Most Recent Links

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 3441 - 3460 of 29528

By Caroline Wyatt BBC News "I don't like to think of the future. It's such a big question mark. I just keep living in the present." Karine Mather was diagnosed with MS when she was 27, although she noticed the first symptoms much earlier. It started off as a mental-health issue with anxiety and depression, she remembers. Later, she noticed she was starting to limp when she walked longer distances. Karine began using a walker to help with her balance and stamina, and then a scooter when she could no longer walk very far. "I got to the stage where the wheelchair became quite liberating, and gave me back a sense of freedom again. Now I rely on the power-chair full-time because I can't stand by myself any more." Now Karine and her wife, Sarah, have had to give up their full-time jobs. Karine was forced to stop working as a customer service adviser at a bank because she could no longer fulfil the physical demands of work and Sarah gave up working as a data analyst so she could take care of Karine. Now 34, Karine retains the use of just one hand, and suffers pain, stiffness and spasticity in her body that has got worse as the disease has progressed. "It feels like a fist clenching all the time. And I have days when my mind is cloudy and I miss out words and sentences." Both remain upbeat but the financial, as well as the emotional, impact of MS has been huge. Karine's MS is the type known as "primary progressive", or PPMS, which meant that for the first years after diagnosis, no disease-modifying treatment was available. One new drug - Ocrevus, or ocrelizumab - was recently licensed for early PPMS in the UK but came too late to help Karine. Now the MS Society is launching an ambitious "Stop MS" appeal, aiming to raise £100m to fund research over the next decade into treatments that can stop the progression of disability in MS. © 2019 BBC

Keyword: Multiple Sclerosis; Neuroimmunology
Link ID: 26682 - Posted: 10.09.2019

By Kelly Servick WASHINGTON, D.C. —Sending a mouse through a maze can tell you a lot about how its little brain learns. But what if you could change the size and structure of its brain at will to study what makes different behaviors possible? That’s what Elan Barenholtz and William Hahn are proposing. The cognitive psychologist and computer scientist, both at Florida Atlantic University in Boca Raton, are running versions of classic psychology experiments on robots equipped with artificial intelligence. Their laptop-size robotic rovers can move and sense the environment through a camera. And they’re guided by computers running neural networks–models that bear some resemblance to the human brain. Barenholtz presented this “robopsychology” approach here last week at the American Psychological Association’s Technology Mind & Society Conference. He and Hahn told Science how they’re using their unusual new test subjects. The interview has been edited for clarity and length. Q: Why put neural networks in robots instead of just studying them on a computer? Elan Barenholtz: There are a number of groups trying to build models to simulate certain functions of the brain. But they’re not making a robot walk around and recognize stuff and carry out complex cognitive functions. William Hahn: What we want is the organism itself to guide its own behavior and get rewards. One way to think about it would be to try to build the simplest possible models. What is the minimum complexity you need to put in one of these agents so that it acts like a squirrel or it acts like a cat? © 2019 American Association for the Advancement of Science

Keyword: Learning & Memory; Robotics
Link ID: 26681 - Posted: 10.08.2019

By Evan Cooper Early one summer morning, I was awakened by a hammering on the inside of my skull. It felt as if a prisoner were trying to Shawshank it out through my left eye socket. When I sat up in bed to reach for the Advil on my nightstand, I became panic-stricken. Both eyes were open, but I could see through only one. I’d been known to leap to worst-case scenarios at the first sign of any physical discomfort. (Pain in my abdomen? Appendicitis! Headache? Definitely a brain tumor.) But this was different: I wasn’t paranoid, I was blind in my left eye. At the ophthalmologist’s office later that morning, I tried not to panic. I was nearly 20 years old, midway through my studies at U.C.L.A. Everything is fine, I told myself. You’re FINE. Like a mantra, I repeated this over and over, determined that, for once, I was not going to catastrophize. I briefly thought I might be imagining it all, conjuring up some drama for attention. Once when I was 11, I called my dad, who lived 3,000 miles away in Los Angeles, and begged him to send an ambulance to my house in Cleveland because I was certain that I had a collapsed lung and my mom was refusing to take me to the hospital. But the doctor I saw told me with some urgency that I needed to see a specialist, immediately. I overheard his assistant quietly consider potential diagnoses: “multiple sclerosis, lupus, another autoimmune disease?” I closed my eyes and imagined myself on the sort of carnival ride where you stick to the wall as you spin round and round until the floor falls away. Beyond disbelief and dread, however, I also felt a familiar swell of self-loathing. Of course I have an incurable, degenerative disease, I reprimanded myself. This is my fault. After all, up until this point, I had lived as if an internal army of drill sergeants were commanding me to eat less, exercise harder, study more, stand out, be The Best. No achievement was ever good enough. And what is an autoimmune disease if not the Self waging a war upon the Self? © 2019 The New York Times Company

