Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 2721 - 2740 of 29522

By Abdul-Kareem Ahmed “He doesn’t look like himself,” his wife said. It was midnight, and I was consulting on a patient in the emergency room. He was 48 years old and complaining of a headache. Ten years ago my attending had partially removed a benign tumor growing in his cerebellum, part of the hindbrain that controls movement, coordination and speech. Our team had also placed a shunt in his brain. The brain is buoyed and bathed by cerebrospinal fluid. This clear fluid is made in large cavities, called ventricles, and is eventually absorbed by veins. The tumor’s inoperable remnant had blocked the fluid’s natural escape, causing it to build up, a condition known as hydrocephalus. A shunt is a thin rubber tube that is placed in the ventricles of the brain and tunneled under the skin, into the abdomen. It can have a programmable pressure valve, a gauge that sits under the scalp. His shunt had been siphoning excess fluid to his abdomen for years where it was absorbed, preventing life-threatening high pressure in the brain. Today, however, something was wrong, and I thought it was revealed on his new head CT. His ventricles were very large, suggesting high pressure. “I get a bad headache when I sit up,” he mumbled. “Sometimes I vomit. I feel better when I lie flat.” His wife, a strong and kindhearted woman, corroborated his complaint. “He’s also having memory problems, and he’s losing his balance when he walks,” she added. His symptoms were the opposite of what I expected. He was describing a low-pressure headache. He was relieved by lying down but worsened when sitting up.

Keyword: Pain & Touch
Link ID: 27397 - Posted: 08.03.2020

"Julich-Brain" is the name of the first 3D-atlas of the human brain that reflects the variability of the brain’s structure with microscopic resolution. The atlas features close to 250 structurally distinct areas, each one based on the analysis of 10 brains. More than 24000 extremely thin brain sections were digitized, assembled in 3D and mapped by experts. As part of the new EBRAINS infrastructure of the European Human Brain Project, the atlas serves as an interface to link different information about the brain in a spatially precise way. German researchers led by Prof. Katrin Amunts have now presented the new brain atlas in the renowned journal Science. Under the microscope, it can be seen that the human brain is not uniformly structured, but divided into clearly distinguishable areas. They differ in the distribution and density of nerve cells and in function. With the Julich-Brain, researchers led by Katrin Amunts now present the most comprehensive digital map of the cellular architecture and make it available worldwide via the EBRAINS research infrastructure. "On the one hand, the digital brain atlas will help to interpret the results of neuroimaging studies, for example of patients, more accurately", says Katrin Amunts, Director at the German Research Center Juelich and Professor at the University of Düsseldorf. "On the other hand, it is becoming the basis for a kind of 'Google Earth' of the brain - because the cellular level is the best interface for linking data about very different facets of the brain. ©2017 Human Brain Project.

Keyword: Brain imaging
Link ID: 27396 - Posted: 08.03.2020

Nicola Davis Excessive drinking, exposure to air pollution and head injuries all increase dementia risk, experts say in a report revealing that up to 40% of dementia cases worldwide could be delayed or prevented by addressing 12 such lifestyle factors. Around 50 million people around the world live with dementia, including about 850,000 people in the UK. By 2040, it has been estimated there will be more than 1.2 million people living with dementia in England and Wales. There is currently no cure. However, while some risk factors for dementia cannot be changed, for example particular genes or ethnicity, many are down to lifestyle. “Dementia is potentially preventable – you can do things to reduce your risk of dementia, whatever stage of life you are at,” said Gill Livingston, professor of psychiatry of older people at University College London and a co-author of the report. She added such lifestyle changes could reduce the chances of developing dementia in both those with and without a high genetic risk for such conditions. The report from the Lancet Commission on dementia prevention, intervention and care builds on previous work revealing that about a third of dementia cases could be prevented by addressing nine lifestyle factors, including midlife hearing loss, depression, less childhood education and smoking. The research weighs up the latest evidence, largely from high-income countries, supporting the addition of a further three risk factors to the list. It suggests that 1% of dementia cases worldwide are attributable to excessive mid-life alcohol intake, 3% to mid-life head injuries and 2% a result of exposure to air pollution in older age – although they caution that the latter could be an underestimate. © 2020 Guardian News & Media Limited

