon they believe is indeed related to the coronavirus pandemic, affecting both people who had the virus and those who never became sick. In normal times, some people shed noticeable amounts of hair after a profoundly stressful experience such as an illness, major surgery or emotional trauma. Now, doctors say, many patients recovering from Covid-19 are experiencing hair loss — not from the virus itself, but from the physiological stress of fighting it off. Many people who never contracted the virus are also losing hair, because of emotional stress from job loss, financial strain, deaths of family members or other devastating developments stemming from the pandemic. “There’s many, many stresses in many ways surrounding this pandemic, and we’re still seeing hair loss because a lot of the stress hasn’t gone away,” said Dr. Shilpi Khetarpal, an associate professor of dermatology at the Cleveland Clinic. Before the pandemic, there were weeks when Dr. Khetarpal didn’t see a single patient with hair loss of this type. Now, she said, about 20 such patients a week come in. One was a woman having difficulty home-schooling two young children while also working from home. Another was a second-grade teacher anxiously trying to ensure that all her students had computers and internet access for online instruction. © 2020 The New York Times Company

Keyword: Stress
Link ID: 27489 - Posted: 09.25.2020

Jordana Cepelewicz Our sense of time may be the scaffolding for all of our experience and behavior, but it is an unsteady and subjective one, expanding and contracting like an accordion. Emotions, music, events in our surroundings and shifts in our attention all have the power to speed time up for us or slow it down. When presented with images on a screen, we perceive angry faces as lasting longer than neutral ones, spiders as lasting longer than butterflies, and the color red as lasting longer than blue. The watched pot never boils, and time flies when we’re having fun. Last month in Nature Neuroscience, a trio of researchers at the Weizmann Institute of Science in Israel presented some important new insights into what stretches and compresses our experience of time. They found evidence for a long-suspected connection between time perception and the mechanism that helps us learn through rewards and punishments. They also demonstrated that the perception of time is wedded to our brain’s constantly updated expectations about what will happen next. “Everyone knows the saying that ‘time flies when you’re having fun,’” said Sam Gershman, a cognitive neuroscientist at Harvard University who was not involved in the study. “But the full story might be more nuanced: Time flies when you’re having more fun than you expected.” “Time” doesn’t mean just one thing to the brain. Different brain regions rely on varied neural mechanisms to track its passage, and the mechanisms that govern our experience seem to change from one situation to the next. All Rights Reserved © 2020

Keyword: Attention
Link ID: 27488 - Posted: 09.25.2020

By Bret Stetka With enough training, pigeons can distinguish between the works of Picasso and Monet. Ravens can identify themselves in a mirror. And on a university campus in Japan, crows are known to intentionally leave walnuts in a crosswalk and let passing traffic do their nut cracking. Many bird species are incredibly smart. Yet among intelligent animals, the “bird brain” often doesn’t get much respect. Two papers published today in Science find birds actually have a brain that is much more similar to our complex primate organ than previously thought. For years it was assumed that the avian brain was limited in function because it lacked a neocortex. In mammals, the neocortex is the hulking, evolutionarily modern outer layer of the brain that allows for complex cognition and creativity and that makes up most of what, in vertebrates as a whole, is called the pallium. The new findings show that birds’ do, in fact, have a brain structure that is comparable to the neocortex despite taking a different shape. It turns out that at a cellular level, the brain region is laid out much like the mammal cortex, explaining why many birds exhibit advanced behaviors and abilities that have long befuddled scientists. The new work even suggests that certain birds demonstrate some degree of consciousness. The mammalian cortex is organized into six layers containing vertical columns of neurons that communicate with one another both horizontally and vertically. The avian brain, on the other hand, was thought to be arranged into discrete collections of neurons called nuclei, including a region called the dorsal ventricular ridge, or DVR, and a single nucleus named the wulst. In one of the new papers, senior author Onur Güntürkün, a neuroscientist at Ruhr University Bochum in Germany, and his colleagues analyzed regions of the DVR and wulst involved in sound and vision processing. To do so, they used a technology called three-dimensional polarized light imaging, or 3D-PLI—a light-based microscopy technique that can be employed to visualize nerve fibers in brain samples. The researchers found that in both pigeons and barn owls, these brain regions are constructed much like our neocortex, with both layerlike and columnar organization—and with both horizontal and vertical circuitry. They confirmed the 3D-PLI findings using biocytin tracing, a technique for staining nerve cells. © 2020 Scientific American