Keyword: Vision
Link ID: 26680 - Posted: 10.08.2019

Joe Palca It's hard for doctors to do a thorough eye exam on infants. They tend to wiggle around — the babies, that is, not the doctors. But a new smart phone app takes advantage of parents' fondness for snapping pictures of their children to look for signs that a child might be developing a serious eye disease. The app is the culmination of one father's the five-year quest to find a way to catch the earliest signs of eye disease, and prevent devastating loss of vision. Five years ago, NPR reported the story of Bryan Shaw's son Noah, and how he lost an eye to cancer. Doctors diagnosed Noah Shaw's retinoblastoma when he was 4 months old. To make the diagnosis, the doctors shined a light into Noah's eye, and got a pale reflection from the back of the eyeball, an indication that there were tumors there. Noah's father Bryan is a scientist. He wondered if he could see that same pale reflection in flash pictures his wife was always taking of his baby son. Sure enough, he saw the reflection or glow, which doctors call "white eye," in a picture taken right after Noah was born. "We had white eye showing up in pictures at 12 days old," Shaw said at the time, months before his ultimate diagnosis Shaw is a chemist, not an eye doctor nor a computer scientist, but he decided to create software that could scan photos for signs of this reflection. © 2019 npr

Keyword: Vision
Link ID: 26679 - Posted: 10.08.2019

Patricia Churchland Three myths about morality remain alluring: only humans act on moral emotions, moral precepts are divine in origin, and learning to behave morally goes against our thoroughly selfish nature. Converging data from many sciences, including ethology, anthropology, genetics, and neuroscience, have challenged all three of these myths. First, self-sacrifice, given the pressing needs of close kin or conspecifics to whom they are attached, has been documented in many mammalian species—wolves, marmosets, dolphins, and even rodents. Birds display it too. In sharp contrast, reptiles show no hint of this impulse. Second, until very recently, hominins lived in small groups with robust social practices fostering well-being and survival in a wide range of ecologies. The idea of a divine lawgiver likely played no part in their moral practices for some two million years, emerging only with the advent of agriculture and larger communities where not everyone knew everyone else. The divine lawgiver idea is still absent from some large-scale religions, such as Confucianism and Buddhism. Third, it is part of our genetic heritage to care for kith and kin. Although self-sacrifice is common in termites and bees, the altruistic behavior of mammals and birds is vastly more flexible, variable, and farsighted. Attachment to others, mediated by powerful brain hormones, is the biological platform for morality. © 1986–2019 The Scientist.

Keyword: Consciousness; Emotions
Link ID: 26678 - Posted: 10.08.2019

By Nicholas Bakalar During pregnancy, sleeping on your back may be a bad idea. Previous studies have found that sleeping in a supine position causes compression of veins and arteries that can lead to a reduction in blood flow to the placenta severe enough to double the risk for stillbirth after 28 weeks of gestation. Now a new study, in JAMA Network Open, concludes that supine sleeping is also associated with low birth weight in full-term babies. Of 1,760 pregnant women in the analysis, 57 went to sleep lying on their backs. (The initial sleep position is the one maintained for the longest time during the night.) After controlling for age, body mass index, previous pregnancies, hypertension, diabetes and other factors, they found that compared with those sleeping in other positions, women who slept on their backs had babies who were three times as likely to be in the lowest 10th percentile for birth weight. “It’s a small number of pregnant women who go to sleep on their backs — only about 3 percent,” said the lead author, Dr. Ngaire H. Anderson, a senior lecturer in obstetrics and gynecology at the University of Auckland. “But we are keen to encourage the message that sleeping on one’s side is a way to optimize the baby’s health, both in reducing stillbirth and optimizing the baby’s growth.” © 2019 The New York Times Company