Keyword: Alzheimers
Link ID: 27394 - Posted: 07.31.2020

By Joshua Sokol A beast calls in the distance. Hearing a low rumble, you might imagine the source will be an unholy cross between a wild boar and a chain saw. The message is unmistakable: I’m here, I’m huge and you can either come mate with me or stay out of my way. Surprise! It’s just a cuddly little koala. Like online dating, the soundscape of the animal world is rife with exaggerations about size, which animals use to scare off rivals and attract mates. Gazelles, howler monkeys, bats and many more creatures have evolved to create calls with deep sonic frequencies that sound as if they come from a much larger animal. Now scientists have proposed this same underlying pressure to exaggerate size might be linked to an even deeper mystery. It could have spurred mammals toward developing the ability to make a wider array of possible calls, to mimic sounds after hearing them and maybe even speech, what scientists call vocal learning. “We are offering one possible way for vocal learning to have evolved,” says Maxime Garcia, a biologist at the University of Zurich in Switzerland who suggested the relationship with his colleague, Andrea Ravignani, in the journal Biology Letters this month. Their idea builds off previous studies on vocal learning in humans. Beyond just opera singers, beatboxers and Michael Winslow from the “Police Academy” movies, we all have some level of control over the frequencies of our voices. “I can tell you to lower your pitch or try to sound big, and you can soound like thissss,” said Katarzyna Pisanski at the University of Lyon in France, affecting a deep voice. © 2020 The New York Times Company

Keyword: Animal Communication; Sexual Behavior
Link ID: 27393 - Posted: 07.31.2020

By Nicholas Bakalar Severe gum disease and tooth loss may be linked to an increased risk for developing dementia, a new study has found. Researchers looked at 8,275 men and women whose average age was 63 at the start of the study. Over an average follow-up of more than 18 years, 19 percent of them developed Alzheimer’s disease or other forms of dementia. After controlling for various characteristics, including age, sex, education, cholesterol, high blood pressure, coronary heart disease, smoking and body mass index, they found that compared with people with healthy gums, those who had severe gingivitis with tooth loss had a 22 percent increased relative risk for dementia. Being toothless was associated with a 26 percent increased risk. The report is in the journal Neurology. Previous studies have shown that bacteria present in periodontal disease, particularly certain spirochetes, can travel along the trigeminal nerve that connects the mucous membranes of the mouth to the brain, potentially causing brain damage. The researchers also suggest that the connection could be more indirect, with the inflammation of gum disease leading to cardiovascular disease or diabetes, which are known risk factors for dementia. “We haven’t proven causation,” said the lead author, Ryan T. Demmer, an associate professor of epidemiology at the University of Minnesota. “But if it is causal, the population impact could be significant. Half the population has periodontal disease severe enough to put them at higher risk.” © 2020 The New York Times Company

Keyword: Alzheimers
Link ID: 27392 - Posted: 07.31.2020

By Helen Macdonald I found a dead common swift once, a husk of a bird under a bridge over the River Thames, where sunlight from the water cast bright scribbles on the arches above. I picked it up, held it in my palm, saw the dust in its feathers, its wings crossed like dull blades, its eyes tightly closed, and realized that I didn’t know what to do. This was a surprise. Encouraged by books, I’d always been the type of Gothic amateur naturalist who preserved interesting bits of the dead. I cleaned and polished fox skulls; disarticulated, dried and kept the wings of roadkill birds. But I knew, looking at the swift, that I could not do anything like that to it. The bird was suffused with a kind of seriousness very akin to holiness. I didn’t want to leave it there, so I took it home, swaddled it in a towel and tucked it in the freezer. It was in early May the next year, as soon as I saw the first returning swifts flowing down from the clouds, that I knew what I had to do. I went to the freezer, took out the swift and buried it in the garden one hand’s-width deep in earth newly warmed by the sun. Swifts are magical in the manner of all things that exist just a little beyond understanding. Once they were called the “Devil’s bird,” perhaps because those screaming flocks of black crosses around churches seemed pulled from darkness, not light. But to me, they are creatures of the upper air, and of their nature unintelligible, which makes them more akin to angels. Unlike all other birds I knew as a child, they never descended to the ground. When I was young, I was frustrated that there was no way for me to know them better. They were so fast that it was impossible to focus on their facial expressions or watch them preen through binoculars. They were only ever flickering silhouettes at 30, 40, 50 miles an hour, a shoal of birds, a pouring sheaf of identical black grains against bright clouds. There was no way to tell one bird from another, nor to watch them do anything other than move from place to place, although sometimes, if the swifts were flying low over rooftops, I’d see one open its mouth, and that was truly uncanny, because the gape was huge, turning the bird into something uncomfortably like a miniature basking shark. Even so, watching them with the naked eye was rewarding in how it revealed the dynamism of what before was merely blankness. Swifts weigh about 1½ ounces, and their surfing and tacking against the pressures of oncoming air make visible the movings of the atmosphere. © 2020 The New York Times Company

