Most Recent Links
Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.
By Tanya Lewis During Musk’s demonstration, he strolled near a pen containing several pigs, some of which had Neuralink implants. One animal, named Gertrude, had hers for two months. The device’s electrodes were situated in a part of Gertrude’s cortex that connected to neurons in her snout. And for the purposes of the demo, her brain signals were converted to audible bleeps that became more frequent as she sniffed around the pen and enjoyed some tasty treats. Musk also showed off a pig whose implant had been successfully removed to show that the surgery was reversible. Some of the other displayed pigs had multiple implants. Neuralink implantable device Neuralink implantable device, v0.9. Credit: Neuralink Neuralink, which was founded by Musk and a team of engineers and scientists in 2016, unveiled an earlier, wired version of its implant technology in 2019. It had several modules: the electrodes were connected to a USB port in the skull, which was intended to be wired to an external battery and a radio transmitter that were located behind the ear. The latest version consists of a single integrated implant that fits in a hole in the skull and relays data through the skin via a Bluetooth radio. The wireless design makes it seem much more practical for human use but limits the bandwidth of data that can be sent, compared with state-of-the-art brain-computer interfaces. The company’s goal, Musk said in the demo, is to “solve important spine and brain problems with a seamlessly implanted device”—a far cry from his previously stated, much more fantastic aim of allowing humans to merge with artificial intelligence. This time Musk seemed more circumspect about the device’s applications. As before, he insisted the demonstration was purely intended as a recruiting event to attract potential staff. Neuralink’s efforts build on decades of work from researchers in the field of brain-computer interfaces. Although technically impressive, this wireless brain implant is not the first to be tested in pigs or other large mammals.] © 2020 Scientific American,
Keyword: Robotics; Movement Disorders
Link ID: 27457 - Posted: 09.07.2020
By Linda Searing A growing number of U.S. adults are struggling with mental health issues linked to worry and stress over the novel coronavirus, increasing from 32 percent in March to 53 percent in July, according to a new report from the Kaiser Family Foundation. Those experiencing symptoms of anxiety or depression, for example, reached 40 percent this summer, up from 11 percent a year ago. In addition, a similar assessment from the Centers for Disease Control and Prevention found that, by late June, 13 percent of adults had started or increased alcohol consumption or drug use to help cope with pandemic-related woes, and 11 percent had seriously considered suicide in the past month — a number that reached 25 percent among those ages 18 to 24. Social isolation, loneliness, job loss and economic worries as well as fear of contracting the virus are among factors cited as contributing to people’s mental health problems. Kaiser researchers found that 59 percent of those who have lost income because of the pandemic experienced at least one adverse effect on their mental health and well-being, as did 62 percent of those with higher-than-average risk for covid-19 because of such chronic conditions as lung disease, asthma, diabetes or serious heart disease. Overall, both reports found that negative mental health effects from the stress of coronavirus were more common among women than men. Suicidal ideation, however, was more common among men. Also, the CDC report says that people described as “unpaid caregivers,” meaning they care for other adults at home, are considerably more likely than others to start or increase substance use to cope with coronavirus-related stress or to have suicidal thoughts.