Keyword: Sleep; Development of the Brain
Link ID: 26677 - Posted: 10.08.2019

By Jason Gutierrez MANILA — President Rodrigo Duterte of the Philippines has revealed that he has a neuromuscular disease that has led to a slew of medical problems, including making his eye droop. Mr. Duterte, who was in Russia for a state visit, told the Filipino community there on Saturday night that he has myasthenia gravis, a chronic autoimmune disease that leads to skeletal muscle weakness. He said the disease ran in his family. The revelation came amid continued public speculation about his health. There have been periods when the famously bombastic president has been out of the public eye for days, prompting headlines guessing about his whereabouts, and even rumors of his death. But his communications officers have said that Mr. Duterte, 74, like any other older person, needs his own personal time. The president revealed the ailment after he apparently made a joke about not being able to look straight at a woman with whom he had danced a duet during the event in Moscow. “I have a talent,” Mr. Duterte said, according to official transcripts provided by his office afterward. “When I look at you, my other eye droops. Do you see? The other eye is smaller. It goes where it wants.” He added: “Actually, that’s myasthenia gravis. It’s a nerve malfunction.” Mr. Duterte said his grandfather had also had the disease, adding, “So I believe, really, in genetics.” The disease often affects the muscles that control the eyes, facial expression, speaking and swallowing, according to the Philippine Medical Association. Mr. Duterte came to power in 2016 vowing to rid the country of drug dealers and to wipe out other crimes. Since then, the Philippines’ war on drugs has led to thousands of killings allegedly by the police and vigilantes, which rights groups have denounced as an atrocity. © 2019 The New York Times Company

Keyword: Movement Disorders; Neuroimmunology
Link ID: 26676 - Posted: 10.07.2019

By Eva Frederick Yellow is usually the color of happy, joyful emotions. But according to a new study, not all people associate the sunshiney shade with good vibes. To find out what factors might play a role, researchers tested a new hypothesis: What if people’s physical surroundings affect their feelings about certain colors? For instance, if someone lived in cold and rainy Finland, would they feel differently about the color yellow from someone who lived near the Sahara Desert? The researchers looked at color-emotion data from an ongoing international survey of 6625 people in 55 countries. The survey asks participants to rate 12 colors on how closely they are associated with feelings including joy, pride, fear, and shame. Yellow is not so fun in the sun The darker the shade in the below map, the higher the likelihood of people associating the color yellow with joyful emotions. Overall, people were more likely to associate yellow with joy when they lived in rainier countries that lay farther from the equator, researchers report in the Journal of Environmental Psychology. © 2019 American Association for the Advancement of Science

Keyword: Emotions; Biological Rhythms
Link ID: 26675 - Posted: 10.07.2019

By Jane E. Brody My grandson Stefan was about 8 years old when he began to get migraine headaches. As soon as he could after getting home from school, he would lie down and go to sleep, awakening an hour or two later, usually with the headache gone. But before the pain abated, he sometimes vomited, prompting him and his relatives to keep barf bags handy at all times. Then as Stefan approached puberty, these debilitating headaches stopped as mysteriously as they had begun. Though Stefan’s headaches were disruptive and disabling, he was luckier than his grandma. My migraine attacks (misdiagnosed as sinus headaches) began around puberty, usually occurred three times a month, each lasting for three days, and didn’t end until menopause. Even though sleep can often terminate a migraine attack, nothing I tried brought relief, and there were no prescription medications at the time to treat or prevent them. Attention parents, teachers, coaches, doctors and anyone else who interacts with children and teens: Too often, adults tell them to “suck it up, it’s just a headache.” A migraine is not “just a headache,” nor is it something they can ignore. A migraine makes you feel sick all over, often acutely sensitive to light and noise, nauseated and unable to concentrate on anything but the desire for relief. Very young children with migraine may be spared the head pain and instead get only gastrointestinal symptoms like vomiting and stomach pain. Migraine is a disease with a genetic component and often runs in families. The pounding, nauseating headache is a symptom of that disease. Before puberty, the disorder affects boys and girls equally, but after puberty, when testosterone kicks in to suppress migraine attacks in boys, the incidence among girls becomes very much higher. © 2019 The New York Times Company