Keyword: Evolution; Learning & Memory
Link ID: 27487 - Posted: 09.25.2020

by Terje Falck-Ytter, Sofia Loden Historians and authors have given many famous figures an armchair diagnosis of autism over the years: Albert Einstein, Michelangelo and Thomas Jefferson, to name just a few. Looking for signs of autism in historical figures and fictional characters can give us important insight into society’s changing perceptions of the condition through time. But however intellectually interesting, we urge caution before labelling such figures actually autistic. Consider the idea that Perceval, one of the Knights of the Round Table in the King Arthur legend, was autistic — a claim levied by the literary scholar Paula Leverage1. If correct, it suggests that today’s fascination with portraying autism traits in popular culture — for example, in television shows such as “The Big Bang Theory” and novels such as “The Curious Incident of the Dog in the Night-Time” — has a near thousand-year-long history2. But given Perceval’s anti-heroism, comical and sometimes immoral behavior, describing him as autistic could also increase the risk for misconceptions and stigmatization of actual people with the condition. Adventure time: Perceval made his debut in “Le Conte du Graal” (The Story of the Grail), a rhymed verse romance written by the Old French poet Chrétien de Troyes in the late 12th century3. The tale describes Perceval’s many adventures, including his discovery of the famous grail — an ornate gold dish purported to have unusual powers and the object of fascination for numerous writers ever since the Middle Ages. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27486 - Posted: 09.25.2020

By Lisa Friedman WASHINGTON — The Trump administration has rejected scientific evidence linking the pesticide chlorpyrifos to serious health problems, directly contradicting federal scientists’ conclusions five years ago that it can stunt brain development in children. The Environmental Protection Agency’s assessment of the pesticide, which is widely used on soybeans, almonds, grapes and other crops, is a fresh victory for chemical makers and the agricultural industry, as well as the latest in a long list of Trump administration regulatory rollbacks. In announcing its decision, the E.P.A. said on Tuesday that “despite several years of study, the science addressing neurodevelopmental effects remains unresolved.” However, in making its finding, the agency excluded several epidemiological studies, most prominently one conducted at Columbia University, that found a correlation between prenatal exposure to chlorpyrifos and developmental disorders in toddlers. As a result, the assessment may be the first major test of the Trump administration’s intention, often referred to as its “secret science” proposal, to bar or give less weight to scientific studies that can’t or don’t publicly release their underlying data. This controversial policy would eliminate many studies that track the effects of exposure to substances on people’s health over long periods of time, because the data often includes confidential medical records of the subjects, scientists have said. © 2020 The New York Times Company

Keyword: Development of the Brain; Neurotoxins
Link ID: 27485 - Posted: 09.25.2020

By Ann Gibbons Neanderthals have long been seen as uber-masculine hunks, at least compared with their lightweight human cousins, with whom they competed for food, territory, and mates. But a new study finds Homo sapiens men essentially emasculated their brawny brethren when they mated with Neanderthal women more than 100,000 years ago. Those unions caused the modern Y chromosomes to sweep through future generations of Neanderthal boys, eventually replacing the Neanderthal Y. The new finding may solve the decade-old mystery of why researchers have been unable to find a Neanderthal Y chromosome. Part of the problem was the dearth of DNA from men: Of the dozen Neanderthals whose DNA has been sequenced so far, most is from women, as the DNA in male Neanderthal fossils happened to be poorly preserved or contaminated with bacteria. “We began to wonder if there were any male Neanderthals,” jokes Janet Kelso, a computational biologist at the Max Planck Institute for Evolutionary Anthropology and senior author of the new study. But in a technical breakthrough, Max Planck graduate student Martin Petr designed a set of probes that used the DNA sequence from small chunks of modern men’s Y chromosomes to “fish out” and bind with DNA from archaic men’s Y chromosomes. The new method works because the Neanderthal and modern human chromosomes are mostly similar; the DNA probes also reel in the few basepairs that differ. The researchers probed the fragmentary Y chromosomes of three Neanderthal men from Belgium, Spain, and Russia who lived about 38,000 to 53,000 years ago, and two male Denisovans, close cousins of Neanderthals who lived in Siberia’s Denisova Cave about 46,000 to 130,000 ago. When the researchers sequenced the DNA, they got a surprise: The Neanderthal Y “looked more like modern humans’ than Denisovans’,” Kelso says. © 2020 American Association for the Advancement of Science.