Keyword: Stress; Depression
Link ID: 27456 - Posted: 09.07.2020
By Pam Belluck Seven years ago, Joshua Cohen, then a junior at Brown University majoring in biomedical engineering, was captivated by the question of why people develop brain disorders. “How does a neuron die?” he wondered. After poring over scientific studies, he sketched out his ideas for a way to treat them. “I was sitting in my dorm room and I had kind of written out the research on these crazy-looking diagrams,” he recalled. A study published on Wednesday in the New England Journal of Medicine reported that the experimental treatment he and another Brown student, Justin Klee, conceived might hold promise for slowing progression of amyotrophic lateral sclerosis, the ruthless disease that robs people of their ability to move, speak, eat and ultimately breathe. More than 50 clinical trials over 25 years have failed to find effective treatments for A.L.S., also called Lou Gehrig’s disease, which often causes death within two to five years. But now, scientific advances and an influx of funding are driving clinical trials for many potential therapies, generating hope and intense discussion among patients, doctors and researchers. The new study reported that a two-drug combination slowed progression of A.L.S. paralysis by about six weeks over about six months, approximately 25 percent more than a placebo. On average, patients on a placebo declined in 18 weeks to a level that patients receiving the treatment didn’t reach until 24 weeks, said the principal investigator, Dr. Sabrina Paganoni, a neuromuscular medicine specialist at Massachusetts General Hospital’s Healey & AMG Center for A.L.S. “It’s such a terrible disease and as you can imagine, for the folks who have it or the family members, it’s just desperation that something’s going to work,” said Dr. Walter Koroshetz, director of the National Institute of Neurological Disorders and Stroke, who wasn’t involved in the new study. “Any kind of slowing of progression for a patient with A.L.S. might be valuable even though it’s not a big effect.” © 2020 The New York Times Company
Keyword: ALS-Lou Gehrig's Disease
Link ID: 27455 - Posted: 09.05.2020
Adam Piore archive page Long before the world had ever heard of covid-19, Kay Tye set out to answer a question that has taken on new resonance in the age of social distancing: When people feel lonely, do they crave social interactions in the same way a hungry person craves food? And could she and her colleagues detect and measure this “hunger” in the neural circuits of the brain? “Loneliness is a universal thing. If I were to ask people on the street, ‘Do you know what it means to be lonely?’ probably 99 or 100% of people would say yes,” explains Tye, a neuroscientist at the Salk Institute of Biological Sciences. “It seems reasonable to argue that it should be a concept in neuroscience. It’s just that nobody ever found a way to test it and localize it to specific cells. That’s what we are trying to do.” In recent years, a vast scientific literature has emerged linking loneliness to depression, anxiety, alcoholism, and drug abuse. There is even a growing body of epidemiological work showing that loneliness makes you more likely to fall ill: it seems to prompt the chronic release of hormones that suppress healthy immune function. Biochemical changes from loneliness can accelerate the spread of cancer, hasten heart disease and Alzheimer’s, or simply drain the most vital among us of the will to go on. The ability to measure and detect it could help identify those at risk and pave the way for new kinds of interventions. In the months ahead, many are warning, we’re likely to see the mental-health impacts of covid-19 play out on a global scale. Psychiatrists are already worried about rising rates of suicide and drug overdoses in the US, and social isolation, along with anxiety and chronic stress, is one likely cause. “The recognition of the impact of social isolation on the rest of mental health is going to hit everyone really soon,” Tye says. “I think the impact on mental health will be pretty intense and pretty immediate.”
Keyword: Emotions; Depression
Link ID: 27454 - Posted: 09.05.2020
Ian Sample Science editor Brain scans of cosmonauts have revealed the first clear evidence of how the organ adapts to the weird and often sickness-inducing challenge of moving around in space. Analysis of scans taken from 11 cosmonauts, who spent about six months each in orbit, found increases in white and grey matter in three brain regions that are intimately involved in physical movement. The changes reflect the “neuroplasticity” of the brain whereby neural tissue, in this case the cells that govern movement or motor activity, reconfigures itself to cope with the fresh demands of life in orbit. “With the techniques we used, we can clearly see there are microstructural changes in three major areas of the brain that are involved in motor processing,” said Steven Jillings, a neuroscientist at the University of Antwerp in Belgium. Visitors to the International Space Station face a dramatic shock to the system for a whole host of reasons, but one of the most striking is weightlessness. While the space station and its occupants are firmly in the grip of gravity – they are constantly falling around the planet – the body must recalibrate its senses to cope with the extreme environment. Images of the cosmonauts’ brains, taken before and after missions lasting on average 171 days, and again seven months later, confirmed that the cerebrospinal fluid that bathes the brain redistributes itself in orbit, pushing the brain up towards the top of the skull. This also expands fluid-filled cavities called ventricles, which may be linked to a loss of sharpness in the cosmonauts’ vision, a condition called spaceflight-associated neuro-ocular syndrome or Sans. © 2020 Guardian News & Media Limited