Keyword: Sleep; Evolution
Link ID: 27391 - Posted: 07.29.2020

Ian Sample Science editor Scientists have unravelled the mysterious mechanism behind the armpit’s ability to produce the pungent smell of body odour. Researchers at the University of York traced the source of underarm odour to a particular enzyme in a certain microbe that lives in the human armpit. To prove the enzyme was the chemical culprit, the scientists transferred it to an innocent member of the underarm microbe community and noted – to their delight – that it too began to emanate bad smells. The work paves the way for more effective deodorants and antiperspirants, the scientists believe, and suggests that humans may have inherited the mephitic microbes from our ancient primate ancestors. “We’ve discovered how the odour is produced,” said Prof Gavin Thomas, a senior microbiologist on the team. “What we really want to understand now is why.” Humans do not produce the most pungent constituents of BO directly. The offending odours, known as thioalcohols, are released as a byproduct when microbes feast on other compounds they encounter on the skin. The York team previously discovered that most microbes on the skin cannot make thioalcohols. But further tests revealed that one armpit-dwelling species, Staphylococcus hominis, was a major contributor. The bacteria produce the fetid fumes when they consume an odourless compound called Cys-Gly-3M3SH, which is released by sweat glands in the armpit. Advertisement Humans come with two types of sweat glands. Eccrine glands cover the body and open directly onto the skin. They are an essential component of the body’s cooling system. Apocrine glands, on the other hand, open into hair follicles, and are crammed into particular places: the armpits, nipples and genitals. Their role is not so clear. © 2020 Guardian News & Media Limited

Keyword: Chemical Senses (Smell & Taste); Sexual Behavior
Link ID: 27390 - Posted: 07.29.2020

By Jane E. Brody Appearances, as I’m sure you know, can be deceiving. In one all-too-common example, adolescents and young adults with disordered eating habits or outright eating disorders often go unrecognized by both parents and physicians because their appearance defies common beliefs: they don’t look like they have an eating problem. One such belief is that people with anorexia always look scrawny and malnourished when in fact they may be of normal weight or even overweight, according to recent research at the University of California, San Francisco. The researchers, led by Dr. Jason M. Nagata, a specialist in adolescent medicine at the university’s Benioff Children’s Hospital, found in a national survey that distorted eating behaviors occur in young people irrespective of their weight, gender, race, ethnicity or sexual orientation. And it’s not just about losing weight. The survey revealed that among young adults aged 18 to 24, 22 percent of males and 5 percent of females were striving to gain weight or build muscle by relying on eating habits that may appear to be healthy but that the researchers categorized as risky. These practices include overconsuming protein and avoiding fats and carbohydrates. The use of poorly tested dietary supplements and anabolic steroids was also common among those surveyed. The Covid-19 pandemic has likely exacerbated the problem for many teenagers whose daily routines have been disrupted and who now find themselves at home all day with lots of food being hoarded in kitchens and pantries, Dr. Nagata said in an interview. “We’re seeing more patients and referrals for eating disorders and their complications,” he said. © 2020 The New York Times Company