Keyword: Pain & Touch
Link ID: 26674 - Posted: 10.07.2019

By Benedict Carey For more than a decade, doctors have been using brain-stimulating implants to treat severe depression in people who do not benefit from medication, talk therapy or electroshock sessions. The treatment is controversial — any psychosurgery is, given its checkered history — and the results have been mixed. Two major trials testing stimulating implant for depression were halted because of disappointing results, and the approach is not approved by federal health regulators. Now, a team of psychiatric researchers has published the first long-term results, reporting Friday on patients who had stimulating electrodes implanted as long ago as eight years. The individuals have generally fared well, maintaining their initial improvements. The study, appearing in the American Journal of Psychiatry, was small, with just 28 subjects. Even still, experts said the findings were likely to extend interest in a field that has struggled. “The most impressive thing here is the sustained response,” Dr. Darin Dougherty, director of neurotherapeutics at Massachusetts General Hospital, said. “You do not see that for anything in this severe depression. The fact that they had this many people doing well for that long, that’s a big deal.” The implant treatment is known as deep brain stimulation, or D.B.S., and doctors have performed it for decades to help people control the tremors of Parkinson’s disease. In treating depression, surgeons thread an electrode into an area of the brain that sits beneath the crown of the head and is known to be especially active in people with severe depression. Running electrical current into that region, known as Brodmann Area 25, effectively shuts down its activity, resulting in relief of depression symptoms in many patients. The electrode is connected to a battery that is embedded in the chest. The procedure involves a single surgery; the implant provides continuous current from then on. © 2019 The New York Times Company

Keyword: Consciousness
Link ID: 26673 - Posted: 10.04.2019

By Laura Sanders A sleeping rat may look peaceful. But inside its furry, still head, a war is raging. Two types of brain waves battle over whether the rat will remember new information, or forget it, researchers report October 3 in Cell. Details of this previously hidden clash may ultimately help explain how some memories get etched into the sleeping brain, while others are scrubbed clean. By distinguishing between these dueling brain waves, the new study helps reconcile some seemingly contradictory ideas, including how memories can be strengthened (SN: 6/5/14) and weakened during the same stage of sleep (SN: 6/23/11). “It will help unite the field of sleep and learning, because everyone gets to be right,” says neuroscientist Gina Poe of the University of California, Los Angeles, who wasn’t involved in the study. Researchers led by neuroscientist and neurologist Karunesh Ganguly of the University of California, San Francisco, have been teaching rats to control a mechanical water spout with nothing but their neural activity. The team soon realized that the rats’ success with these brain-computer interfaces depended heavily on something that came after the training: sleep. To study how the new learning was strengthened during snoozing, Ganguly and his team monitored the brains of sleeping rats after they practiced moving the spout. The scientists focused on brain waves that wash over the motor cortex, the part of the brain that was controlling the external water spout, during non-REM sleep. That stage of sleep usually makes up more than half of an adult human’s night. © Society for Science & the Public 2000–2019.

Keyword: Sleep; Learning & Memory
Link ID: 26672 - Posted: 10.04.2019

Ariana Eunjung Cha After Danielle Rizzo’s first son and then her second were diagnosed with autism, she has struggled with the how and why. She wondered whether she could have prevented the condition in her second child by putting him on a gluten-free and casein-free diet. Did she have her children, born 14 months apart, too close together? She even held off on vaccinating her younger son before he, too, was diagnosed not long after the first. (The supposed link between vaccines and autism has been debunked by extensive research. The American Academy of Pediatrics; National Academies of Sciences, Engineering and Medicine; Centers for Disease Control and Prevention; and other medical groups have compiled some of the many scientific papers.) Rizzo came to suspect a genetic link involving the sperm donor for both children, after finding several other children conceived with the same donor’s sperm who have also been diagnosed with autism or related developmental challenges. A geneticist with expertise in autism identified possible autism-risk genes carried by the children. Her story, in a report published by The Washington Post on Sept. 14, prompted an outpouring of comments and questions — legal, scientific and ethical — about her case. While there is no central database of donors and their children in the United States, some sperm banks try to mitigate risks of donors passing on genetic conditions by testing them for up to 400 common heritable conditions. However, genetic testing is not required and is by no means comprehensive, as evident by the case studies reported in medical journals regularly.