Keyword: Learning & Memory
Link ID: 27453 - Posted: 09.05.2020
A line of elephants trundles across a dusty landscape in northern Botswana, ears flapping and trunks occasionally brushing the ground. As they pass a motion-activated camera hidden in low shrubbery, photos record the presence of each elephant. What's special about this group? It's only males. Female elephants are known to form tight family groups led by experienced matriarchs. Males were long assumed to be loners, because they leave their mother's herd when they reach 10 to 20 years of age. A new study shows that teenage males aren't anti-social after all. Younger male elephants were seen tagging along behind older males as they travel from place to place. It's more evidence in an emerging body of research that shows older males — like their female counterparts — play an important role in elephants' complex society. For the study published Thursday in the journal Scientific Reports, researchers analyzed photos of 1,264 sightings of male African savannah elephants travelling toward the Boteti River in 2017 and 2018. They found that younger males seldom travelled alone and older males most often led groups of mixed ages. "Mature male elephants often take a position at the front of the line when they are leading the group" to streams or seasonal grazing grounds, said Diana Reiss, director of the Animal Behavior and Conservation Program at Hunter College, who was not involved in the new study. "In human societies, grandparents are valued because they make really important contributions — helping with childcare and passing down knowledge gained over decades," she said. "We're now learning this pattern is also true for some other long-lived mammals, including dolphins, whales and elephants." Photos of 1,264 sightings of male African savannah elephants travelling toward the Boteti River in 2017 and 2018 showed that younger males seldom travelled alone and older males most often led groups of mixed ages. (Connie Allen) ©2020 CBC/Radio-Canada
Keyword: Sexual Behavior; Aggression
Link ID: 27452 - Posted: 09.05.2020
For Armin Raznahan, publishing research on sex differences is a fraught proposition. Now chief of the section on developmental neurogenomics at the National Institutes of Health, Raznahan learned early that searching for dissimilarities between men’s and women’s brains can have unintended effects. “I got my fingers burned when I first started,” Raznahan says. As a PhD student, he published a study that examined structural differences between men’s and women’s brains and how they changed with age. “We observed a particular pattern, and we were very cautious about just describing it, as one should be, not jumping to functional interpretations,” he says. Despite his efforts, The Wall Street Journal soon published an article that cited his study in a defense of single-sex schooling, under the assumption that boys and girls must learn in distinct ways because their brain anatomy is slightly different. “That really threw me,” he says. “The experience has stayed with me.” Nevertheless, Raznahan has continued to study sex differences, in the hope that they could help us better understand neurodevelopmental disorders. He focuses on people with sex chromosome aneuploidy, or any variation other than XX (typically female) and XY (typically male). People with genetic variations (such as XXY) have an inflated risk of autism spectrum disorder, ADHD, and anxiety, among other ailments. Raznahan’s hope is that uncovering if and how men’s and women’s brains differ—for example, in the sizes of regions or the strengths of the connections among them—could help us figure out why people with aneuploidy are more likely to experience neurodevelopmental and psychiatric concerns. Solving this puzzle could be a step toward unlocking the perplexing mystery of psychiatric illness. © 2020 Condé Nast
Keyword: Sexual Behavior; Brain imaging
Link ID: 27451 - Posted: 09.05.2020