Keyword: Anorexia & Bulimia
Link ID: 27389 - Posted: 07.29.2020

By Pam Belluck A newly developed blood test for Alzheimer’s has diagnosed the disease as accurately as methods that are far more expensive or invasive, scientists reported on Tuesday, a significant step toward a longtime goal for patients, doctors and dementia researchers. The test has the potential to make diagnosis simpler, more affordable and widely available. The test determined whether people with dementia had Alzheimer’s instead of another condition. And it identified signs of the degenerative, deadly disease 20 years before memory and thinking problems were expected in people with a genetic mutation that causes Alzheimer’s, according to research published in JAMA and presented at the Alzheimer’s Association International Conference. Such a test could be available for clinical use in as little as two to three years, the researchers and other experts estimated, providing a readily accessible way to diagnose whether people with cognitive issues were experiencing Alzheimer’s, rather than another type of dementia that might require different treatment or have a different prognosis. A blood test like this might also eventually be used to predict whether someone with no symptoms would develop Alzheimer’s. “This blood test very, very accurately predicts who’s got Alzheimer’s disease in their brain, including people who seem to be normal,” said Dr. Michael Weiner, an Alzheimer’s disease researcher at the University of California, San Francisco, who was not involved in the study. “It’s not a cure, it’s not a treatment, but you can’t treat the disease without being able to diagnose it. And accurate, low-cost diagnosis is really exciting, so it’s a breakthrough.” Nearly six million people in the United States and roughly 30 million worldwide have Alzheimer’s, and their ranks are expected to more than double by 2050 as the population ages. Blood tests for Alzheimer’s, which are being developed by several research teams, would provide some hope in a field that has experienced failure after failure in its search for ways to treat and prevent a devastating disease that robs people of their memories and ability to function independently. © 2020 The New York Times Company

Keyword: Alzheimers
Link ID: 27388 - Posted: 07.29.2020

Jon Hamilton This is the story of a fatal genetic disease, a tenacious scientist and a family that never lost hope. Conner Curran was 4 years old when he was diagnosed with Duchenne Muscular Dystrophy, a genetic disease that causes muscles to waste away. Conner's mother, Jessica Curran, remembers some advice she got from the doctor who made that 2015 diagnosis: "Take your son home, love him, take him on trips while he's walking, give him a good life and enjoy him because there are really not many options right now." Five years later, Conner is not just walking, but running faster than ever, thanks to an experimental gene therapy that took more than 30 years to develop. Conner was the first child to receive the treatment — a single infusion designed to fix the genetic mutation that was gradually causing his muscles cells to die. The treatment can't bring back the cells he's lost (he remains smaller and weaker than his twin brother, Kyle), but it has allowed the muscle cells he still has to function better. Since Conner's treatment, eight other boys with Duchenne have received two different doses of the gene therapy. Preliminary results on six of them, tested a year after treatment, showed they, too, had improved strength and endurance at an age when boys with Duchenne usually become weaker. © 2020 npr

Keyword: Muscles; Movement Disorders
Link ID: 27387 - Posted: 07.27.2020

Justin Rowlatt Chief environment correspondent If you have ever doubted whether solar power can be a transformative technology, read on. This is a story about how it has proved its worth in the toughest environment possible. The market I'm talking about is perhaps the purest example of capitalism on the planet. There are no subsidies here. Nobody is thinking about climate change - or any other ethical consideration, for that matter. This is about small-scale entrepreneurs trying to make a profit. It is the story of how Afghan opium growers have switched to solar power, and significantly increased the world supply of heroin. I was in a military helicopter thundering over the lush poppy fields of the Helmand valley in Afghanistan when I spotted the first solar panel. You've heard of Helmand. It is the most dangerous province in Afghanistan. Of the 454 British soldiers who died in the recent conflict in Afghanistan, all but five lost their lives in Helmand. The province is also at the heart of by far the most productive opium growing region on the planet. Most opium will be refined into heroin, one of the most addictive drugs there is. According to the UN body responsible for tracking and tackling illegal drug production, the UNODC, almost 80% of all Afghan opium now comes from the south-west of the country, including Helmand. That means pretty much two-thirds of global supply. So, not the kind of place you would expect to be at the forefront of efforts to decarbonise the economy. But, once I had seen that first solar panel, I saw more. In fact there seemed to be a small array of solar panels in the corner of most farm compounds, and that was back in 2016. It is only now that the scale of the revolution in heroin production I was unwittingly witnessing has been quantified. Because I wasn't the only person to notice that Afghan farmers were taking an interest in low-carbon technologies. © 2020 BBC.