Keyword: Autism; Genes & Behavior
Link ID: 26671 - Posted: 10.04.2019

By James Gallagher Health and science correspondent A man has been able to move all four of his paralysed limbs with a mind-controlled exoskeleton suit, French researchers report. Thibault, 30, said taking his first steps in the suit felt like being the "first man on the Moon". His movements, particularly walking, are far from perfect and the robo-suit is being used only in the lab. But researchers say the approach could one day improve patients' quality of life. And he can control each of the arms, manoeuvring them in three-dimensional space How easy was it to use? Thibault, who does not want his surname revealed, was an optician before he fell 15m in an incident at a night club four years ago. The injury to his spinal cord left him paralysed and he spent the next two years in hospital. But in 2017, he took part in the exoskeleton trial with Clinatec and the University of Grenoble. Initially he practised using the brain implants to control a virtual character, or avatar, in a computer game, then he moved on to walking in the suit. "It was like [being the] first man on the Moon. I didn't walk for two years. I forgot what it is to stand, I forgot I was taller than a lot of people in the room," he said. It took a lot longer to learn how to control the arms. © 2019 BBC.

Keyword: Robotics
Link ID: 26670 - Posted: 10.04.2019

Ashley Yeager During her time as a postdoc at the University of Basel in Switzerland, Sarah Shahmoradian decided to study the abnormal aggregates of protein that develop inside nerve cells and contribute to Parkinson’s disease. The protein clumps develop over time in the brains of Parkinson’s patients, leading some scientists to think they wreak havoc on nerve cells, causing severe damage and hastening their death. A fresh look at the clumps, called Lewy bodies, with cutting-edge microscopy tools could reveal insights that might lead to new treatments for Parkinson’s, Shahmoradian recalls thinking. “The original goal was to really find out what the building blocks of Lewy bodies are, what they are made of, and what they actually look like.” The clumps were first identified in the early 1900s, appearing as abnormal material in nerve cells viewed under a microscope. Additional studies using antibodies that bound to various proteins revealed that the clumps contained a protein called α-synuclein, and after more work probing Lewy bodies, scientists developed a rough sketch of their structure—essentially, a dense mass surrounded by a halo of twisted filaments of α-synuclein. It’s these filaments, known as fibrils, that Shahmoradian and her colleagues were most interested to analyze in postmortem human brains. Fibrils had been repeatedly produced in cultured cells and in animal models, but no one had ever gotten a clear view of them in human brain tissue. “We were originally looking for fibrils,” Shahmoradian says, “but unexpectedly, we found an abundance of . . . mitochondria, other organelles, and lipid membranes [in the Lewy bodies].” The researchers also found evidence of lysosomes, organelles that facilitate cellular waste removal. They did see α-synuclein in the Lewy bodies, as well, but the cores of the structures weren’t composed of twisted and tangled fibrils as researchers had thought. Instead, the protein was intermingled with other cellular material. © 1986–2019 The Scientist

Keyword: Parkinsons
Link ID: 26669 - Posted: 10.03.2019

By Lisa Sanders, M.D. “I don’t know what’s going on,” the 19-year-old exclaimed in a panicked voice as his parents entered the nearly deserted emergency room of a hospital in Eau Claire, Wis. He was a freshman at the university there. A high school friend, now at the university with him, had called them with a strange story. She told them that their son had been uncharacteristically quiet for a couple of days — he had a terrible headache. But that morning, he felt well enough to go with her to pick apples. He had been a little out of it all morning, but suddenly he was totally gone — just standing in the orchard staring into space. He wouldn’t even respond to his name. That’s when she called his mother. Take him to the emergency room, the mother instructed. She and her husband drove 90 minutes from their home near Minneapolis to meet them. The doctors there had ordered tests but gotten no answers. A head CT scan was normal; so were the basic blood tests looking for signs of an electrolyte abnormality or infection. There was no evidence that drugs were involved. The young man had been there for a couple of hours, and he seemed a little more engaged. Though the doctors weren’t sure what was going on, they felt that he wasn’t in danger and said he could go home. But he is not O.K., the mother protested; he had no history of mental illness or drug use. The doctors replied that she should take him to his primary-care doctor in the next couple of days. The young man was quiet on the drive home. He couldn’t articulate how he felt. At home, he continued to act strange. He didn’t even recognize the family dog. © 2019 The New York Times Company