— Joe Louis Martinez Jr., founder and former director of UTSA’s Neurosciences Institute, passed away on August 29 after a long battle with liver cancer. He was 76. Martinez was born in Albuquerque, New Mexico, on August 1, 1944. He received his B.A. from the University of California, San Diego; graduated with his M.S. in experimental psychology from New Mexico Highlands University in 1968; and earned his Ph.D. in physiological psychology in 1971 from the University of Delaware. He completed his postdoctoral training at the University of California, Irvine, and the Salk Institute in San Diego. Martinez served as a professor in the Department of Psychology at the University of California, Berkeley, from 1982 to 1995. During this time he led an internationally recognized research laboratory and departed as professor emeritus. In 1995 he joined UTSA as the Ewing Halsell Distinguished Chair in psychology. From 1995 to 2012 he was a beloved professor who founded and directed the Cajal Neuroscience Research Center, now known as the UTSA Neurosciences Institute. He oversaw the design and construction of the Biosciences Building, UTSA’s first research building. Each floor in the BSB contains tiles representing the neuroanatomical drawings of Santiago Ramon y Cajal. During his tenure at UTSA, Martinez brought over $15 million in grant funding to the university. In 2013 he moved to the University of Illinois at Chicago to become the chair of the department of psychology. He retired in 2016. © 2020 The University of Texas at San Antonio
Keyword: Learning & Memory
Link ID: 27450 - Posted: 09.05.2020
By Nicholas Bakalar Being overweight may be linked to an increased risk for dementia. British researchers used data on 6,582 men and women, age 50 and older, who were cognitively healthy at the start of the study. The analysis, in the International Journal of Epidemiology, tracked the population for an average of 11 years, recording incidents of physician-diagnosed dementia. Almost 7 percent of the group developed dementia. Compared with people of normal weight (body mass index between 18.5 and 24.9), overweight people with a B.M.I. of 25 to 29.9 were 27 percent more likely to develop dementia, and the obese, with a B.M.I. of 30 or higher, were 31 percent more likely to become demented. The researchers also found that women with central obesity — a waist size larger than 34.6 inches — were 39 percent more likely to develop dementia than those with normal waist size. Fat around the middle was not associated with a higher dementia risk in men. The study controlled for age, sex, APOE4 (a gene known to increase the risk of Alzheimer’s disease, the most common form of dementia), education, marital status, smoking and other known dementia risks. The lead author, Yixuan Ma, a student at University College London, said that this observational study does not prove cause and effect. “Being overweight is just a risk,” she said. “It doesn’t mean that an overweight person will necessarily get dementia. But for many reasons, it’s good to maintain a normal weight and engage in vigorous physical activity over a lifetime.” © 2020 The New York Times Company
Keyword: Alzheimers; Obesity
Link ID: 27449 - Posted: 09.05.2020
By Moises Velasquez-Manoff Jack Gallant never set out to create a mind-reading machine. His focus was more prosaic. A computational neuroscientist at the University of California, Berkeley, Dr. Gallant worked for years to improve our understanding of how brains encode information — what regions become active, for example, when a person sees a plane or an apple or a dog — and how that activity represents the object being viewed. By the late 2000s, scientists could determine what kind of thing a person might be looking at from the way the brain lit up — a human face, say, or a cat. But Dr. Gallant and his colleagues went further. They figured out how to use machine learning to decipher not just the class of thing, but which exact image a subject was viewing. (Which photo of a cat, out of three options, for instance.) One day, Dr. Gallant and his postdocs got to talking. In the same way that you can turn a speaker into a microphone by hooking it up backward, they wondered if they could reverse engineer the algorithm they’d developed so they could visualize, solely from brain activity, what a person was seeing. The first phase of the project was to train the AI. For hours, Dr. Gallant and his colleagues showed volunteers in fMRI machines movie clips. By matching patterns of brain activation prompted by the moving images, the AI built a model of how the volunteers’ visual cortex, which parses information from the eyes, worked. Then came the next phase: translation. As they showed the volunteers movie clips, they asked the model what, given everything it now knew about their brains, it thought they might be looking at. The experiment focused just on a subsection of the visual cortex. It didn’t capture what was happening elsewhere in the brain — how a person might feel about what she was seeing, for example, or what she might be fantasizing about as she watched. The endeavor was, in Dr. Gallant’s words, a primitive proof of concept. And yet the results, published in 2011, are remarkable. The reconstructed images move with a dreamlike fluidity. In their imperfection, they evoke expressionist art. (And a few reconstructed images seem downright wrong.) But where they succeed, they represent an astonishing achievement: a machine translating patterns of brain activity into a moving image understandable by other people — a machine that can read the brain. © 2020 The New York Times Company
Keyword: Vision; Brain imaging
Link ID: 27448 - Posted: 09.02.2020