Keyword: Sexual Behavior
Link ID: 27484 - Posted: 09.25.2020

By Carolyn Wilke New findings in mice suggest yet another role for gut microbes, even before birth. The microbes residing in a female mouse’s gut help shape the wiring of her offspring’s brain, researchers report September 23 in Nature. While mouse and human development are worlds apart, the study hints at how a mother’s microbiome may have long-term consequences for her offspring. Scientists have previously found links between a mouse mother’s microbiome and her young’s brain and behavior, but many of those studies worked with animals that were stressed (SN: 7/9/18) or sick. Instead, Helen Vuong, a neurobiologist at UCLA, and her colleagues looked at what a mother’s microbial mix normally does for her pups’ brains. The new results point to the influence of specific microbes and the small molecules they produce, called metabolites. “Metabolites from the microbiome of the mother can influence the developing brain of the fetus,” says Cathryn Nagler, an immunologist at the University of Chicago who was not involved with the study. The metabolites do this by reaching a developing pup’s brain where they affect the growth of axons, she says. Axons are the threadlike signal-transmitters of nerve cells. Vuong and her team looked at the brains of fetuses from pregnant mice — some with their usual gut bugs, some raised without microbes and others ridded of their gut bacteria with antibiotics. When a mother’s microbes were missing, fetuses had shorter and fewer axons extending from the brain’s “relay station” to the cortex, Vuong says. These connections are important for processing sensory information. © Society for Science & the Public 2000–2020.

Keyword: Development of the Brain
Link ID: 27483 - Posted: 09.25.2020

By Gunjan Sinha Light therapy can help lift moods, heal wounds, and boost the immune system. Can it improve symptoms of Parkinson’s disease, too? A first-of-its-kind trial scheduled to launch this fall in France aims to find out. In seven patients, a fiber optic cable implanted in their brain will deliver pulses of near-infrared (NIR) light directly to the substantia nigra, a region deep in the brain that degenerates in Parkinson’s disease. The team, led by neurosurgeon Alim- Louis Benabid of the Clinatec Institute—a partnership between several government-funded research institutes and industry—hopes the light will protect cells there from dying. The study is one of several set to explore how Parkinson’s patients might benefit from light. “I am so excited,” says neuropsychologist Dawn Bowers of the University of Florida College of Medicine, who is recruiting patients for a trial in which NIR will be beamed into the skull instead of delivered with an implant. Small tests in people with Parkinson’s and animal models of the disease have already suggested benefits, but some mainstream Parkinson’s researchers are skeptical. No one has shown exactly how light might protect the key neurons—or why it should have any effect at all on cells buried deep in the brain that never see the light of day. Much or all of the encouraging hints seen so far in people may be the result of the placebo effect, skeptics say. Because there are no biomarkers that correlate well with changes in Parkinson’s symptoms, “we are reliant on observing behavior,” says neurobiologist David Sulzer of Columbia University Irving Medical Center, an editor of the journal npj Parkinson’s Disease. “It’s not easy to guard against placebo effects.” © 2020 American Association for the Advancement of Science

Keyword: Parkinsons
Link ID: 27482 - Posted: 09.19.2020

Ken Solt & Oluwaseun Akeju The state of dissociation is commonly described as feeling detached from reality or having an ‘out of body’ experience. This altered state of consciousness is often reported by people who have psychiatric disorders arising from devastating trauma or abuse. It is also evoked by a class of anaesthetic drug, and can occur in epilepsy. The neurological basis of dissociation has been a mystery, but writing in Nature, Vesuna et al.1 describe a localized brain rhythm that underlies this state. Their findings will have far-reaching implications for neuroscience. The authors first recorded brain-wide neuronal activity in mice using a technique called widefield calcium imaging. They studied changes in these brain rhythms in response to a range of drugs that have sedative, anaesthetic or hallucinogenic properties, including three that induce dissociation — ketamine, phencyclidine (PCP) and dizocilpine (MK801). Only the dissociative drugs produced robust oscillations in neuronal activity in a brain region called the retrosplenial cortex. This region is essential for various cognitive functions, including episodic memory and navigation2. The oscillations occurred at a low frequency, of about 1–3 hertz. By contrast, non-dissociative drugs such as the anaesthetic propofol and the hallucinogen lysergic acid diethylamide (LSD) did not trigger this rhythmic retrosplenial activity. Vesuna et al. examined the active cells in more detail using a high-resolution approach called two-photon imaging. This analysis revealed that the oscillations were restricted to cells in layer 5 of the retrosplenial cortex. The authors then recorded neuronal activity across multiple brain regions. Normally, other parts of the cortex and subcortex are functionally connected to neuronal activity in the retrosplenial cortex; however, ketamine caused a disconnect, such that many of these brain regions no longer communicated with the retrosplenial cortex. © 2020 Springer Nature Limited