Keyword: Sleep
Link ID: 26668 - Posted: 10.03.2019

By Jonathan Lambert Your dog’s ability to learn new tricks may be less a product of your extensive training than their underlying genetics. Among 101 dog breeds, scientists found that certain behavioral traits such as trainability or aggression were more likely to be shared by genetically similar breeds. While past studies have looked into the genetic underpinnings of dog behaviors for certain breeds, this research — published October 1 in the Proceedings of the Royal Society B — is the first to investigate a wide swath of breed diversity and find a strong genetic signal. “Anecdotally, everyone knows that different dogs have different behavioral traits,” says Noah Snyder-Mackler, a geneticist at the University of Washington in Seattle. “But we didn’t know how much or why.” Humans and dogs have lived together for at least 15,000 years (SN: 7/6/17). But only within the last 300 years or so have breeders produced varieties such as Chihuahuas and Great Danes. So, Snyder-Mackler and his colleagues considered how 101 dog breeds behave while searching for genetic similarities among breeds sharing certain personality traits. Data came from two dog genotype databases and from C-BARQ, a survey that asks owners to rank their pure-bred dog’s propensity for certain behaviors, like chasing or aggressiveness toward strangers. As a result, the study didn’t have genetic and behavioral data from the same canine individuals, which could help highlight rare genetic variants that may be nonetheless important to diversity in behaviors. © Society for Science & the Public 2000–2019

Keyword: Aggression; Genes & Behavior
Link ID: 26667 - Posted: 10.03.2019

Heidi Ledford An outbreak of deadly lung injuries in vapers in the United States — many of them adolescents — shows no signs of stopping. So far, 805 e-cigarettes users have fallen ill, 12 of whom have died. The illnesses are fuelling a push among lawmakers and regulators to rein in the sale of e-cigarettes, in particular those with flavours that could be contributing to a worrying surge in youth vaping. It’s illegal for vendors in the United States to sell e-cigarettes to those younger than 18; in some states and cities, the age limit is 21. Yet more than a third of the sick vapers are younger than 21, according to the US Centers for Disease Control and Prevention (CDC). Public-health officials have yet to find a definitive cause for the lung injuries, according to the CDC. And they worry that some of the affected adolescents might never fully recover. But it’s unclear what impact, if any, the new restrictions on e-cigarette sales will have on the health crisis or the problem of youth vaping. In response to the recent spate of lung injuries, the US Food and Drug Administration (FDA) — which regulates tobacco products including e-cigarettes — announced on 11 September that it plans to remove flavoured devices from the market, at least temporarily. The decision came as the agency was already seeking to regulate e-cigarettes after years of lax enforcement. Under FDA regulations, e-cigarette manufacturers must apply for agency approval to market their products. So far, none of the companies has submitted an application, but the FDA has nevertheless allowed their devices to stay on the market. The agency has given manufacturers until May 2020 to submit applications to continue selling their products.