Katherine May Sunday morning. I walk down to the beach with the dog straining at her lead. I’m already on high alert. It’s the moment in the week when people are most likely to be wandering along the seafront, feeling chatty. I’m mentally priming myself, sorting through the categories I might encounter: parents from the schoolyard (hopefully with their children), people I’ve worked with (increasingly hopeless), neighbours from the surrounding streets (no chance). I should have gone to the woods today. It’s too risky. I cross the road and hear, “Katherine! Hello!” I wonder if I can get away with pretending I didn’t notice. I’m wearing earbuds, which is usually a good precaution, but this woman is determined. She crosses the road diagonally, waving. “How the hell are you?” she says. Straight hair, mousy blonde. No glasses, no tattoos. Jeans, a grey sweatshirt. For God’s sake, why are these people so studiedly ordinary? I fidget with my phone, trying to buy time. Her face is plain. I don’t mean plain as in “ugly”. I mean plain as in vanilla: bland, unremarkable. There’s nothing here that I might have stored in words. Her nose is straight. Her eyes are blue. Her teeth are orderly. And she knows me. “Hi!” I say, as warmly as possible. “How are you?” This can sometimes elicit clues. Not today. One of the many side-effects of being face-blind is that you become uncomfortably aware of the ordinariness of most interactions. We have stopped in the street to say absolutely nothing to each other. And only one of us knows the context. The dog lunges to her feet and pulls in the direction of the sea. “Looks like she’s desperate to get going!” I say, laughing, “So sorry! Lovely to see you!” And I’m off at a gallop before this woman, whoever the hell she is, can think about joining me. I didn’t always know I was face-blind. I grew up thinking that I just didn’t remember people. This, as a friend once told me, seemed a lot like arrogance – an aloof lack of interest in others. But that’s not how it felt on the inside. © 2020 Guardian News & Media Limited
Keyword: Attention
Link ID: 27447 - Posted: 09.02.2020
By Elizabeth Preston We’re all getting used to face masks, either wearing them or figuring out who we’re looking at. They can even trip up those of us who are experts in faces. “Actually, I just had an experience today,” said Marlene Behrmann, a cognitive neuroscientist at Carnegie Mellon University who has spent decades studying the science of facial recognition. She went to meet a colleague outside the hospital where they collaborate, and didn’t realize the person was sitting right in front of her, wearing a mask. In fairness, “She’s cut her hair very short,” Dr. Behrmann said. Scientists have some ideas about why masks make recognizing others’ faces difficult, based on studying the brains of average people, as well as people who struggle to recognize anyone at all. But even when everyone around us is incognito, we still have ways to find each other. “We use face recognition in every aspect of our social interaction,” said Erez Freud, a psychologist with the Centre for Vision Research at York University in Toronto. In the faces of others, we find clues about their personality, gender and emotions. “This is something very fundamental to our perception. And suddenly, faces do not look the same,” Dr. Freud said. That’s why Dr. Freud and co-authors decided to study how masks impair people’s facial recognition skills. They recruited nearly 500 adults to complete a common face memory task online. Participants viewed unfamiliar faces and then tried to recognize them under increasingly difficult conditions. Half the participants saw faces with surgical-style masks covering their mouths and noses. People scored substantially worse on the test when faces were masked. The authors posted their findings, which have not yet completed peer review, online last month. © 2020 The New York Times Company
Keyword: Attention
Link ID: 27446 - Posted: 09.02.2020
By Jenny Marder In May, a 15-year-old boy set up a socially distanced visit with a friend. They met on opposite sides of a sidewalk — a full six feet apart — and talked. But when the teenager returned home, he brought with him a new set of Covid-19 fears, according to John Duffy, the boy’s therapist and a child psychologist in Chicago. How could he be sure six feet was a safe distance?, the teenager wanted to know. He began washing his hands more frequently. He stopped touching countertops. And he hasn’t wanted to see friends since. The pandemic has understandably intensified our need for good hygiene and safety precautions. But for some children and teens, these precautions have crossed the line from careful to compulsive. And for parents, it can sometimes be hard to distinguish between a reasonable reaction to a very real threat and something more concerning. There’s little data available yet on the toll the pandemic has taken on the mental health of children. But Eric Storch, an expert on obsessive-compulsive disorder and a professor at the Baylor College of Medicine, said calls to the university’s O.C.D. program have jumped significantly, by about 25 percent, since March. He attributed it in part to telemedicine improving access, and in part to worsening mental health concerns. Dr. Duffy said the number of his patients experiencing O.C.D.-like symptoms has tripled during this time. About 500,000 children and teens in the United States have obsessive-compulsive disorder, according to the International OCD Foundation. Obsessive-compulsive disorder has two main components. Obsessions take the form of uncontrollable thoughts, urges, feelings or uncomfortable sensations. Compulsions are behaviors repeated over and over. These can include excessive handwashing, showering or sanitizing, but also checking things, putting things in order, tapping, touching, seeking reassurance or asking the same question repeatedly. © 2020 The New York Times Company