Keyword: Drug Abuse
Link ID: 27386 - Posted: 07.27.2020

Jon Hamilton For years, public health officials have been trying to dispel the myth that people who get a flu shot are more likely to get Alzheimer's disease. They are not. And now there is evidence that vaccines that protect against the flu and pneumonia may actually protect people from Alzheimer's, too. The evidence comes from two studies presented Monday at this year's Alzheimer's Association International Conference, which is being held as a virtual event. "We've always known that vaccines are very important to our overall health," says Maria Carrillo, chief science officer of the Alzheimer's Association. "And maybe they even contribute to protecting our memory, our cognition, our brain." The first study came from a team at the University of Texas that combed through millions of medical records in a national database. The goal was to find factors that affected a person's risk of getting certain diseases, including Alzheimer's. "And one of the things that came back was flu shots," says Albert Amran, a medical student of the McGovern Medical School at the University of Texas Health Science Center in Houston and an author of the study. That seemed odd. So Amran and a team of researchers took a closer look at the medical records of about 9,000 people who were at least 60 years old. Some had received a seasonal flu shot. Some hadn't. "We [tried] to make sure that both groups had an equal amount of, say, smoking status, obesity, diabetes, cardiovascular disease," Amran says. Those are known risk factors for Alzheimer's. The team also looked at factors like education and income, and indicators like the number of prescriptions a person had received, to make sure that people who got vaccines weren't just healthier overall. They weren't. © 2020 npr

Keyword: Alzheimers; Neuroimmunology
Link ID: 27385 - Posted: 07.27.2020

Can a video game help children struggling with ADHD? That question inspired hopeful headlines last month after the Food and Drug Administration permitted marketing of the first digital game that may be prescribed to treat children ages 8 to 12 who have been diagnosed with attention-deficit/hyperactivity disorder. In EndeavorRx, designed for iPhones and iPads, children guide an avatar surfing through molten lava and an icy river, dodging fires and icebergs while grabbing flying objects. The game is not yet available for purchase, nor has a price been released, but its Boston-based developer, Akili Interactive Labs, may now feature its unique status in ads and pursue coverage by insurance plans. No trip to the pharmacy is needed: Doctors and nurses will be able to prescribe the game by giving parents a code to download an app. Akili’s website touts its digital approach as “the future of medicine.” But some critics say: Not so fast. “It’s a marketing ploy,” said clinical psychologist and researcher Russell Barkley, author of several books on ADHD. Barkley and three other ADHD experts who reviewed Akili’s research said the firm was overpromising by implying that EndeavorRx can provide meaningful help for children struggling in school and at home with the sometimes-debilitating neurodevelopmental disorder, whose symptoms include distraction, forgetfulness and impulsivity. “I’m a little shocked and more perplexed about why the FDA would approve this and allow it to be paid for by insurance,” said Mark Rapport, head of the Children’s Learning Clinic at the University of Central Florida, who has published extensive research on other brain-training programs making similar claims. “I abhor seeing desperate parents spend money based on empty promises. . . . On moral grounds, I think it’s wrong to tell people to get their doctors to prescribe this when it does nothing of real-world importance.”

Keyword: ADHD
Link ID: 27384 - Posted: 07.27.2020

Masakazu (Mark) Konishi, the Bing Professor of Behavioral Biology, Emeritus, passed away on July 23. He was 87 years old. Renowned for his work on the neuroscience underlying the behavior of owls and songbirds, Konishi joined the Caltech faculty as a professor of biology in 1975, becoming the Bing Professor of Behavioral Biology in 1980. Since the early 1960s, Konishi was a leader in the field of avian neuroethology—the neurobiological study of natural behavior, such as prey capture by owls and singing in songbirds. In his laboratory at Caltech, Konishi advised dozens of graduate students and postdoctoral scholars. His team worked extensively on the auditory systems of barn owls, which use their acute hearing to home in on prey on the ground, even in total darkness. Konishi was the first to theorize that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. Konishi was born in Kyoto, Japan, on February 17, 1933. He attended Hokkaido University in Sapporo, Japan, for his bachelor and master of science degrees, after which he attended the UC Berkeley for his PhD. Under Berkeley professor Peter Marler, Konishi focused his doctoral research on the idea of central coordination. Konishi began a full professorship at Caltech in 1975. He was the Bing Professor of Behavioral Biology until his retirement in 2013. From 1977 to 1980, Konishi served as the division's executive officer for biology.