Keyword: Drug Abuse
Link ID: 26666 - Posted: 10.03.2019

Catherine Offord When Lilian Calderón-Garcidueñas discovered abundant hallmarks of Alzheimer’s disease in a batch of human brain samples a few years ago, she initially wasn’t sure what to make of it. The University of Montana neuropathologist had been studying the brains as part of her research on environmental effects on neural development, and this particular set of samples came from autopsy examinations carried out on people who had died suddenly in Mexico City, where she used to work as a researcher and physician. Although Calderón-Garcidueñas had collected much of the tissue herself while attending the autopsies in Mexico, the light-microscope slides she was analyzing had been prepared by her colleagues, so she was in the dark about what patient each sample came from. By the end of the project, she’d identified accumulations of the Alzheimer’s disease–associated proteins amyloid-ß and hyperphosphorylated tau in almost all of the 203 brains she studied. “When I started opening envelopes to see who [each sample] belonged to . . . I was devastated,” she says. The people whose brains she’d been studying were not only adults, but teens and even children. The youngest was 11 months old. “My first thought was, ‘What am I going to do with this? What am I going to tell people?’” she says. “I was not expecting such a devastating, extreme pathology.” Despite her shock, Calderón-Garcidueñas had a reason to be on the lookout for signs of a disease usually associated with the elderly in these samples. For the last three decades, she’d been studying the health effects of Mexico City’s notoriously polluted air—a blight that earned the capital the dubious distinction of most polluted megacity on the planet from the United Nations in 1992. During that time, she’s discovered many links between exposure to air pollution and signs of neural damage in animals and humans. Although her findings are observational, and the pathology of proteins such as amyloid-ß is not fully understood, Calderón-Garcidueñas argues that air pollution is the most likely culprit behind the development of the abnormalities she saw in her postmortem samples—plus many other detrimental changes to the brains of Mexico City’s residents. © 1986–2019 The Scientist

Keyword: Neurotoxins; Alzheimers
Link ID: 26665 - Posted: 10.02.2019

Saba Salman As a graduate in the 1980s, Simon Baron‑Cohen taught autistic children at a special school in London. Little was known about autism then, and people often misheard him, assuming he taught “artistic children”. “People would be ashamed if they had an autistic child, or ashamed of saying, ‘I am autistic’, whereas now it’s treated as more ordinary and there’s less judgment,” he says. “In the 1980s, autism was seen as categorical, so ‘you either have it or you don’t’ … nowadays, we talk about a spectrum.” Today, Baron-Cohen, 61, is a world expert on autism, a Cambridge professor and director of the university’s influential Autism Research Centre. There is also greater awareness of autism, a lifelong condition affecting how people interact or process information. Estimates suggest one in every 100 people is on the autism spectrum (700,000 adults and children), from those with severe developmental disabilities needing intense support, to those with milder traits. Well-known autistic people include campaigner Greta Thunberg (who calls her “difference” a superpower). As a cognitive neuroscientist, Baron-Cohen has helped focus attention, from his pioneering psychological studies (autism was first diagnosed in the 1960s in the UK) to founding the UK’s first diagnosis clinic in Cambridge 20 years ago with charitable funding (today the centre is NHS-run). Yet his latest research reflects how improved awareness and understanding of autism have not led to improvements in the lives of people with autism. In the studyexploring how autistic adults experience disproportionately more “negative life events”, 45% of the 426 participants say they often lack money to meet basic needs (compared with 25% of non-autistic people) and 20% have been sexually abused by a partner (compared with 9%). The research, involving questionnaires created with autistic people, suggests why those with autism may experience more depression. © 2019 Guardian News & Media Limited

Keyword: Autism
Link ID: 26664 - Posted: 10.02.2019

By Kelly Servick The brain has a way of repurposing unused real estate. When a sense like sight is missing, corresponding brain regions can adapt to process new input, including sound or touch. Now, a study of blind people who use echolocation—making clicks with their mouths to judge the location of objects when sound bounces back—reveals a degree of neural repurposing never before documented. The research shows that a brain area normally devoted to the earliest stages of visual processing can use the same organizing principles to interpret echoes as it would to interpret signals from the eye. In sighted people, messages from the retina are relayed to a region at the back of the brain called the primary visual cortex. We know the layout of this brain region corresponds to the layout of physical space around us: Points that are next to each other in our environment project onto neighboring points on the retina and activate neighboring points in the primary visual cortex. In the new study, researchers wanted to know whether blind echolocators used this same type of spatial mapping in the primary visual cortex to process echoes. The researchers asked blind and sighted people to listen to recordings of a clicking sound bouncing off an object placed at different locations in a room while they lay in a functional magnetic resonance imaging scanner. The researchers found that expert echolocators—unlike sighted people and blind people who don’t use echolocation—showed activation in the primary visual cortex similar to that of sighted people looking at visual stimuli. © 2019 American Association for the Advancement of Science.

Keyword: Hearing; Learning & Memory
Link ID: 26663 - Posted: 10.02.2019