Keyword: OCD - Obsessive Compulsive Disorder; Stress
Link ID: 27445 - Posted: 09.02.2020
Researchers say mother bats use baby talk to communicate with their pups. Experts say that it helps bats learn the language. MARY LOUISE KELLY, HOST: You know how scientists are always curious? Well, one scientist started wondering if bats do something that humans do. AHANA AURORA FERNANDEZ: When we humans talk to a baby, we automatically change our voices. Hello, my baby. You are so cute. My voice goes up. SACHA PFEIFFER, HOST: That's Ahana Aurora Fernandez. She's in Berlin but did her bat study in Panama. And she found that, as many humans do, mommy bats talk to baby bats in a similar way. There's a word for this way of talking. It's motherese (ph). Experts say that in humans - and, apparently, also in bats - it helps with language learning. KELLY: Ahana Fernandez sent us recordings she made to illustrate her findings. They are slowed down so we can better hear the differences between adult bats talking to each other and the motherese used on bat pups. First, here's two adult bats talking to each other. KELLY: OK, and now here's a mother bat with her pup. PFEIFFER: It took patience for Ahana Hernandez to record bat conversation. She sat in the jungle in a chair for hour after hour, waiting for bat conversations to happen. She even brought along books to pass the time. Scientific research is not always riveting. KELLY: No. All told, Ahana Fernandez and her colleagues conducted their research for these last five years, and they found something else along the way. Baby bats babble. FERNANDEZ: They use sort of a vocal practice behavior which is reminiscent of babbling in infants. KELLY: Bat baby talk. PFEIFFER: Her team's report was published this month, and it shows that in the first three months of life, these bat pups experiment with their speech. FERNANDEZ: They learn a part of their adult vocal repertoire through vocal imitation as we humans do. © 2020 npr
Keyword: Animal Communication; Language
Link ID: 27444 - Posted: 09.02.2020
Rory Cellan-Jones He is the most charismatic figure in technology with some amazing achievements to his name, from making electric cars desirable to developing rockets that can return to earth and be reused. But dare to suggest that anything Elon Musk does is not groundbreaking or visionary and you can expect a backlash from the great man and his army of passionate fans. That is what happened when a British academic criticised Musk's demo on Friday of his Neuralink project - and the retaliation he faced was largely my fault. Neuralink is a hugely ambitious plan to link the human brain to a computer. It might eventually allow people with conditions such as Parkinson's disease to control their physical movements or manipulate machines via the power of thought. There are plenty of scientists already at work in this field. But Musk has far greater ambitions than most, talking of developing "superhuman cognition" - enhancing the human brain in part to combat the threat he sees from artificial intelligence. Friday night's demo involved a pig called Gertrude fitted with what the tech tycoon described as a "Fitbit in your skull". A tiny device recorded the animal's neural activity and sent it wirelessly to a screen. A series of beeps happened every time her snout was touched, indicating activity in the part of her brain seeking out food. "I think this is incredibly profound", commented Musk. Some neuroscience experts were not quite as impressed. The UK's Science Media Centre, which does a good job of trying to make complex scientific stories accessible, put out a press release quoting Prof Andrew Jackson, professor of neural interfaces at Newcastle University. "I don't think there was anything revolutionary in the presentation," he said. "But they are working through the engineering challenges of placing multiple electrodes into the brain. "In terms of their technology, 1,024 channels is not that impressive these days, but the electronics to relay them wirelessly is state-of-the-art, and the robotic implantation is nice. "The biggest challenge is what you do with all this brain data. The demonstrations were actually quite underwhelming in this regard, and didn't show anything that hasn't been done before." He went on to question why Neuralink's work was not being published in peer-reviewed papers. I took his words and his summary of the demo - "this is solid engineering but mediocre neuroscience" - and posted a tweet. © 2020 BBC.