Keyword: Animal Communication; Language
Link ID: 27383 - Posted: 07.27.2020

Ewen Callaway Despite their rough and tumble existence, Neanderthals had a biological predisposition to a heightened sense of pain, finds a first-of-its kind genome study published in Current Biology on 23 July1. Evolutionary geneticists found that the ancient human relatives carried three mutations in a gene encoding the protein NaV1.7, which conveys painful sensations to the spinal cord and brain. They also showed that in a sample of British people, those who had inherited the Neanderthal version of NaV1.7 tend to experience more pain than others. “It’s a first example, to me, about how we begin to perhaps get an idea about Neanderthal physiology by using present-day people as transgenic models,” says Svante Pääbo at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, who led the work with Hugo Zeberg at the Karolinska Institute in Stockholm. Pain-sensing protein Researchers have access to only a few Neanderthal genomes, and most of those have been sequenced at a low resolution. This has made it hard to identify mutations that evolved after their lineage split from that of humans some 500,000–750,000 years ago. But in the past few years, Pääbo and his team have generated three high-quality Neanderthal genomes from DNA found in caves in Croatia and Russia. This allows them to confidently identify mutations that were probably common in Neanderthals, yet very rare in humans. Mutations in a gene called SCN9A — which encodes the NaV1.7 protein — stood out because all of the Neanderthals had three mutations that alter the shape of the protein. The mutated version of the gene was found on both sets of chromosomes in all three Neanderthals, hinting that it was common across their populations. © 2020 Springer Nature Limited

Keyword: Pain & Touch; Evolution
Link ID: 27382 - Posted: 07.25.2020

By Karen Kwon, Liz Tormes In 1968 an exhibit entitled Cybernetic Serendipity: The Computer and the Arts was held at the Institute of Contemporary Arts in London. The first major event of its kind, Cybernetic Serendipity’s aim was to “present an area of activity which manifests artists’ involvement with science, and the scientists’ involvement with the arts,” wrote British art critic Jasia Reichardt, who curated the exhibit. Even though it was an art show, “most of the participants in the exhibition were scientists,” Reichardt said in a 2014 video. “Artists didn’t have computers in the 1960s.” A lot has changed since then, however. Computers, no longer the commodity of a select few, help artists to deviate from more traditional mediums. The changes since the 1960s are well-reflected in the entries for the 2020 Art of Neuroscience competition, held by the Netherlands Institute for Neuroscience. Now marking its 10th year, the contest features some highly technological pieces and others grounded in classical methods, such as drawing with pen on paper. The winning entries were created by independent artists, as well as working scientists, demonstrating that art and neuroscience can inspire both professions. A winner and four honorable mentions were selected from dozens of submitted works. And seven pieces were chosen by Scientific American as Editors’ Picks. (Photography editor Liz Tormes served on the panel of judges for the competition.) © 2020 Scientific American

Keyword: Brain imaging
Link ID: 27381 - Posted: 07.25.2020

by Peter Hess / Infants with particular patterns of electrical activity in the brain go on to have high levels of autism traits as toddlers, a new study shows1. Specifically, babies who have unusually high or low synchrony between certain brain waves — as measured by electroencephalography (EEG) — at 3 months old tend to score high on a standardized scale of autism-linked behaviors when they are 18 months old. These levels of synchrony reflect underlying patterns of connectivity in the brain. The findings suggest that EEG could help clinicians identify autistic babies long before these children show behaviors flagged by standard diagnostic tests. The work “reinforces the concept and the truism that brain development is affected before autism diagnoses are made,” says lead researcher Shafali Spurling Jeste, associate professor of psychiatry and neurology at the University of California, Los Angeles. “We believe that we could work to start rewiring the brain if we intervene effectively and early enough. That message, quite simply, is a very important one.” The study involved ‘baby sibs,’ the younger siblings of autistic children. Baby sibs are 10 to 20 times more likely to have autism than the general population. Previous research showed similar patterns of altered connectivity in functional magnetic resonance imaging (MRI) data from infants who were later diagnosed with autism, but MRI is costly and prone to errors. EEG measurements, on the other hand, are relatively inexpensive and simple to perform, which makes them more practical for clinical use, says Charles Nelson, professor of pediatrics and neuroscience at Harvard University, who was not involved in the study. © 2020 Simons Foundation