Keyword: Drug Abuse; Consciousness
Link ID: 27481 - Posted: 09.19.2020

Jon Hamilton Scientists used light to control the firing of specific cells to artificially create a rhythm in the brain that acted like the drug ketamine enjoynz/Getty Images Out-of-body experiences are all about rhythm, a team reported Wednesday in the journal Nature. In mice and one person, scientists were able to reproduce the altered state often associated with ketamine by inducing certain brain cells to fire together in a slow, rhythmic fashion. "There was a rhythm that appeared, and it was an oscillation that appeared only when the patient was dissociating," says Dr. Karl Deisseroth, a psychiatrist and neuroscientist at Stanford University. Dissociation is a brain state in which a person feels separated from their own thoughts, feelings and body. It is common in people who have some mental illnesses or who have experienced a traumatic event. It can also be induced by certain drugs, including ketamine and PCP (angel dust). The study linking dissociation to brain rhythms represents "a big leap forward in understanding how these drugs produce this unique state," says Dr. Ken Solt, an anesthesiologist at Harvard Medical School and Massachusetts General Hospital. Solt is the co-author of an article that accompanied the study but was not involved in the research. The finding also could be a step toward finding non-drug methods to control states of consciousness, Solt says. Deisseroth's lab made the discovery while studying the brains of mice that had been given ketamine or other drugs that cause dissociation. The team was using technology that allowed them to monitor the activity of cells throughout the brain. © 2020 npr

Keyword: Drug Abuse; Consciousness
Link ID: 27480 - Posted: 09.19.2020

By Rebekah Tuchscherer Call it neuroscience on the go. Scientists have developed a backpack that tracks and stimulates brain activity as people go about their daily lives. The advance could allow researchers to get a sense of how the brain works outside of a laboratory—and how to monitor diseases such as Parkinson’s and post-traumatic stress disorder in real-world settings. The technology is “an inspiring demonstration of what’s possible” with portable neuroscience equipment, says Timothy Spellman, a neurobiologist at Weill Cornell Medicine who was not involved with the work. The backpack and its vast suite of tools, he says, could broaden the landscape for neuroscience research to study the brain while the body is in motion. Typically, when scientists want to scan the brain, they need a lot of room—and a lot of money. Functional magnetic resonance imaging (fMRI) scanners, which detect activity in various regions of the brain, are about the size of a pickup truck and can cost more than $1 million. And patients must stay still in the machine for about 1 hour to ensure a clear, readable scan. © 2020 American Association for the Advancement of Science.

Keyword: Brain imaging
Link ID: 27479 - Posted: 09.19.2020

By William Wan If only Dan Goerke could hold his wife’s hand. Maybe she would talk again. Maybe she would look at him and smile as she used to. Maybe she would eat and stop wasting away. Since the pandemic began, Goerke’s wife, Denise — 63 years old and afflicted with Alzheimer’s disease — had declined dramatically. Left alone in her nursing home, she had lost 16 pounds, could not form the simplest words, no longer responded to the voices of her children. In recent weeks, she had stopped recognizing even the man she loved. Goerke, 61, could tell the isolation was killing his wife, and there was nothing he could do but watch. “Every day it gets a little worse,” he said. “We’ve lost months, maybe years of her already.” Beyond the staggering U.S. deaths caused directly by the novel coronavirus, more than 134,200 people have died from Alzheimer’s and other forms of dementia since March. That is 13,200 more U.S. deaths caused by dementia than expected, compared with previous years, according to an analysis of federal data by The Washington Post. Overlooked amid America’s war against the coronavirus is this reality: People with dementia are dying not just from the virus but from the very strategy of isolation that’s supposed to protect them. In recent months, doctors have reported increased falls, pulmonary infections, depression and sudden frailty in patients who had been stable for years. Social and mental stimulation are among the few tools that can slow the march of dementia. Yet even as U.S. leaders have rushed to reopen universities, bowling alleys and malls, nursing homes say they continue begging in vain for sufficient testing, protective equipment and help.

Keyword: Alzheimers
Link ID: 27478 - Posted: 09.19.2020