Keyword: Brain imaging
Link ID: 27443 - Posted: 09.02.2020
By Jane E. Brody Orthostatic hypotension — to many people those are unfamiliar words for a relatively common but often unrecognized medical problem that can have devastating consequences, especially for older adults. It refers to a brief but precipitous drop in blood pressure that causes lightheadedness or dizziness when standing up after lying down or sitting, and sometimes even after standing, for a prolonged period. The problem is likely to be familiar to people of all ages who may have been confined to bed for a long time by an injury, illness or surgery. It also often occurs during pregnancy. But middle-aged and older adults are most frequently affected. A significant number of falls and fractures, particularly among the elderly, are likely to result from orthostatic hypotension — literally, low blood pressure upon standing. Many an older person has fallen and broken a hip when getting out of bed in the morning or during the night to use the bathroom, precipitating a decline in health and loss of independence as a result of this blood pressure failure. Orthostatic hypotension is also a risk factor for strokes and heart attacks and even motor vehicle accidents. It can be an early warning sign of a serious underlying cardiovascular or neurological disorder, like a heart valve problem, the course of which might be altered if detected soon enough. But as one team of specialists noted, although orthostatic hypotension is a “highly prevalent” disorder, it is “frequently unrecognized until late in the clinical course.” Under normal circumstances, when we stand up, gravity temporarily causes blood to pool in the lower half of the body; then, within 20 or 30 seconds, receptors in the heart and carotid arteries in the neck trigger a compensating mechanism called the baroreflex that raises the heart rate and constricts blood vessels to increase blood pressure and provide the brain with an adequate supply of blood. © 2020 The New York Times Company
Keyword: Stress
Link ID: 27442 - Posted: 09.02.2020
By Esther Landhuis A researcher slips stickers under some colored cups on a lazy Susan, then gives the tray a whirl. When the spinning stops, a preschooler must find the hidden stickers. Most children remember where the stickers are, but a few have to check every single cup. The game tests working memory, which is among the set of mental skills known as executive function that can be impaired in children who faced trauma early in life. Adversity wreaks havoc, and from there, “you have a system that responds differently,” says Megan Gunnar, a developmental psychobiologist at the University of Minnesota in Minneapolis who has spent two decades studying the impact of early-life adversity in adopted children. The focus of this work is extreme adversity, such as being orphaned, rather than everyday challenges, which might teach beneficial resilience. A childhood characterized by hardship, negligence or abuse can also alter the neuroendocrine system that regulates how the body responds to stress. Problems in the stress response can set kids on a path toward behavior struggles along with increased risk for depression, diabetes and a host of other health problems. But recent studies offer hints that such a difficult future may not be inevitable. As Gunnar and others have shown, impaired stress responses can return to normal during puberty, raising the possibility that imbalances created by early trauma can be erased. The research is prompting a new view of puberty as an opportunity — a chance for people who had a shaky start to reset their physiological responses to stress. © Society for Science & the Public 2000–2020.