Keyword: Autism
Link ID: 27380 - Posted: 07.25.2020

Laura P.W. Ranum An FDA-approved diabetes drug shows early signs of promise against the most common genetic form of amyotrophic lateral sclerosis, a devastating neurological condition that causes paralysis. ALS is a progressive disease that affects neurons in the brain and spinal cord. Motor neurons transmit signals from our brain to our muscles and allow us to move. ALS causes these motor neurons to die, resulting in the loss of a patient’s ability to speak, eat, move and breathe. Notable ALS patients include New York Yankees baseball star Lou Gehrig (the disease is often called Lou Gehrig’s disease), physicist Stephen Hawking and New Orleans Saints football star Steve Gleason. There are currently more than 30,000 cases of ALS in the United States, and life expectancy after diagnosis is typically 2 to 5 years. There is currently no cure for ALS. I am a scientist who studies neurological diseases that run in families, and I have been working hard to find a treatment to stop ALS. Our team has made a discovery, detailed in a scientific study, that paves the way for further research for improving disease in a genetic type of ALS caused by a mutation in a gene with the unwieldy name chromosome 9 open reading frame 72 (C9orf72), based on its location on chromosome 9. In addition to ALS, mutations in this gene can also cause frontotemporal dementia, which can cause apathy, loss of emotional control and cognitive decline. Some patients with the C9orf72 mutation develop ALS, others develop frontotemporal dementia and some develop both. Together, these diseases are referred to here as C9-ALS/FTD. I have been focusing on C9-ALS, which is the most common genetic type of ALS which is caused by a mutation in the C9orf72 gene. The mutation occurs when six letters of DNA that make up part of the gene’s genetic code – GGGGCC – are repeated hundreds of extra times. It is as if a single word is repeated hundreds of times in the same sentence. © 2010–2020, The Conversation US, Inc.

Keyword: ALS-Lou Gehrig's Disease
Link ID: 27379 - Posted: 07.21.2020

By Jane E. Brody Michael Richard Clifford, a 66-year-old retired astronaut living in Cary, N.C., learned before his third spaceflight that he had Parkinson’s disease. He was only 44 and in excellent health at the time, and had no family history of this disabling neurological disorder. What he did have was years of exposure to numerous toxic chemicals, several of which have since been shown in animal studies to cause the kind of brain damage and symptoms that afflict people with Parkinson’s. As a youngster, Mr. Clifford said, he worked in a gas station using degreasers to clean car engines. He also worked on a farm where he used pesticides and in fields where DDT was sprayed. Then, as an aviator, he cleaned engines readying them for test flights. But at none of these jobs was he protected from exposure to hazardous chemicals that are readily inhaled or absorbed through the skin. Now Mr. Clifford, a lifelong nonsmoker, believes that his close contact with these various substances explains why he developed Parkinson’s disease at such a young age. Several of the chemicals have strong links to Parkinson’s, and a growing body of evidence suggests that exposure to them may very well account for the dramatic rise in the diagnosis of Parkinson’s in recent decades. To be sure, the medical literature is replete with associations between people’s habits and exposures and their subsequent risk of developing various ailments, from allergies to heart disease and cancer. Such linkages do not — and cannot by themselves — prove cause and effect. Sometimes, though, the links are so strong and the evidence so compelling that there can be little doubt that one causes the other. The link of cigarette smoking to lung cancer is a classic example. Despite tobacco industry claims that there was no definitive proof, the accumulation of evidence, both experimental and epidemiological, eventually made it impossible to deny that years of smoking can cause cancer even long after a person has quit. © 2020 The New York Times Company

Keyword: Parkinsons; Neurotoxins
Link ID: 27378 - Posted: 07.21.2020

A scientific analysis of more than 2,000 brain scans found evidence for highly reproducible sex differences in the volume of certain regions in the human brain. This pattern of sex-based differences in brain volume corresponds with patterns of sex-chromosome gene expression observed in postmortem samples from the brain’s cortex, suggesting that sex chromosomes may play a role in the development or maintenance of sex differences in brain anatomy. The study, led by researchers at the National Institute of Mental Health (NIMH), part of the National Institutes of Health, is published in Proceedings of the National Academy of Sciences. “Developing a clearer understanding of sex differences in human brain organization has great importance for how we think about well-established sex differences in cognition, behavior, and risk for psychiatric illness. We were inspired by new findings on sex differences in animal models and wanted to try to close the gap between these animal data and our models of sex differences in the human brain,” said Armin Raznahan, M.D., Ph.D., study co-author and chief of the NIMH Section on Developmental Neurogenomics. Researchers have long observed consistent sex-based differences in subcortical brain structures in mice. Some studies have suggested these anatomical differences are largely due to the effects of sex hormones, lending weight to a “gonad-centric” explanation for sex-based differences in brain development. However, more recent mouse studies have revealed consistent sex differences in cortical structures, as well, and gene-expression data suggest that sex chromosomes may play a role in shaping these anatomical sex differences. Although the mouse brain shares many similarities with the human brain, it is not clear whether these key findings in mice also apply to humans.

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 27377 - Posted: 07.21.2020