Keyword: Stress; Development of the Brain
Link ID: 27441 - Posted: 08.29.2020
by Jonathan Moens Conversations between an autistic and a typical person involve less smiling and more mismatched facial expressions than do interactions between two typical people, a new study suggests1. People engaged in conversation tend to unconsciously mimic each other’s behavior, which may help create and reinforce social bonds. But this synchrony can break down between autistic people and their neurotypical peers, research shows. And throughout an autistic person’s life, these disconnects can lead to fewer opportunities to meet people and maintain relationships. Previous studies have looked at autistic people’s facial expressions as they react to images of social scenes on a computer screen2. The new work, by contrast, is one of a growing number of experiments to capture how facial expressions unfold during ordinary conversation. Changes in facial expressions are easy to observe but notoriously hard to measure, says lead investigator John Herrington, assistant professor of psychiatry at the Children’s Hospital of Philadelphia in Pennsylvania. He and his colleagues devised a new method to quantify these changes over time in an automated and granular way using machine-learning techniques. Atypical facial expressions are in part a manifestation of difficulties with social coordination, Herrington says. So tracking alterations in facial expression may be a useful way to monitor whether interventions targeting these traits are effective. The new study included 20 autistic people and 16 typical controls, aged 9 to 16 years and matched for their scores on intelligence and verbal fluency. Each participant engaged in two 10-minute conversations — first with their mother and then with a research assistant — to plan a hypothetical two-week trip. © 2020 Simons Foundation
Keyword: Autism; Emotions
Link ID: 27440 - Posted: 08.29.2020
By Michelle Konstantinovsky Rosey has lived with bulimia for more than a decade. The 31-year-old resident of Melbourne, Australia, started therapy for her eating disorder six years ago. Although she says she had never considered herself “cured,” she had reached a point in her recovery that felt hopeful and manageable. Then along came the novel coronavirus. When mandatory COVID-19 lockdowns began in Australia in March, Rosey’s anxiety went into overdrive. “I’m single, I live alone, my family lives in another state, and I’m not able to see friends,” she says, adding that her need for control—something she has now lost in almost every area of her life—has played a major role in the resurgence of symptoms: “To have everything I knew and had control over, including how I managed my illness, ripped away has been one of the hardest things.” Rosey is living an experience that may be familiar to anyone dealing with an eating disorder while weathering the unexpected storms of 2020. Recent research indicates that pandemic-related stay-at-home orders have ramped up anorexia, bulimia and binge-eating disorder symptoms. A study published last month in the International Journal of Eating Disorders revealed that during the first few months of the pandemic, many individuals with anorexia reported restricting their eating more. Meanwhile others with bulimia and binge-eating disorder reported more bingeing urges and episodes. Respondents also noted increased anxiety and concern about COVID-19’s impact on their mental health. More than one third of the 1,021 participants (511 in the U.S. and 510 in the Netherlands) said their eating disorder had worsened—and they attributed this change to issues such as a lack of structure, a triggering environment, the absence of social support and an inability to obtain foods that fit their meal plans. © 2020 Scientific American,
Keyword: Anorexia & Bulimia; Stress
Link ID: 27439 - Posted: 08.29.2020
A collaborative study conducted by scientists from the National Institutes of Health, Department of Defense (DOD), and multiple academic institutions has identified blood biomarkers that could help to predict which athletes need additional time to recover from a sports related concussion. This collaboration, known as the Concussion Assessment, Research, and Education (CARE) consortium, is supported, in part, by DOD and the National Collegiate Athletic Association (NCAA). In this study, conducted at several sites across the U.S., 127 male and female collegiate athletes who had sustained a sports-related concussion were tested at several time points: shortly after injury, when their symptoms resolved, and one week after returning to play. Each athlete had also undergone preseason, baseline testing. Using an ultrasensitive assay that can detect minute amounts of protein, the researchers tested blood serum from these athletes and identified two blood proteins that were associated with the length of time needed by the athletes to return to play. Amounts of these two proteins, tau protein and glial fibrillary acidic protein (GFAP) were found to be significantly different in athletes who needed less or more than 14 days to return. While further research is needed, the results of this study are an important step towards the development of a test that could help predict which athletes need more time to recover from a concussion and resume activity. This study was published in JAMA Network Open.
Keyword: Brain Injury/Concussion
Link ID: 27438 - Posted: 08.29.2020


.gif)

